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There is a new appreciation for the
noncoding regions of the human gen-
ome as their functions in gene regula-
tion are delineated through the use of
functional genomics.

The cataloging of epigenetic marks and
their impact on cellular function is pro-
ceeding rapidly.

The intersection of epigenetics and
functional genomics reveals the myriad
ways by which the expression of the
human genome is regulated.

Understanding how epigenetic marks
on the noncoding genome can pro-
mote tumor progression can lead to
new therapeutic strategies. [24_TD$DIFF]
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The advent of functional genomics powered by [8_TD$DIFF]high-throughput sequencing
has given us a new appreciation [10_TD$DIFF]of the genomic sequences that lie outside [11_TD$DIFF]the
canonical promoter–coding sequence box. These regions harbor distant regu-
latory elements, enhancers, super-enhancers, insulators, alternative promoters,
and sequences that transcribe [13_TD$DIFF]as [14_TD$DIFF]noncoding RNAs [15_TD$DIFF](ncRNAs) such as [16_TD$DIFF]miRNAs
and long ncRNAs. These functional genomics studies [20_TD$DIFF]have also enabled a
clearer understanding of the role of the 3D structure of the genome in epigenetic
regulation. Here [21_TD$DIFF] we review the impact [22_TD$DIFF]that epigenetic changes, and specifically
DNA methylation, have on these extraordinary sequences in driving cancer
progression.

Functional Genomics: Beyond the Gene
The human genome encodes [25_TD$DIFF]all [26_TD$DIFF]of the intrinsic components of human life, as well as containing
instructions for [27_TD$DIFF]the appropriate timing of expression and execution. Dysregulation of these
processes results in pathologies such as cancer, a leading cause of [28_TD$DIFF]death inmodern societies. In
part to rise [29_TD$DIFF]to the clinical challenges created by cancer, the sequence [30_TD$DIFF] of the human genome [31_TD$DIFF]has
been under intense investigation for some time. The advent of massively parallel high-throughput
(HTP) sequencing has led to considerable progress towards unlocking the underlying codes
embedded in genomic sequences. There are two areas of functional genomics currently under
intense study: [35_TD$DIFF](i) functional analysis of [36_TD$DIFF]noncoding regions of the genome [37_TD$DIFF]; and [38_TD$DIFF](ii) characterization
of epigenetic modifications that govern genomic regulation. This review highlights studies at the
intersection of these trends and[39_TD$DIFF] its relevance [40_TD$DIFF]to in cancer.

Genomics [42_TD$DIFF]has revealed that much of the genome comprises [43_TD$DIFF]noncoding DNA that does not
result in the production of functional proteins. [44_TD$DIFF]Although it was first [45_TD$DIFF]considered ‘junk’ DNA [47_TD$DIFF] [1],
functional genomics now [48_TD$DIFF]shows that much of this [49_TD$DIFF]noncoding DNA is [50_TD$DIFF]important, conserved, and
[51_TD$DIFF]fulfills biological functions. [52_TD$DIFF]Consortia such as the Encyclopedia of DNA Elements [53_TD$DIFF] [54_TD$DIFF](ENCODE [55_TD$DIFF])i[56_TD$DIFF] [1_TD$DIFF]
have found that [57_TD$DIFF]the vast majority of the genome (�80%)[58_TD$DIFF] is involved in biochemical events[59_TD$DIFF] such
as [60_TD$DIFF][61_TD$DIFF]associations with binding proteins or RNAs[62_TD$DIFF] [2]. Genome-wide association studies ( [63_TD$DIFF]GWASs)
use large cohorts of patient genomic samples to assign risk of developing a [64_TD$DIFF] particular disease to
genetic variants. These variants are typically at [65_TD$DIFF]SNPs [66_TD$DIFF] and are correlated [67_TD$DIFF]with disease [68_TD$DIFF]traits by
linkage disequilibrium [69_TD$DIFF]; that is[70_TD$DIFF], the variant is observed in [71_TD$DIFF]patients [72_TD$DIFF]with the diseasemore often than
would be expected [73_TD$DIFF]if the variant [74_TD$DIFF]were randomly associated with the disease [3,4]. Integration of
these studies with the functional annotations in ENCODE [75_TD$DIFF]shows that 88% of SNPs associated
with [76_TD$DIFF]a risk of cancer are at positions that lie outside the coding regions of genes or their
promoters, suggesting severe consequences of altered functions of the noncoding genome [2].
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Figure 1. Epigenetic changes in cancer affect many [806_TD$DIFF]non-protein-coding regions of the genome. Depicted are some of
these elements outside [807_TD$DIFF]the ‘promoter–coding’ box: miRNAs, [809_TD$DIFF]long noncoding RNAs (lncRNAs [810_TD$DIFF]), enhancers, insulators, and
internal promoters. Enhancers are brought into contact with promoter elements by the actions of mediator and cohesin [811_TD$DIFF],
which are recruited by transcription factors (TFs). CTCF, CCCTC-binding factor; red circles, DNA methylation at cytosine
residues [815_TD$DIFF]; white circles [816_TD$DIFF], unmethylated DNA [817_TD$DIFF]; [818_TD$DIFF]half-red circles [819_TD$DIFF], [820_TD$DIFF]differentially methylated [821_TD$DIFF]cytosines that contribute [822_TD$DIFF] to cancer
progression [823_TD$DIFF]; blue triangles [824_TD$DIFF], histone modification H3K27Ac (enhancer mark)[825_TD$DIFF]; green [826_TD$DIFF]triangles, H3K4me3 (active chromatin) [827_TD$DIFF];
red [828_TD$DIFF]triangles, H3K27me3 ([829_TD$DIFF]marks repressive chromatin).
Epigenetics refers to [79_TD$DIFF]inheritable changes in gene expression seen in the absence of changes to
the [80_TD$DIFF]DNA sequence [81_TD$DIFF]. Epigenetic regulation of gene expression often proceeds through mod-
ifications to the lysine tails of histones and methylation of cytosine bases [5–7]. [83_TD$DIFF]HTP[84_TD$DIFF] sequencing
has provided a [85_TD$DIFF]boom in studies delineating the impact of epigenetic modifications on the
regulation of the genome and disease risk. These studies are leading to a new appreciation
[86_TD$DIFF]of the myriad [87_TD$DIFF]ways [88_TD$DIFF]in which the genome is regulated. Here we [89_TD$DIFF]review how the epigenome
interacts with the less [90_TD$DIFF]well-studied [91_TD$DIFF]elements [92_TD$DIFF] of the genome – the [93_TD$DIFF]noncoding regions – to drive
cancer progression ( [95_TD$DIFF]Figure 1, Key Figure). While histone modifications are a major component of
epigenetic regulation[96_TD$DIFF] [5–7], we [98_TD$DIFF]focus on the role of DNA methylation [99_TD$DIFF]of the [100_TD$DIFF]noncoding genome.

Enhancers
Enhancers are an important class of [102_TD$DIFF]noncoding genomic elements, [103_TD$DIFF] dysfunction [104_TD$DIFF]of which clearly
contributes to cancer. [105_TD$DIFF]Analysis of ENCODE and FANTOM5 annotations reveals a stronger
association between [106_TD$DIFF]disease-associated SNPs and enhancer sequences than [107_TD$DIFF]coding
sequences [108_TD$DIFF] [109_TD$DIFF][8]ii. Novel strategies to identify active enhancers are detailed in Box 1.

Since risk loci identified by [111_TD$DIFF]GWASs consistently map to [112_TD$DIFF]noncoding regions, variants in
enhancers are increasingly recognized as responsible for variation in complex traits. [113_TD$DIFF]GWASs
can be used to correlate [114_TD$DIFF]disease-associated SNPs [115_TD$DIFF]with changes in gene [116_TD$DIFF]expression [117_TD$DIFF], yielding
[118_TD$DIFF]expression quantitative trait [119_TD$DIFF]loci ( [120_TD$DIFF]eQTLs)[121_TD$DIFF] [9–12]. These analyses have identifiedmany meaningful
2 Trends in Cancer, Month Year, Vol. xx, No. yy
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Box 1. Methods to Identify Enhancers

Identifying the genomic location of enhancers is an important goal for functional genomics studies. Chromatin immu-
noprecipitation sequencing (ChIP-seq) studies of transcription factor binding and histone modifications are typically used
in lieu of [752_TD$DIFF]functional data to infer the activity of cis-regulatory modules. The drawback to using ChIP-seq data [753_TD$DIFF]is that
binding does not perfectly correlate with function; a recent analysis of Encyclopedia of DNA Elements (ENCODE)-
predicted enhancers found only �30% with genuine enhancer/CRM activity [131].[756_TD$DIFF] A further drawback [757_TD$DIFF]to these
approaches is that they identify large segments of the genome (typically greater than 1 kb) that are not amenable to
motif analysis.

Several approaches have been developed to overcome these obstacles. [760_TD$DIFF]Cis-regulatory elements by sequencing takes
advantage of barcoded transcripts to measure the activity of putative enhancers via modified RNA-seq [762_TD$DIFF] [132,133].
[763_TD$DIFF]Functional identification of regulatory elements within accessible chromatin [764_TD$DIFF] (FIREWACh) and [765_TD$DIFF]site-specific integration
fluorescence-activated cell sorting followed by sequencing [766_TD$DIFF] (SIF-seq) are two functional approaches utilizing detection of
fluorescent reporters [767_TD$DIFF]that were developed simultaneously [768_TD$DIFF] [134,135]. Both approaches take advantage of transgenic
approaches, FIREWACh via [769_TD$DIFF]lentivirus insertion into the genome [770_TD$DIFF] and SIF-seq via homologous recombination of the HPRT
gene in the mouse genome. Last, there is the self-transcribed active regulatory-region sequencing approach, which
takes advantage of [777_TD$DIFF]enhancers’ ability to direct [779_TD$DIFF]their own transcription [780_TD$DIFF] [136].
relationships between SNPs, gene expression, and disease risk that have advanced our
understanding of a wide variety of diseases [123_TD$DIFF] [12–15]. Extending this approach to epigenetic
modifications such as DNA methylation can help clarify how epigenetics and the [125_TD$DIFF]noncoding
genome interact in cancer. Sites of differential methylation that correlate with gene expression
changes are called methylation [126_TD$DIFF]eQTLs ( [127_TD$DIFF]meQTLs) and represent a promising approach to the
study of cancer epigenetics and [128_TD$DIFF]its impact on gene expression [16–18]. [135_TD$DIFF]

Aiming to determine whether enhancer methylation links cancer susceptibility loci to cancer-
driving mechanisms, Aran and Hellman analyzed 390 estrogen [131_TD$DIFF]receptor-positive breast tumors
from The Cancer Genome Atlas (TCGA [132_TD$DIFF])iii [130_TD$DIFF] and found that methylation sites and enhancers
characterized [133_TD$DIFF] the level of intertumor expression variation better than promoter methylation
[19]. Thus, while enhancer sites contain both sequence and methylation polymorphisms that
define enhancer activity, [134_TD$DIFF]the expression status of the target gene is better explained by
methylation status than by polymorphic sequence alone. [143_TD$DIFF]

Analysis of [136_TD$DIFF]3649 primary human tumors created a meQTL catalog of DNA methylation asso-
ciations for 21% of interrogated cancer risk polymorphisms [18]. This study linked risk alleles to
genes previously characterized as having known roles in cancer in addition to as yet unidentified
cancer genes. The association between breast cancer risk allele rs2380205 and the FBXO18
gene is of particular note. FBXO18 is an F-box protein helicase that actively participates in the
formation of double-strand breaks and activation of tumor [138_TD$DIFF]protein-dependent apoptosis follow-
ing DNA replication stress [20]. [139_TD$DIFF]FBXO18-deficient cells therefore have a propensity for increased
cell survival, since they [140_TD$DIFF]exhibit impaired inactivation of the cytotoxic stress-induced cascade
[21,22]. These observations [142_TD$DIFF]suggest a causal link between FBXO18 and breast cancer, making
this an interesting target for future research. [159_TD$DIFF]

Genome-wide binding studies of mediator and cohesin components revealed that these factors
concentrate at a subset of regulatory elements that group genomically to form what are termed
‘super-enhancers’ [23]. [148_TD$DIFF]Super-enhancers are associated with key developmental regulatory
genes and their functions are modified in cancer [24–26]. For example, a somatic heterozygous
insertion creates a binding site for the transcription factor (TF) [150_TD$DIFF]MYB, which leads to the formation
of a [151_TD$DIFF]super-enhancer upstream of the TAL1 oncogene that contributes to the pathology of T [152_TD$DIFF] cell
acute lymphoblastic leukemia (T-ALL) [153_TD$DIFF] [27]. Induction of this super-enhancer is evident from the
accumulation of H327KAc histone marks and binding of major leukemogenic transcription [156_TD$DIFF]
components RUNX1, GATA-3, and TAL1 itself. This was one of the [157_TD$DIFF]first studies to provide a
genetic mechanism for oncogenic [158_TD$DIFF]super-enhancers in malignant cells. [168_TD$DIFF]
Trends in Cancer, Month Year, Vol. xx, No. yy 3
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Another example comes from neuroblastoma, where the rs2168101 G>T SNP is located within
a [160_TD$DIFF]super-enhancer that spans the first intron of the gene LMO1[161_TD$DIFF] [28]. The G allele creates a binding
site for GATA3 that drives [162_TD$DIFF]overexpression of LMO1 [163_TD$DIFF] [164_TD$DIFF]compared with the T allele [165_TD$DIFF], which lacks
GATA3 binding. This can create a predisposition to[166_TD$DIFF] development of neuroblastoma through
modulation of super-enhancer activity [28].[178_TD$DIFF]

The relationship between DNA methylation and super-enhancers can [169_TD$DIFF]also be measured using
functional genomics data [29,30]. For example, Heyn and colleagues analyzed the methylation
status of over [171_TD$DIFF]5000 [172_TD$DIFF]super-enhancers in 78 normal tissue samples, 714 primary tumors, and 24
metastatic samples. They found [173_TD$DIFF]that tumors undergo a shift in super-enhancer DNAmethylation
profile compared with healthy controls [30]. Loss of methylation at [176_TD$DIFF]super-enhancers consistently
coincided with increased gene expression, while gain of methylation correlated [177_TD$DIFF]with lower levels
of expression. [184_TD$DIFF]

Methylation can affect enhancer activity in several ways, including potential structural roles
that regulate nucleosome occupancy and modifications. One study found that DNA meth-
ylation [179_TD$DIFF]of [180_TD$DIFF]super-enhancers [181_TD$DIFF]was necessary to maintain appropriate levels of H3K27Ac
histone modification [31]. Comparing wild-type colon cells and cancerous cell lines deficient
in DNA methylation, Lay et al. found that a small but significant proportion of enhancers were
[183_TD$DIFF]affected by the loss of DNA methylation through changes in nucleosome positioning and
histone modifications [31].

The methylation status of enhancers is [186_TD$DIFF], then [187_TD$DIFF], of [188_TD$DIFF]the [189_TD$DIFF]utmost importance. In addition to new
methods to detect enhancer sequences (described in Box 1) there are also new methods to
determine their methylation status. Besides whole-genome [190_TD$DIFF]bisulfite sequencing, there are now
microarray platforms designed specifically to include enhancer sequences [191_TD$DIFF], which will be
powerful tools in future research [32].

Internal Promoters
Epigenetic changes can also redirect the transcriptional network. By comparing methylation
levels between primary tumors andmetastases, Visoso et al. found a hypomethylation event that
reactivates a cryptic transcript of TBC1D16, a Rab GTPase-activating protein [33]. The novel
short isoform of TBC1D16 exacerbates melanoma growth and metastasis by targeting RAB5C
and regulating EGFR [194_TD$DIFF] and confers poor clinical outcome while showing greater sensitivity to
BRAF and MEK inhibitors than cells lacking the short transcript. This is an example of the
contribution of epigenetics to metastasis and to [195_TD$DIFF]the prediction of drug response by unearthing
cryptic [196_TD$DIFF]transcription start [197_TD$DIFF] sites[198_TD$DIFF] (TSSs).[217_TD$DIFF]

Similar [200_TD$DIFF]studies suggest [201_TD$DIFF]that epigenetic modifications impart a switch in promoter usage of
DCKL1, a gene that specifically marks colon/[202_TD$DIFF]pancreatic cancers in mice and is expressed by
human adenocarcinomas (hCRCs) [34]. [203_TD$DIFF]Downregulation of DCKL1 results in loss of cancer [204_TD$DIFF] stem[205_TD$DIFF]

cells (CSCs) and inhibits [206_TD$DIFF]the growth of xenograft tumors[207_TD$DIFF]; however [208_TD$DIFF], DCKL1 expression is
observed in hCRCs. This expression is the result of a majority of hCRCs [209_TD$DIFF]that use an
[210_TD$DIFF]alternative promoter in intron V to express short transcripts of DCLK1. This is in contrast [211_TD$DIFF]to
normal cells, which use the canonical alpha promoter, which [212_TD$DIFF]becomes methylated and
repressed in cancer. Analysis of a cohort of 92 [213_TD$DIFF]hCRC patients revealed that high expression
of [214_TD$DIFF]the shorter alternative [215_TD$DIFF]promoter-initiated transcripts [216_TD$DIFF] correlates with worse survival rates,
demonstrating the clinical consequences of epigenetically regulated promoter usage.

A similar dynamic of epigenetic [218_TD$DIFF]modifications [219_TD$DIFF]regulates the isoform usage of the oncogene p53
in response to DNA damage in a [220_TD$DIFF]cell-line model of carcinogenesis [35]. However, the prevalence
of this effect in the cancer patient population at large remains unclear. The relationship between
4 Trends in Cancer, Month Year, Vol. xx, No. yy
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Box 2. Methods to Determine 3D Genomic Interactions

State-of-the-art biochemical techniques for delineating 3D genomic interactions now all take advantage of high-
throughput (HTP) sequencing.

DamID is an approach [783_TD$DIFF] used to catalog genomic sequences that interact with lamina-associated domains of the inner face
of the nuclear membrane [137–139]. In DamID, bacterial adenine methyltransferase is fused to a protein of interest and
allowed to interact with physically [785_TD$DIFF] proximal DNA. Sequences containing methylated products are enriched by Dam-
specific restriction enzymes, then sequenced and mapped back to the reference genome thus demarcating [786_TD$DIFF]genomic
regions that interact with the protein of interest.

Another group of widely used techniques revolve around chromosome conformation capture (3C) methods coupled to
HTP sequencing [140]. In principle, these methods quantify the relative spatial proximity between individual genomic loci
through the digestion and re-ligation of [787_TD$DIFF]crosslinked chromatin. These techniques are broadly divided [788_TD$DIFF]into those that
interrogate the whole genome (e.g. [789_TD$DIFF], Hi-C and its derivatives [790_TD$DIFF] DNase Hi-C[791_TD$DIFF] and [792_TD$DIFF]single-cell Hi-C) [46,49,141–144] and those
that analyze interactions of targeted loci (e.g., 3C, circularized chromatin conformation capture, chromatin interaction
analysis by paired-end tag sequencing) [145–148].
promoter methylation and usage of cryptic internal promoters to generate oncogenic isoforms
requires further investigation.

The Genome 3D Structure
The human genome is packaged into the nucleus in a 3D structure with [222_TD$DIFF]distinct properties and
characteristics [223_TD$DIFF]for each cell type. It is now apparent that this 3D organization impacts gene
regulation [36,37]. Methods for determining the 3D structure of the genome are reviewed in
Box 2. One of the most important consequences of this 3D organization is the direct interaction
of enhancers with their target promoters through the formation of chromatin loops, which allows
them to operate at [224_TD$DIFF]a great genomic distance [225_TD$DIFF]from the [226_TD$DIFF]TSS[227_TD$DIFF]. [235_TD$DIFF]

The factors that allow DNA looping and interactions between promoters and cognate enhancers
are rapidly being elucidated. For example, Kagey et al. found that genes [229_TD$DIFF]encoding mediator and
cohesin complexes have a severe impact on gene regulation [38]. Their[231_TD$DIFF] studies show that
mediator, a transcriptional coactivator, forms a protein complex with cohesin to loop the DNA
between enhancers and promoters. Further, Nipbl, a cohesin-loading factor, is associated with
these complexes, providing amechanism by which the cohesin can be loaded [232_TD$DIFF]onto DNA to form
andmaintain chromatin loops. Both the mediator and cohesin genes have known roles in cancer
[39–43].

Since 2009, functional [236_TD$DIFF]genomics and [237_TD$DIFF]bioinformatics approaches have been used to generate
whole-genome contact probability maps in human and other organisms. These studies con-
firmed the presence of chromosome territories ( [238_TD$DIFF]CTs)[239_TD$DIFF] – the preference of interphase chromo-
somes to occupy distinct spatial territories and self-associate rather than mix homogenously in
the nucleus [44–46]. [240_TD$DIFF]They have also [241_TD$DIFF]demonstrated the existence of ‘ [242_TD$DIFF]topology-associated
domains’ (TADs)[243_TD$DIFF] – large [244_TD$DIFF], megabase-sized local [245_TD$DIFF]chromatin-interaction domains where [246_TD$DIFF] regions
within the domain self-interact rather than interacting with loci of other domains [45–49]. [248_TD$DIFF]TADs
are defined and constrained by [249_TD$DIFF]the binding of [250_TD$DIFF][251_TD$DIFF]CCCTC-binding factor[252_TD$DIFF] (CTCF) [253_TD$DIFF], with inverted
binding sites marking either side of the domain [49–51]. CTCF acts as an ‘insulator’ inhibiting the
spread of histone modifications and disrupting aberrant communication between enhancers
and promoters [52,53].

Insulators
Identifying dysregulation of [255_TD$DIFF]TADs by epigenetic mechanisms is an important field for future
investigation [54]. [256_TD$DIFF] A remarkable example was recently published [257_TD$DIFF] by Flavahan et al. in a study that
investigated the impact of changes in the methylation status of CTCF sites in the methylator
Trends in Cancer, Month Year, Vol. xx, No. yy 5



TRECAN 98 No. of Pages 13
subtype of glioblastoma [55]. Gliomas with a putative CpG island methylator phenotype
(G-CIMP) are linked to isocitrate dehydrogenase (IDH) gain-of-function mutations [56–59].
Mutant IDHs produce 2-hydroxyglutarate, an oncometabolite that interferes with the function
of iron-dependent hydroxylases [60]. IDH mutants have severely altered methylomes, [259_TD$DIFF]which is
likely [260_TD$DIFF]to be due to [261_TD$DIFF]2-hydroxyglutarate-mediated inhibition of TET family 50-methylcytosine
hydroxylases [263_TD$DIFF], which catalyze a key step in the removal of DNA methylation [57,61,62]. Analysis
of [264_TD$DIFF]the methylomes of [265_TD$DIFF]IDH-mutant tumor cells showed hypermethylated [266_TD$DIFF]CTCF-binding sites,
which compromise [267_TD$DIFF] the binding of CTCF [55]. [268_TD$DIFF] As a result, TAD integrity is lost, which results in
aberrant gene activation. Specifically, this study showed that loss of CTCF binding allowed a
constitutively active enhancer [269_TD$DIFF] that i normally sequestered in a separate TAD[270_TD$DIFF] to interact and
activate PDGFRA, a prominent glioma oncogene, thus providing a potential mechanism by
which disruption [271_TD$DIFF]of the methylome drives the progression of G-CIMP gliomas. [274_TD$DIFF]

This example reveals how epigenetic changes [272_TD$DIFF] such as DNA methylation at CTCF sites [273_TD$DIFF] can
disrupt the 3D architecture of the genome and lead to aberrant activation of oncogenes and
cancer progression. [275_TD$DIFF]

Noncoding RNAs
Noncoding RNAs (ncRNAs) are a major class of biomolecules with low [279_TD$DIFF]protein-coding potential
that are involved in a diverse array of cellular processes. These RNAs are typically named based
on their size [280_TD$DIFF][e.g.[281_TD$DIFF], microRNAs, long [282_TD$DIFF]ncRNAs [283_TD$DIFF] (lncRNAs) [284_TD$DIFF]], function [285_TD$DIFF][ribosomal [286_TD$DIFF]RNAs, small
nucleolar [287_TD$DIFF] RNAs (snoRNAs), PIWI-interacting RNAs[288_TD$DIFF] (piRNAs) [289_TD$DIFF]], or genomic origin (transcribed [290_TD$DIFF]
ultraconserved regions). Their expression is regulated through [291_TD$DIFF]several mechanisms [292_TD$DIFF] including
epigenetic modifications. It is becoming increasingly evident their functions are disrupted in
cancer and they may provide therapeutic targets.

Head-to-Head [293_TD$DIFF]Antisense Transcripts
An example of a [294_TD$DIFF]ncRNA altering expression of a [295_TD$DIFF]cancer-related gene is[296_TD$DIFF] the head-to-head
[297_TD$DIFF]antisense transcript of the VIM gene promoting VIM expression. VIM is a member of the
intermediate filament family and [298_TD$DIFF]is commonly deregulated in cancer [63]. Its [299_TD$DIFF]antisense transcript
forms an R-loop structure that [300_TD$DIFF], when disrupted by H1 ribonuclease or [301_TD$DIFF]antisense knockdown,
results in VIM [302_TD$DIFF]downregulation [63]. This [303_TD$DIFF]is the first [304_TD$DIFF]example [305_TD$DIFF]of a head-to-head antisense
transcript [306_TD$DIFF]mediating enhancement of transcription through an R-loop mechanism. ncRNAs
are [307_TD$DIFF]subject to various regulatory mechanisms, including inactivation associated with nearby
CpG island methylation. For example, Ferreira et al. found [308_TD$DIFF]cancer-specific hypermethylation [309_TD$DIFF]of
the snoRNAs SNORD123, U70C [310_TD$DIFF], and ACA59B in a colorectal cancer cell line [64]. [311_TD$DIFF]snoRNAs[312_TD$DIFF]
have a wide variety of cellular functions such as chemical modification of RNA, pre-RNA
processing [313_TD$DIFF], and control of alternative splicing. Analysis of a comprehensive collection of normal
tissues, cancer cell lines, and primary tumors demonstrated that hypermethylation of snoRNAs
is a common feature in many tumors, particularly leukemia [64], suggesting an important role for
their epigenetic inactivation in cancer. [314_TD$DIFF] A similar analysis found that [315_TD$DIFF][316_TD$DIFF]piRNAs are [317_TD$DIFF]also down-
regulated in cancer [318_TD$DIFF][65].

miRNAs
miRNAs [320_TD$DIFF] [321_TD$DIFF](small RNAs of 18–25 nucleotides [323_TD$DIFF]) repress expression of proteins by binding seed
sequences in mRNAs, inhibiting translation and reducing mRNA stability. Dysfunctional miRNAs
are implicated in [324_TD$DIFF]various cancers [66–68] and [326_TD$DIFF]in metastasis [69]. An integrated analysis of TCGA
data revealed a master miRNA regulatory network that governs the ovarian cancer mesenchy-
mal subtype, which [327_TD$DIFF]has poor survival [70]. [328_TD$DIFF] As with [329_TD$DIFF]protein-coding genes, the [330_TD$DIFF] expression of
miRNAs is subject to [331_TD$DIFF]numerous regulatory mechanisms, including epigenetic control. There are
several noteworthy cases where aberrant epigenetic signaling disrupts miRNA function leading
to cancer. [338_TD$DIFF]
6 Trends in Cancer, Month Year, Vol. xx, No. yy
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One of the first suchwas the discovery that miR-124 contributes to pathogenesis through its role
in diminishing levels of CDK6 [71]. Analysis of miRNAs in the colorectal cancer cell line HCT-116
found [332_TD$DIFF]that mIR-24 [333_TD$DIFF]acts to [334_TD$DIFF]represses CDK6, which affects the phosphorylation status of Rb
protein, a downstream effector of CDK6. [335_TD$DIFF]Further analysis found that miR-124 is epigenetically
silenced in at least [336_TD$DIFF]ten tumor types, such as breast, gastric, liver,[337_TD$DIFF] and hematopoietic malignan-
cies [72].

One major group of miRNAs dysregulated in cancer is the miR-200 family. miR-200 RNAs were
first described as involved in the induction of [339_TD$DIFF][340_TD$DIFF]epithelial-to-mesenchymal transition (EMT) via
[341_TD$DIFF]downregulation of [342_TD$DIFF]E-cadherin and increased ZEB proteins [73–77]. Specifically, the CpG islands
of miR-200ba429 andmiR-200c141 are unmethylated [344_TD$DIFF] in cell lines with [345_TD$DIFF]epithelial features and [346_TD$DIFF]the
epithelia of normal colon mucosa crypts. Conversely [347_TD$DIFF], they are hypermethylated in cells with
mesenchymal features. This epigenetic state can be changed by forcing EMT or [348_TD$DIFF][349_TD$DIFF]mesenchymal-
to-epithelial transition[350_TD$DIFF], demonstrating that miR-200 epigenetic silencing is not a static event but
rather a dynamic process that reflects the epithelial or mesenchymal phenotype [351_TD$DIFF] [73]. Later [352_TD$DIFF], it
was shown that loss of miR-200 repression of ETS1 under hypoxic conditions results in an
[353_TD$DIFF]angiogenic response in cancer cells [78]. The mechanisms by which the miR-200 family [354_TD$DIFF]is
regulated include not only DNA methylation [79] but also DNA looping and read-through of the
upstream gene PTPN6 [80].[368_TD$DIFF]

Another [355_TD$DIFF]well-studied example is the Let-7 family of miRNAs, which target HRAS and HMGA2 [356_TD$DIFF]
along with having roles in [357_TD$DIFF]the regulation of proliferation and [358_TD$DIFF]as cell cycle regulators. Let-7
was originally identified in [359_TD$DIFF]Caenorhabditis elegans in mutagenesis screens for factors
[360_TD$DIFF][361_TD$DIFF]governing developmental timing [81]. Let-7 members are downregulated epigenetically in
[362_TD$DIFF]several cancers [363_TD$DIFF] and [364_TD$DIFF]their overexpression results in inhibited growth and transformation of
cancer cell lines and tumor xenografts [82,83]. This is due to the fact that Let-7 targets [365_TD$DIFF]key
components of cell cycle progression [366_TD$DIFF]such as k-Ras, cyclin D1, Cdc34, Hmga2, E2f2, and
Lin28 [367_TD$DIFF] [83,84].

Other examples of miRNA silenced by epigenetic modifications are hsa-miR-9-1 and hsa-miR-
9-3, which are hypermethylated in clear cell renal cell carcinoma [369_TD$DIFF] (CCRCC). [370_TD$DIFF] [371_TD$DIFF]Comparisons
between metastatic and [372_TD$DIFF]nonmetastatic tumors revealed that methylation of [373_TD$DIFF]hsa-miR-9-3 is
significantly associated with an increased risk of recurrence and [374_TD$DIFF]a significant decrease in
recurrence-free survival time [84]. Aberrant expression of miR-9 has also been observed in
acute myeloid leukemia [375_TD$DIFF] (AML) [85]. [376_TD$DIFF]

miR-34a resides near a CpG island within the gene EF570049 and contains a [377_TD$DIFF]p53-binding site
[86]. In 2007 [378_TD$DIFF], miR-34 was shown to be [379_TD$DIFF]part of the p53 [380_TD$DIFF][381_TD$DIFF]tumor-suppressor network [382_TD$DIFF] [87]. It plays
key roles in chronic lymphocytic leukemia [383_TD$DIFF] (CLL), with aberrant epigenetic regulation and
[384_TD$DIFF]downregulation in CLL patients with p53 mutations [87–91].[386_TD$DIFF]

These examples are summarized in Table 1. [387_TD$DIFF]
Table 1. [800_TD$DIFF]Selected Epigenetically Deregulated miRNAs in Cancer[801_TD$DIFF]

miRNA family Tumor Expression in cancer Target gene Refs

Let-7 Lung, pancreatic, breast Typically downregulated RAS [82–84]

miR-124 Various Silenced CDK6 [71]

miR-200 Various Silenced ZEB1,2, EMT [73–75]

miR-34 Lung, melanoma, CLL Silenced CDK6, p53 [69,87–91]

miR-9 CCRCC, AML Silenced FoxO1, FoxO3 [85,86]
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lncRNAs
Another class of elements within the noncoding genome [388_TD$DIFF] is the lncRNAs [389_TD$DIFF]. lncRNA[390_TD$DIFF] is a class of
[391_TD$DIFF]RNAs that are typically more than 200 bp in length, are polyadenylated, and [393_TD$DIFF]are spliced. Like
[394_TD$DIFF]protein-coding genes, their promoters are characterized by trimethylation of histone H3 at lysine
4 and are transcribed by RNA polymerase II [92]. lncRNAs are involved in [395_TD$DIFF]several normal
biological processes, such as regulating gene expression, signal transduction, and the stability
of mRNAs [93–95]. In cancer, lncRNAs can operate both as tumor [397_TD$DIFF]suppressors and [398_TD$DIFF]as
oncogenes [96]. [403_TD$DIFF]

lncRNAs are fully involved in epigenetic regulation of gene expression through epigenetic self-
regulation and through interactions with epigenetic modifiers such as [399_TD$DIFF]the PRC2 and SWI/SNF
complexes [97]. [400_TD$DIFF]Up to 20% of all [401_TD$DIFF]lncRNAs have been implicated in PRC2 binding, with their
binding specificity still a matter of debate [98–101]. [415_TD$DIFF]

One of the best-studied lncRNAs with oncogenic potential is [404_TD$DIFF]HOX transcript antisense RNA[405_TD$DIFF]
(HOTAIR). [406_TD$DIFF] Overexpression of HOTAIR is correlated [407_TD$DIFF]with many types of cancer [408_TD$DIFF], including
colorectal, hepatocellular, and aggressive breast cancer [102–104]. Overexpressed HOTAIR
associates with [410_TD$DIFF]the PRC2 complex and redirects PRC2 binding genome [411_TD$DIFF] wide to a pattern
[412_TD$DIFF]resembling PRC2 binding in embryonic [413_TD$DIFF]fibroblasts. This results in increased cancer invasiveness
and metastasis [414_TD$DIFF][105].[442_TD$DIFF]

An interesting example of [416_TD$DIFF]the intersection of lncRNAs, epigenetics[417_TD$DIFF], and cancer is at the Igf2/H19
gene locus. One of the first gene loci to be identified as imprinted, Igf2 is expressed from the
paternal [418_TD$DIFF]and H19 from the maternal [419_TD$DIFF]allele [106–108]. H19 is a 2.[421_TD$DIFF]3-kb, capped, spliced [422_TD$DIFF], and
[423_TD$DIFF][424_TD$DIFF]polyadenylated lncRNA that is highly expressed during embryogenesis and then strongly
[425_TD$DIFF]downregulated after birth in all tissues except muscle. H19 [426_TD$DIFF]is likely [427_TD$DIFF]to function [428_TD$DIFF] through two
primary mechanisms: first, H19 produces miR-675 [429_TD$DIFF], which promotes gastric, colorectal, and
glioma cancers [109–112]; and second, the H19 lncRNA harbors multiple binding sites for the
Let-7 family of miRNAs [431_TD$DIFF] and acts as a ‘molecular sponge [432_TD$DIFF]’ limiting active Let-7 miRNAs by
[433_TD$DIFF]competitively binding and sequestering them [113]. H19 knockdown results in the same
phenotype as Let-7 overexpression. This mechanism of action is [434_TD$DIFF]part of the competitive
endogenous RNA [435_TD$DIFF](ceRNA) hypothesis, which proposes [436_TD$DIFF]that transcripts with shared [437_TD$DIFF]miRNA-
binding sites compete for post-transcriptional control of mRNAs and has been suggested as a
unifying function of lncRNAs [114]. While there is good evidence to support this [438_TD$DIFF]ceRNA [439_TD$DIFF]model of
lncRNA modulation of miRNA behavior, there is some experimental evidence [440_TD$DIFF][441_TD$DIFF]questioning its
validity [115]. [449_TD$DIFF]

The roles [443_TD$DIFF]of lncRNAs in gene regulation are constantly being expanded. For example, the
lncRNA LED is suppressed in human tumors by DNA methylation. Strongly activated enhancers
produce [444_TD$DIFF]ncRNA transcripts termed enhancer RNAs (eRNAs). A study mapping [445_TD$DIFF]p53-responsive
eRNAs found[446_TD$DIFF] that LED binds p53-bound enhancers and suppression of LED leads to lower
activation of the enhancers and its target gene. p53 is a canonical tumor suppressor [447_TD$DIFF] and the
expression of a key target, the potent [448_TD$DIFF]cell-cycle inhibitor and tumor suppressor CDKN1A, is
sensitive to LED levels [116]. This work provides a novel regulatory interaction between enhancer
function and lncRNAs and is a promising avenue for future studies.

Transcribed ultraconserved regions represent an interesting subclass of lncRNAs. They are a
subset of genomic elements that are absolutely conserved between orthologous regions of the
human, rat, and mouse genomes. These sequences can be located [450_TD$DIFF]in both [451_TD$DIFF]intra- and intergenic
regions. In a screen for elements whose expression is aberrantly silenced in cancer [452_TD$DIFF], it was found
that several T-UCRs, such as Uc.[453_TD$DIFF]160+, Uc[454_TD$DIFF].283+A [455_TD$DIFF], and Uc.346+, are silenced in response to
CpG island hypermethylation in cancer cells [117].[456_TD$DIFF] [457_TD$DIFF]Further studies show [458_TD$DIFF]that the Uc.283+A
8 Trends in Cancer, Month Year, Vol. xx, No. yy
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Outstanding Questions
Howmuch of the noncoding genome is
subject to active epigenetic regulation?

What epigenetic marks are most
descriptive of the underlying cancer-
regulatory network? Can these marks
be utilized in personalized medicine?

What are the roles of retroelements in
normal tissue and how do they contrib-
ute to oncogenesis?

What is the order of events among
epigenetic changes, gene expression
changes, and cancer phenotype?
[459_TD$DIFF]transcript controls pri-miRNA processing. This regulation required complementarity between an
ultraconserved sequence in Uc.283+A and the lower stem region of pri-miR-195. This com-
plementarity prevents pri-miRNA cleavage by Drosha and suggests a model whereby lower-
stem strand invasion by Uc.283+A impairs microprocessor recognition. This work reveals a
regulatory network dependent on ncRNA–ncRNA interactions involving several ncRNA classes
important in cancer.

Concluding Remarks
Advances in functional genomics and [461_TD$DIFF]the biostatistics of large data sets allow us to draw
correlations between genomic variants [462_TD$DIFF] known to be associated [463_TD$DIFF]with disease and DNA elements
in the [464_TD$DIFF]noncoding genome. Further, these advances help [465_TD$DIFF]us identify the functions of these risk
elements, illuminating the myriad [466_TD$DIFF]ways by which [467_TD$DIFF]expression of the human genome is regulated.
These advances are furthered by our continuing investigation into the characterization of
epigenetic modifications and their molecular mechanisms.

Many questions remain, however (see Outstanding Questions). While epigenetics and [469_TD$DIFF]distally
acting regulatory elements provide a link between risk alleles and [470_TD$DIFF]disease-related genes,
many steps in the mechanistic pathways [471_TD$DIFF]remain to be determined, as [472_TD$DIFF]does their relevance to
the disease state. Cell identity is ultimately determined by the interactions of the repertoire of
genes expressed. There are many challenges to understanding the full network regulating
gene expression, as there are multiple layers of regulation (e.g., transcriptional, post-tran-
scriptional, post-translational) and multiple feedback loops that can augment these regula-
tory layers. Each cell type [473_TD$DIFF] (e.g. [474_TD$DIFF], liver cells, neurons [475_TD$DIFF]) therefore reflects its own transcriptional
network equilibrium. [476_TD$DIFF] Understanding cancer as a diseased cell state thus necessitates
identifying how the oncogenic lesion disrupts normal gene expression and function.
[477_TD$DIFF]Deconvoluting the impact of cell state from current functional genomics data sets is [478_TD$DIFF]of
paramount [479_TD$DIFF]importance to our understanding of how the various regulatory layers intercon-
nect to define cell identity. [485_TD$DIFF]

Epigenetic modification has long been understood as a key barrier to cell identity transitions
[118] and [480_TD$DIFF]is thus vital to understanding the transition from normal to cancerous tissue. The future
of this avenue of research will be the enhanced resolution afforded by [481_TD$DIFF]single-cell epigenomics
[119,120]. Tumors are now understood to be heterogeneous both transcriptionally and epige-
netically, with some cells operating as ‘cancer stem cells’ or ‘ [482_TD$DIFF]tumor-propagating cells [483_TD$DIFF]’ [121].
[484_TD$DIFF]Single-cell epigenomics will allow us to understand the epigenetic differences imparting stem-
like properties to cells.

Another avenue requiring further investigation is [486_TD$DIFF]retroelements [487_TD$DIFF] – repetitive sequences that
comprise a significant portion of the mammalian genome [488_TD$DIFF] [122]. A large number of sequen-
ces are characterized by long terminal repeats (LTRs) [489_TD$DIFF]derived from [490_TD$DIFF]the remnants of ancestral
infectious retroviruses that have invaded the germ line at some point during evolution [123].
These sequences are called ‘endogenous retroviruses’ [493_TD$DIFF](ERVs) and generally feature muta-
tions or recombination events that prohibit [494_TD$DIFF]them from generating infectious particles. ERVs
have been linked to the development of cancer through several mechanisms [495_TD$DIFF] [124]. Because
they rarely make infectious particles [496_TD$DIFF], ERVs do not contribute to oncogenesis through
insertional mutagenesis [497_TD$DIFF] in the way that infectious exogenous retroviruses are known to [498_TD$DIFF]
do [125]. Rather, production of ERV env genes, which encode envelope proteins, can cause
cell fusion with profound implications in cancer [499_TD$DIFF] [126,127]. Further, [500_TD$DIFF]LTR sequences from
ERVs can drive aberrant expression of oncogenes [501_TD$DIFF] [128]. Given [502_TD$DIFF]that ERV genes are silenced
through epigenetic mechanisms [503_TD$DIFF], it is [504_TD$DIFF]likely that there are oncogenic alterations in their
epigenetic regulation that can lead to cancer, and [505_TD$DIFF]these represent an enticing avenue for
future research. [521_TD$DIFF]
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Delineating causation [506_TD$DIFF]among epigenetic changes, gene expression changes, and the cancer
phenotype is also critical for future targeted therapies. For example, consider the case of [507_TD$DIFF]IDH-
mutant G-CIMP gliomas, which feature a hypermethylated genome and activated PDGF due to
methylation of [508_TD$DIFF]CTCF-binding sites. PDGF activation [509_TD$DIFF]confers a growth advantage on the [510_TD$DIFF]IDH-
mutant cells in gliomasphere assays [511_TD$DIFF], yet [512_TD$DIFF] patients harboring IDHmutations tend to [513_TD$DIFF]survive longer
[514_TD$DIFF]than [515_TD$DIFF]those with non-mutant [516_TD$DIFF] IDH [55,57]. Does this [517_TD$DIFF]represent a protective epigenome that can
compensate for the activation of PDGF? [518_TD$DIFF] Or is PDGF activation a weaker driver of [519_TD$DIFF]tumorigenesis
and lethality than other, non-IDH1 glioma oncogenes? [520_TD$DIFF]Delineating the relative impact of an
aberrant epigenome versus the expression of known oncogenes will clarify the pathways that
lead to cancer. [529_TD$DIFF]

Last [522_TD$DIFF], translating these findings to the clinic will require an investment in personalized medicine
and epigenomic profiling of patient tumor samples. Epigenetic marks at non-promoter [523_TD$DIFF]/gene
elements can shed [524_TD$DIFF]light on the cell type [525_TD$DIFF]that the tumor originated from [526_TD$DIFF] [129,130]. As epigenetic
profiling becomes more accessible it is increasingly likely that we will be able to leverage [527_TD$DIFF]single-
cell profiling to accurately determine both the cell type of origin and the precise oncogenic lesion,
allowing highly specific and effective therapies to be administered. Thinking outside [528_TD$DIFF]the classical
coding and promoter box by studying the epigenome of normal tissue and cancer cells will lead
to better therapies for the public health crisis that is cancer.

Resources
i
[530_TD$DIFF] www.genome.gov/10005107/encode-project/
ii fantom.gsc.riken.jp/5/
iii tcga-data.nci.nih.gov
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