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All the papers in this special issue deal with the questions of what the wave 

function represents and what the implications of quantum realism are in relation to our 

conception of space. These questions were the basis of the discussions that took place 

over two conferences which, under the title of Space-time and the wave function, were 

held in Barcelona in April 2013 and May 2014. The papers that are included here—or 

preliminary versions of them—were presented and discussed at those conferences.
1
 

There have been several conferences dedicated to this theme, together with 

various papers published and this is the first special issue dedicated to the subject since 

the appearance of the important book edited by Ney & Albert (2013). In our opinion, 

three fundamental developments in the literature have contributed to opening up the 

debate that we are concerned with here in the current terms and they have had a notable 

influence on many of papers in this volume. There is no better introduction to the issue 

than to briefly comment on these developments. 

The first and most evident of those precedents is Albert’s spirited defence of 

realism about configuration space almost two decades ago (Albert 1996). In order to 

understand Albert’s argument—which was what really triggered the whole debate—

some preliminary caveats are necessary concerning the wave function: the real star of 

this special issue.
2
 

In the first place, we need to consider that, mathematically, the wave function of 

a system is a complex field defined in the so-called configuration space of the system.
3
 

In other words, the wave function assigns a complex number to each point of that space. 

The notion of “configuration space” is borrowed from classical mechanics. In that 

theory, if we have a system of N particles, it is sometimes convenient to represent the 

positions of all the particles through a unique point 
3
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1
 With the exception of the paper by of Dorato who was invited to participate in the second conference 

but was not able to attend and present his work for personal reasons. 
2
  For a more detailed introduction than we can offer here, see the first chapter of Ney & Albert (2013). 

3
 In quantum mechanics the state of a physical system is represented by a vector (strictly speaking, a ray) 

in the corresponding Hilbert space which, for systems with continuous degrees of freedom, has an infinite 

number of dimensions. When a specific basis of Hilbert space is chosen, the projections of the vector on 

each one of the axes of the basis allow us to define a complex function. This function is, in fact, the wave 

function. If the basis chosen is that defined by the position eigenvectors, the wave function is 

mathematically a complex field in configuration space. In his seminal paper, Albert is implicitly assuming 

this particular choice of basis, which may be considered the most natural in the context of non-relativistic 

quantum mechanics.  
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3

i Q  are the position coordinates in physical three-dimensional space of the ith 

particle. Configuration space is the set of all points that—like Q—represent a possible 

configuration of all the particles of the system in physical three-dimensional space and 

it trivially follows that configuration space is 3N dimensional. Going back to quantum 

mechanics, the fact that the wave function of a system is defined in configuration space 

amounts to the following. If we have a one-particle system, its wave function assigns a 

number to each point of the ordinary, three-dimensional space. In this respect, the wave 

function of a one-particle system can be thought of as analogous to a classical field. If 

we have a two-particle system, however, then six spatial coordinates—and not only 

three—must be specified in order to specify the value of its wave function. In general, 

for an N-particle system, the specification of 3N spatial coordinates is required to 

specify the value of its wave function. 

Classically, configuration space is considered to be a space of states (or a 

subspace of the space of states) since each point in it represents one possible state of the 

system under consideration. Therefore, configuration space is interpreted in classical 

mechanics as a representational construct whose introduction is due to its practical 

usefulness, but not as a physical space. As we will see below, Albert and others who are 

realists with regard to configuration space maintain that, if we take quantum mechanics 

seriously, we must assume that configuration space is the fundamental physical space 

and not a space of states.
4
  

Another important preliminary consideration has to do with entanglement. 

Imagine two quantum systems that are entangled. It turns out that there is no way to 

assign a wave function to each individual system such that, through knowledge of those 

wave functions, we could infer all the properties of the whole combined system.
5
 In 

general, the wave function of the combined system is the only one that obeys the 

dynamical laws of the theory and the only one that allows us to determine and make 

predictions regarding all the properties of the systems involved, including relational 

properties.
6
 So, in quantum mechanics, we have a type of holism: the wave function of 

the whole takes priority over the wave functions of the parts, which are not always well 

defined and—when they are—depend on the former. This leads us to the necessary 

distinction between the universal wave function (the wave function of the entire 

universe) and the wave functions of arbitrary sub-systems of the universe, and to 

conclude that, in terms of establishing a quantum ontology, the primary candidate for 

reification must be the universal wave function and not the wave functions of sub-

systems of the universe. 

In his article, Albert aims to elucidate the ontological consequences of non-

relativistic quantum mechanics. He starts from the assumption that our universe is 

                                                           
4
 As Maudlin (2010) rightly notes, the very notion of “configuration space”, as borrowed from classical 

mechanics, presupposes the existence of a lower dimensional space in which some particles are 

configured. In this respect, if one assumes with Albert that configuration space is the fundamental 

physical space, and that there is no space of lower dimension with particles in it, then referring to this 

fundamental space as configuration space is clearly misleading. It would also be wrong to consider that 

the dimensionality of the fundamental space depends on the number of particles in the universe if, 

fundamentally, there are no particles but just a field. In this respect, we consider that the configuration 

space realist must take the dimensionality of the fundamental space as a brute fact about our world. 
5
 That is, the states of the two systems are non-separable. 

6
 For a discussion of entanglement and its repercussion for wave function realism, see Ney (this volume, 

Sect. 2). 
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governed by the laws of that theory and assumes that its Hamiltonian has the following 

form: 

(1)         
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For a Hamiltonian such as (1), the solutions of the Schrödinger equation, 
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are wave functions ( , )q t  defined in the configuration space of the universe, which 

has 3N dimensions.  

Albert is well aware that defenders of one or other quantum theory would 

disagree about whether the wave function provides a complete representation of a 

physical system, and about whether the evolution given by the Schrödinger equation (2) 

is universally valid. However, everyone would agree that the wave function is the 

fundamental theoretical term of quantum mechanics and that, through Born’s rule, the 

wave function allows us to derive the empirical predictions of the theory.
7
 Therefore, 

Albert does not doubt that a committed quantum realist must reify the wave function. If, 

in mathematical terms, the universal wave function is a field defined in a 3N-

dimensional configuration space, then the most natural realist interpretation (and the 

only interpretation considered by Albert) is to assume that the wave function represents 

a physical field that also exists in a space of 3N dimensions. Crucial to Albert’s arriving 

to this conclusion is the fact that, given a Hamiltonian like (1), all the dynamic 

possibilities allowed by quantum mechanics cannot be represented by a finite set of 

functions defined in any space of dimension less than 3N.
8
 This has notorious 

implications since, if one requires that the fundamental physical space must be such that 

the physical state supervenes on intrinsic (separable) matters of fact at each point of this 

space, as Albert does, then the claim that configuration space is the fundamental arena 

of our universe seems motivated.
9
 

Albert was not the first to adopt a realist interpretation of the wave function as a 

physical field in configuration space and hence to consider that configuration space 

itself is physically real.
10

 However, his paper stands out in its consideration that 

configuration space is the only physical space and the assumption that this conclusion is 

                                                           
7
 The Born’s rule states that the probability density   for a measurement of the configuration q of the 

particles of the system at time t is given by 
2

( , ) ( , )q t q t  . 
8
 In Albert’s own words: “for any co-ordinatization whatever of configuration space, the set of all 

trajectories of a quantum-mechanical world with Hamiltonian (1) will include trajectories which pass 

though states that are completely non-separable in those co-ordinates, states which cannot be expressed as 

products of functions of any proper subset of those co-ordinates (adapted from Albert 1996, fn.8). For a 

reflection on the connection between non-separability and configuration space realism and an assessment 

of Albert’s argument, see Myrvold (this volume, Sect. 3). 
9
 For a reflection on the connection between non-separability and configuration space realism and an 

assessment of Albert’s argument, see Myrvold (this volume, Sect. 3). 
10

 Bell’s (1987) endorsement of wave function field realism in the context of Bohmian mechanics is well 

known and much cited. Other Bohmians, such as Valentini (1992), Holland (1993) and Bohm & Hiley 

(1993) have defended a similar position. 
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unavoidable for the quantum realist, whatever form of resolving the measurement 

problem is opted for. Although Albert’s position is commonly dubbed as “wave 

function realism” in the literature, we find this terminology rather inappropriate 

because, as we will see, there may be other prima facie realist interpretations of the 

wave function not amounting to the claim that it represents a physical field in 

configuration space. In this regard, we prefer to dub “configuration space realism” the 

metaphysical thesis that configuration space exists as a physical space. Moreover, we 

refer to the thesis that the wave function represents a physical field in configuration 

space as “wave function field realism”. If one thinks, in addition, that the wave function 

stands for the only physical object, we then have “wave function monism”, which turns 

into “wave function field monism” if this object is a field in configuration space. 

Assuming wave function field monism raises two questions that, although 

related, are different but are not always distinguished. In the first place, we can ask in 

what way the objects of our everyday experience—cats, tables, etc.—can be found in 

the wave function. To put it another way, we need to establish an account of reduction 

between the objects of our experience and the fundamental ontology.
11

 In the second 

place, given that the fundamental space is 3N-dimensional, we can ask in what way the 

three-dimensional character of the objects of the experience is recovered—if this is 

indeed recovered. In his paper of 1996, Albert defends that the macroscopic objects that 

we experience have a merely apparent character and he tells a story of how those 

appearances originate, based on the form of the Hamiltonian of the universe (1).
12

 

Albert’s paper generated numerous reactions, the majority of them critical of his 

argument in favour of the reality of configuration space.
13

 Although the papers that are 

presented here are not directly critical of Albert’s argument, many of them do represent 

indirect criticism. To the extent that one defends a non-instrumentalist (and hence 

realist) interpretation of the wave function without insisting on the reality of 

configuration space, one is in fact criticising Albert’s position. There are many 

proposals of that type from the Bohmian camp—but not only from there—and several 

are explored in this special issue. 

However, before considering Bohmian mechanics, we want to mention the work 

of philosophers such as Deutsch, Wallace and Saunders, in order to clarify and try to 

resolve some of the problems that arise in the context of Everett’s interpretation (1957), 

converting it into a many-worlds theory.
14

 Taken together, that work constitutes 

precisely the second step forward in the recent literature that has had a considerable 

influence on the debate that we are here considering. The Everettian considers that the 

wave function alone is enough to account for everything that is real and that it evolves, 

without exception, in accordance with the Schrödinger equation. Since that evolution is 

strictly deterministic, the problem arises of how to interpret the quantum mechanical 

probabilities furnished by Born’s rule. The question becomes even more complicated 

                                                           
11

 The relation of reduction established would depend, naturally, on whether configuration space is 

inhabited only by the wave function, or whether it is considered that there are more physical objects in it. 
12

 See Albert (1996; 279ff). Later, Albert (2013) modifies his position and suggests a non-eliminative 

causal account of reduction. 
13

 For criticism, see Monton (2002, 2006) or Maudlin (2010). 
14

 Concerning the many differences between these authors—the current defenders of the many worlds 

interpretation—and Everett himself, see the paper by Barrett in this volume.  N.b., these authors tend not 

to use the "many worlds" phrase to label their interpretation of quantum theory. 
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when we consider that the wave function, without collapse, generally contains 

“branches” for each of the possible sequences of results and that all those branches are 

equally real, according to the Everettians. If this is so, what sense does it make to assign 

probabilities of measurement outcomes when all the possible results do in fact occur, 

according to the theory? And what can count as evidence in favour of the theory, when 

the theory asserts that all possible sequences of outcomes actually occur, including that 

which would standardly be described as disconfirming the theory? Such a theory 

appears to fail to meet any minimal criterion of falsifiability.  

Contemporary Everettians have also attempted to resolve various ontological 

puzzles. To the extent that many of them consider that the wave function constitutes all 

that there fundamentally is, they face the same question as Albert: they have to account 

for how the macroscopic objects of our everyday experience are reduced to the 

fundamental ontology, in this case, the wave function. Wallace (2003; 2010) in 

particular tackles this question and proposes an account of reduction according to which 

a macroscopic object (e.g., a table) is a pattern in the structure of the wave function that 

is functionally identified.
15

 If we accept that macroscopic objects are reduced in such a 

way, we can literally find a world in the wave function and if, in its unitary evolution, 

the wave function branches suitably, duplicating patterns, then many worlds can be 

found in it.
16

 From all of that we arrive, eventually, at the fact that we do not have to 

postulate the existence of many worlds (as some Everettians previously did) but rather 

they are conceived as emerging entities, once the existence of the wave function 

structure is assumed. 

This perspective has led some Everettians to level an argument against 

Bohmians—the so-called redundancy argument—concluding that the latter are 

implicitly committed to a many worlds ontology. Given that the third and final recent 

development that we want to comment on has to do, precisely, with Bohmian mechanics 

which plays a prominent role in this volume, we will now briefly describe that theory. 

As is well known, in Bohmian mechanics, in order to provide a complete 

characterization of a physical system we need to specify not only the wave function but 

also the positions of the particles of the system which, according to the theory, are well 

defined at all times. The trajectory of the particles depends on the wave function and is 

given by the so-called “guidance equation”: 

(3) 
( , )

Im
m ( , )

k k

k

d q t

dt q t

  
  

 

Q
 

When it comes to elucidating the ontology of the theory, almost all those who 

offer an interpretation consider that 
kQ represents the position of the kth particle in a 

                                                           
15

 Wallace’s proposal regarding reduction is sufficiently flexible (or vague) and does not require the wave 

function to be interpreted as a physical field in configuration space. In fact, Wallace is against that 

interpretation and he openly opposes realism with regard to configuration space. For a discussion of 

Wallace’s proposal, see Barrett (section 6) and Ney (section 5) in this special issue. 
16

 Decoherence occurs when a quantum system interacts with its surroundings, becoming entangled with 

them. The idea here is that if we have a system A in a quantum superposition, it is almost unavoidable 

that an interaction is produced between A and its surroundings, so that A ends up entangled with elements 

of their surroundings. When such entanglement occurs, we typically are not be able to observe the 

distinctively quantum effects of A’s superposition.  
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three-dimensional space that corresponds with the physical space of our experience, 

which is taken to be fundamental. A macroscopic object such as a table is identified 

with a collection of Bohmian particles that, in addition to being distributed in the form 

of a table, must satisfy certain dynamic properties that depend on the wave function. So 

we see that, under this interpretation, the problem of reducing macroscopic objects to 

the fundamental ontology is hugely simplified and the problem of recovering the three-

dimensional character of those objects becomes trivial: macroscopic objects are three-

dimensional because they are collections of particles that are also three-dimensional.  

The interpretation of the wave function in Bohmian mechanics is, however, 

more controversial. The fact that the trajectory of the particles depends on the wave 

function in accordance with (3), has prompted some Bohmians to think that the wave 

function represents a physical field that ‘moves’ the Bohmian particles, in an analogous 

way to how an electromagnetic field ‘moves’ a charged particle that is located within it. 

However, given that the wave function is defined in configuration space, this proposal 

leads to the consideration that Bohmian ontology consists of a field, which inhabits 

configuration space, and a set of particles, which inhabit three-dimensional physical 

space. So, we have the field and the particles in two different spaces and so the problem 

arises of how the two types of entities communicate. This problem can be resolved if, as 

Albert (1996) proposes, we interpret 
3

1 2( , ,..., ) N

NQ  Q Q Q  as the position of a 

single universal particle (“the marvelous point”) that together with the wave function 

inhabits configuration space. Then, both wave and particle are in the same space and 

there is no longer any mystery in their communication. However, under this 

interpretation the problem of the recovery of the three-dimensional character of the 

objects of our everyday experience reappears. 

Whatever the interpretation of the Bohmian particles may be, if the wave 

function is interpreted as a field or, more generally, as being a physical object, the 

proposal can fall prey to the redundancy argument mentioned above. Consider, for 

example, the classic case of Schrödinger’s cat.
17

 When the wave function (which we 

will suppose does not collapse, as both Everettians and Bohmians assume) contains two 

branches, one corresponding to the live cat and the other to the dead cat, the defender of 

a many worlds interpretation maintains that in the structure of that wave function there 

are two patterns, which give rise to two emergent cats. According to the traditional 

story, the Bohmian judges the situation very differently. Depending on their initial 

positions, the Bohmian particles will evolve deterministically in accordance with (3) 

towards either the configuration of a live cat or the configuration of a dead cat. 

Therefore, it is the configuration of the particles that determines if there is a cat alive or 

a dead cat and, in at any given moment, there is just one cat.  

The supporter of the redundancy argument will not consider, however, the 

situation in the same way, but will see Bohmians as accepting that the wave function is 

included in the ontology, just as Everettians do. Therefore, after the experiment, the 

Bohmian ontology (just like Everettian ontology) includes two wave function patterns 

that give rise to the emergence of a live cat and a dead cat, independently of what the 

particles do. So in this way, according to the redundancy argument, the Bohmian also 

                                                           
17

 See Schrödinger (1935). 
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has two cats and hence there are two worlds included in the Bohmian ontology. In the 

famous words of Deustch, “pilot-wave theories [Bohmian mechanics] are parallel-

universes theories in a state of chronic denial” (1996, p. 225).  

We consider that the supporters of the redundancy argument assume, without 

justification, that the reductive relation must be the same for both the Everettian and for 

the Bohmian, despite the fundamental ontology of the latter including more elements. 

This seems highly dubious and it would appear legitimate for the Bohmian to consider a 

different account of reduction, based on the particles, since particles are included in the 

Bohmian ontology.
18

 In addition, precisely the fact that particles are included in the 

Bohmian ontology provides resources for interpreting the Bohmian wave function in 

ways that are not prima facie available to the Everettian. Instead of considering that the 

wave function represents a physical object, it can be interpreted in relation to the 

particles, either as representing some property of the particles themselves or of their 

law-like temporal evolution. In such a case, the redundancy argument does not get off 

the ground, since, if the wave function itself is not interpreted as a physical object, it can 

hardly be claimed that its structure can give rise to a multiplicity of worlds. Moreover, if 

the wave function itself is not interpreted as a physical object, the need to reify 

configuration space also disappears, despite it being defined mathematically in that 

space. 

This consideration brings us to the last development in the literature that we 

wish to comment on in this Introduction and that has had a marked influence on the 

works contained in this special issue. It is the proposal of some friends of Bohmian 

mechanics that, in this theory, the wave function has a nomological status.
19

 According 

to this proposal, Bohmian particles, defined in three-dimensional space, form what has 

been called the ‘primitive ontology’ of Bohmian mechanics. The wave function is 

interpreted in analogy with a Hamiltonian, that is, as part of our representation of the 

law that governs the evolution of the particles.  

Although there are certain analogies between the Hamiltonian and the wave 

function,
20

 the proposal that the wave function should be interpreted as a law prima 

facie seems counterintuitive. The wave function is a contingent solution of the 

Schrödinger equation (2), which is considered by many to be a genuine law of the 

theory. Furthermore, as a solution of that equation, the wave function has a non-trivial 

temporal evolution that would seem difficult to square with its supposed nomological 

character. In this respect, the proponents of the nomological interpretation point out that 

it is the universal wave function and not the effective wave function of arbitrary sub-

systems of the universe that should be interpreted nomologically.
21

 We know little as to 

                                                           
18

 For further elaboration of this point and others against the redundancy argument, see Hawthorne (2010) 

and Valentini (2010). 
19

 This suggestion was first formulated in Dürr et al. (1992) and further developed both in Dürr et al. 

(1997) and in Goldstein & Zanghì (2013). 
20

 See Dürr et al. (1997). 
21

 In Bohmian mechanics, there is a precise way to define the wave function of a given sub-system of the 

universe. Let A be a subsystem of the universe including S particles with position variables x. Let y be the 

position variables of all the particles not belonging to A. A’s conditional wave function at time t, A

t , is 

defined as follows: 
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what the form of that universal wave function might be and the supporters of the 

nomological interpretation demonstrate that the supposition of a static universal wave 

function is compatible with effective wave functions of sub-systems that manifest the 

desired phenomenology; that is, that have a non-trivial temporal evolution given by the 

corresponding Schrödinger equation and that allow to calculate the trajectories of the 

particles of the sub-system through the guidance relation. 

The proposal of the nomological interpretation of the wave function opens up a 

whole range of philosophical questions, since the debate about the nature of the wave 

function gets entangled with the metaphysical debate about the nature of laws. This 

latter debate was ignored by the original proponents of the nomological interpretation; 

however, the connections between the two debates have been addressed recently in the 

literature and some papers in this special issue contribute greatly to this exploration.  

There are many different views concerning the nature of laws. First of all, using 

Callender’s ingenious expression in this volume, laws can be interpreted as bits or its. 

To interpret laws as “bits” is to consider that laws are not something over and above the 

physical objects and their natural properties, but particularly good summaries of the 

distributions of those properties. This is obviously what Humeans with regard to laws 

assume. In contrast, to interpret laws as “its” is to consider that laws do not supervene 

on the distribution of natural properties but are further ontological posits. This view, in 

turn, can be expanded in different ways. According to primitivists, laws are primitive 

and the actual behaviour of physical objects is accounted for, in part, because of there 

being some laws; which just is a brute fact about the world. According to 

dispositionalists, apart from natural non-modal properties, physical objects are endowed 

with further dispositional properties or powers and it is the existence of these properties 

that makes it the case that certain laws obtain. In other words, dispositionalism makes 

the laws real but derived, the dispositions being the truth-makers of the laws. 

A question arises as to whether the nomological interpretation of the wave 

function in Bohmian mechanics is compatible with all these views about the nature of 

laws and what the benefits of each view are when applied to this particular case. If we 

take Bohmian mechanics into consideration—the theory that is at the origin of the 

nomological interpretation—Humeanism amounts to considering that the mosaic of 

local matters of fact contains the trajectories of the particles and that a law is whatever 

axiom of the system best allows us to systematize those trajectories. If Bohmian 

mechanics achieves the best balance between simplicity and strength, postulating a 

wave function that obeys the Schrödinger equation and intervenes in the guidance 

equation, then the wave function can perfectly well be deemed nomological in nature—

                                                                                                                                                                          
 A ( ) ( , ( ))t tx x Y t    

where  t  is the universal wave function at t and Y(t) the actual configuration at t of the particles in A’s 

environment. Now suppose that the universal wave function can be decomposed in the form: 

( , ) ( ) ( ) ( , )t t t tx y x y x y     

Where: (a) ( )t y  and ( , )t x y  are functions with macroscopically disjoint supports; and (b) Y(t) lies 

within the support of ( )t y . If conditions (a) and (b) are met, then ( )t x  is A’s effective wave function at 

t. Notice that the effective wave function of a system does not always exist but, when it does, it is equal to 

its conditional wave function. For an exhaustive analysis of the notion of conditional wave function, see 

Norsen et al. in this special issue. 
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if it supervenes on the history of particles trajectories. A primitivist friend of the 

nomological interpretation would consider, in contrast, that the wave function refers to a 

further entity—the law—and that the Bohmian trajectories are what they are, in part, 

because of this law. Finally, the dispositionalist would attribute to the Bohmian particles 

a set of dispositions to move in such and such a way, depending on their configuration 

and would take the wave function to represent these dispositions. 

We can see how, in Bohmian mechanics at least, the wave function can be 

interpreted in ways that cover all the usual categories: as a physical object in itself; as a 

property of a physical object; or as a law.
22

 Given that all these interpretive possibilities 

are analysed in this special issue, let us see next what the contents of the papers are. 

 

THE PAPERS 

The first paper in the volume is Jeffrey Barrett’s epilogue on the Everett 

interpretation of quantum mechanics. In it, Barrett offers a systematic summary of the 

theory, making Everett’s assumptions explicit and showing how they could possibly fit 

together. The central thread running through the whole of the paper is the question of 

the theory’s empirical adequacy. In Everett’s theory, ideal observers are associated with 

determinate relative measurement records. However, according to the theory, almost 

every measurement yields not one, but every physically possible result; and from this, 

Everett concludes that no non-trivial probabilities for measurement outcomes can be 

defined within the theory. Given this situation, Barrett wonders to what extent Everett’s 

theory can be empirically vindicated and discusses Everett’s own views in this respect. 

However, it would be an error to consider that this paper of Barrett’s just another 

presentation of Everett’s theory. Barrett not only makes Everett’s assumptions explicit, 

but compares them with those that supporters of the many worlds interpretation make 

today, in an attempt to disentangle Everett from contemporary Everettians. So, for 

example, Barrett discusses Everett’s account of the constitution of macroscopic objects 

and reveals the role that decoherence plays in that account; which is very different from 

the role it has in other contemporary accounts. Barrett also provides a novel criticism of 

Wallace’s position with respect to the ontological status of the wave function and 

analyses the proposal by contemporary Everettians to introduce probabilities into the 

theory, making clear here too the huge difference with Everett’s original ideas. 

Configuration space realists face a problem also related with the interplay 

between quantum mechanics and the evidence we have for it, but a problem of a very 

different nature from that considered by Barrett. The evidence that we use to confirm 

quantum mechanics consists of macroscopic objects with a certain arrangement in three-

dimensional space, such as instrument needles pointing in a certain direction, spots on 

photographic plates, ink marks on paper, etc. Using Bell’s expression, all these are local 

beables. If the supporters of configuration space realism consider that only 

configuration space and the 3N-dimensional objects that inhabit it are real, they will be 

                                                           
22

 The possibility that the wave function represents a totally new category of object (see Maudlin, 2013) is 

not explored in this volume. 
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implying that the evidence we use to confirm quantum mechanics, which consists in 

local beables, does not exist. We would then arrive at the conclusion that quantum 

mechanics is empirically incoherent, since if the theory were true, the evidence we have 

to believe in it would not exist. 

Alyssa Ney discusses this problem in her paper; and as in many of her previous 

works, she defends configuration space realism through a very audacious argument. If 

we do not want a fundamental theory to be empirically incoherent, then whatever 

constitutes the evidence for the theory must be included in the basic ontology of the 

theory. This is what Ney calls the “overlap thesis”. The typical answer, from those who 

support realism concerning configuration space, is to assume that this thesis is satisfied 

in the case of quantum mechanics since, although only the 3N-dimensional ontology is 

fundamental, there is nothing to prevent the local beables from forming part of the 

ontology of the theory as emerging entities which are not any less real due to their 

condition of being emergent. Ney sees this answer as problematic as she considers that, 

to date, the many and varied attempts made by configuration space realists to show that 

macroscopic objects reduce to the fundamental configuration space based ontology, 

have been unsuccessful. Does this mean that the realist with respect to configuration 

space is condemned to be empirically incoherent? In her paper, Ney claims that this is 

not the case, given that, really, the evidence that we have in favour of quantum 

mechanics is not three-dimensional. The stage is set for a lively argument. 

The next group of papers focus on Bohmian mechanics, which was the most 

widely discussed theory at both of the two conferences that were the motivation for and 

origin of this special issue. In the first of these papers, Travis Norsen, Damiano 

Marian and Xavier Oriols present a somewhat heretical Bohmian ontology that is 

made up solely of entities that reside in the three-dimensional space of our everyday 

experience; that is, local beables. The proposal of Norsen, Marian and Oriols consists of 

assuming that both particles and waves exist; but, instead of reifying the universal wave 

function in configuration space, they postulate the existence of a set of fields all of 

which are defined in three-dimensional space.  

Since it is a straightforward consequence of the guidance equation (3) that the 

trajectory of each Bohmian particle depends only on its conditional wave function, one 

can think of these conditional wave functions as each one guiding its affiliated particle. 

Conditional wave functions are fields defined in three-dimensional space and the 

proposal here is to reify them instead of the big, universal wave function. Conditional 

wave functions, however, are not solutions of the Schrödinger equation but obey a non-

linear non-unitary dynamics that ultimately depends on an infinite set of fields, also 

defined in physical three-dimensional space. In short, the price to a pay for retaining all 

the dynamic information contained in the universal wave function, without introducing 

the latter into the equations and axioms of the Bohmian mechanics, is to postulate an 

infinite set of three-dimensional fields whose evolution is coupled. 

Norsen (2010) already explored and defended this ontology populated by an 

infinite number of fields. However, here Norsen, Marian and Oriols suggest a different 

ontological picture. They propose to cut the infinite series of coupled fields, just leaving 

a small number of them. In this case, the Bohmian trajectories that follow from the 
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corresponding equations will not be exactly identical to those that would result from 

considering the infinite set of fields; but Norsen, Damiano and Oriols defend the notion 

that the discrepancy between the two sets of trajectories would be so small that the 

resultant theories would not be empirically distinguishable, given the current 

experimental margins of error. According to the authors, we would then be faced with a 

similar case to that of the GRW theory,
23

 which recognizes, for example, the possibility 

of macroscopic superpositions with consequences that would violate our observations, 

but which assigns an infinitesimal probability to such situations. 

Next, in a highly suggestive paper, Craig Callender wonders whether there is 

any reason to reify the wave function and, to answer that question, he proposes a 

comparison between versions of quantum mechanics and classical mechanics, when 

both theories are expressed using the same formalism. Here we should point out that 

classical mechanics can be formulated through a formalism similar to that of Bohmian 

mechanics, in which classical wave functions appear. However, nobody has ever 

suggested reifying those wave functions, which are considered to be representational 

artefacts. So, to establish whether the Bohmian wave function should be reified, 

Callender proposes comparing it with the classical wave function, analysing the 

similarities and differences between the two and considering if there are any differences 

that provide grounds for not reifying the wave function in the classical case but doing so 

in the quantum case.  

Despite the classical and Bohmian wave functions having many similarities (for 

example, both are objects defined in spaces with a great many dimensions), Callender 

identifies a crucial difference: while in the classical case we do not need the wave 

function, in the Bohmian case the wave function is absolutely necessary in order to have 

a well-posed initial value problem. Although perhaps this characteristic may explain 

why some people have attempted to reify the wave function in Bohmian mechanics, 

Callender argues that this should not impress the supporter of a nomological 

interpretation of the wave function, at least, not one who is a Humean in regard to the 

nature of laws. This turns out to be Callender’s favourite interpretation of the wave 

function; he explains how to apply it in the context of Bohmian mechanics and argues in 

its defence. 

Mauricio Suárez embarks on a critical review of the different interpretative 

options that have been offered with respect to the Bohmian wave function and which—

as we say above—can be summarised as interpreting it as representing a physical field, 

a law or a property of Bohmian particles. Suárez first rules out interpreting the wave 

function as a field in configuration space, due to the difficulty in explaining the 

supposed communication between that field (inhabiting configuration space) and the 

particles (inhabiting three-dimensional space). He then offers an original criticism of the 

nomological interpretation, based on the fact that the wave function has a non-trivial 

temporal evolution; and finally advocates for a dispositionalist interpretation of the 

wave function. 

                                                           
23

 See Ghirardi, Rimini and Weber (1986). 
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Both Suárez’s dialectics and his conclusions may well remind us of work by 

Esfeld et al. (2013). However, there are important differences between Suárez’s 

proposal and that of those other authors. In first place, Suárez attributes a disposition to 

each Bohmian particle to move in some or other fashion; while Esfeld et al. defend the 

idea that it is only possible to attribute dispositions to the set of all the particles. So we 

can see that the metaphysics proposed by both parties is quite distinct. In the second 

place, Suárez brings into play an interpretative distinction in the field of Bohmian 

mechanics that Esfeld et al. do not mention. That is the division between those who 

claim that Bohmian mechanics is essentially a first-order theory, with the guidance 

equation (3) as the fundamental law of motion of the particles, and those who consider a 

version of the theory in which the law of motion is second order, with the acceleration 

of the Bohmian particles being proportional to the sum of the classical forces and a new 

quantum force that is derived from the wave function. In opposition, for example, to 

what Solé (2013) maintains, Suárez argues that the second-order approach—or causal 

approach—offers some advantages with respect to the first-order approach in relation to 

its explanatory power, and that precisely those advantages may come into their own 

when a dispositional interpretation of the wave function is considered. 

Mauro Dorato also embarks on a critical assessment of the different 

interpretative options related to the wave function, although his objective is quite 

different from that of Suárez. Dorato is not aiming to present and defend a specific 

interpretation, but rather to evaluate the realist’s situation, once all the realist 

interpretations of the wave function have been duly scrutinised. Dorato’s conclusion is 

that all the viable forms of interpreting the wave function realistically share the idea that 

it should be understood as representing something abstract. If that is indeed the case, 

then a nominalist who rejects the existence of abstract entities, must also reject realism 

with regard to the wave function and maintain an instrumentalist attitude, which, after 

Dorato’s analysis, does not seem entirely without its motivation. 

Although Dorato discusses (and rejects) realism with regard to configuration 

space, criticising Wallace’s account of reduction, the interpretation that Dorato 

discusses in most detail is the nomological interpretation of the wave function. Dorato 

leaves Humeanism to one side and analyses in depth both primitivism and 

dispositionalism. In this sense, Dorato’s paper can be seen as complementing 

Callender’s, as Dorato analyses those variations of a nomological interpretation that 

Callender does not consider. If the wave function is to be understood as a law and also 

as an entity, then Dorato argues that the only way to do so is to see it as a mathematical 

entity and, hence, abstract. The case of dispositionalism could seem different, as a 

disposition is not seen as an abstract entity. However, Dorato considers that due to 

quantum holism, in Bohmian mechanics it only makes sense to attribute a disposition to 

the global configuration of all the particles and, according to him, that disposition would 

be, once again, an abstract property. 

The papers by Callender, Suárez and Dorato make an excellent prologue to the 

paper by Matthias Egg and Michael Esfeld. We have seen that the three former papers 

analyse the prospects for interpreting, within Bohmian mechanics, the wave function as 

a field, as a law (either from a Humean point of view, or in accordance with 
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primitivism) or as a dispositional property. Egg and Esfeld ask whether these same 

interpretations constitute valid options for interpreting the wave function in the context 

of the GRW theory.  

Egg and Esfeld’s motivation stems from the idea, defended in Allori et al. 

(2008), that Bohmian mechanics and GRW have a common structure. We have already 

seen that, in Bohmian mechanics, the particles can be considered to be the primitive 

ontology, defined in ordinary three-dimensional space, and that the wave function can 

be considered to be something that has to do with the temporal evolution of that 

primitive ontology. Similarly, in the version of GRW considered by Egg and Esfeld, 

which is usually referred to as GRWm, there is a primitive ontology that consists of the 

mass density field m(x,t): 

(4)  
3

2

1 1

1

( , ) ... ( ) ( ,..., , )
N

N

i n i N

i R

m t m d d t


  x q q q x q q    

and, once again, the wave function can be understood here as having to do with the 

evolution of this field.
24

 Despite this common structure, there are important differences 

between GRWm and Bohmian mechanics. One of the most important is that, while 

Bohmian trajectories do not supervene on the wave function, with a multiplicity of 

trajectories being compatible with the same wave function, clearly, the mass density (4) 

does supervene on the wave function. Due to this and other differences between the 

theories, Egg and Esfeld consider that neither the interpretation of the wave function as 

a physical field, nor the nomological interpretation, either the Humean or the primitivist 

version, are satisfactory in the context of GRWm. According to these two authors, only 

an interpretation of the wave function as a stochastic disposition of the mass density to 

change its form is viable. 

This special issue concludes with a paper which, in some way, could be seen as a 

methodological amendment to the papers that precede it. Note that the advocates of 

configuration space realism, consider this position to be a consequence of taking non-

relativistic quantum mechanics seriously. In the same way, the other interpretative 

options in relation to the wave function discussed so far are based on theories such as 

Bohmian mechanics and GRW which are not relativistic theories either. In the 

knowledge that those theories are neither fundamental nor true, the speculative exercise 

that we have been engaged in is to consider what the ontological furniture of the world 

would be if they were. In addition, it is considered that this interpretative exercise can 

be performed considering only the theory in question, without taking into account from 

what other more fundamental theory it could be derived from. 

In his paper, Wayne Myrvold rejects this approach and defends the idea that, in 

order to assess the meaning of the wave function, we must take into account that 

quantum mechanics is a non-relativistic approximation, valid solely in certain low-

energy regimes of quantum field theory. His proposal consists of analysing the non-

relativistic and the relativistic versions of quantum field theory and locating the 
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 In GRW, the wave function does not always evolve in accordance with the Schrödinger equation; there 

is an additional stochastic law that determines spontaneous collapses whose probability increases with the 

number of particles in the system considered. 
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elements of those theories that, within the appropriate limits, can be identified with the 

wave function of non-relativistic quantum mechanics. According to Myrvold, it is 

through exploring the properties of those elements that we can find out about the nature 

of the wave function. Proceeding in this way, he challenges two ideas that are crucial 

for the wave function field realist. First, Myrvold shows that wave functions in quantum 

field theory are unlike fields because, even if they assign a value to each point of the 

configuration space in which they are defined, those values are not local properties of 

the corresponding points. Second, the configuration spaces in which wave functions are 

defined cannot be taken as fundamental, since they are constructed from operators 

defined in ordinary spacetime. It remains to be seen whether the defender of 

configuration space realism will accept Myrvold’s methodology; but in any case, his 

exploration constitutes a highly suggestive counterpoint to the previous papers and an 

excellent close to this special issue. 
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