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In this paper we argue that a firewall is simply a manifestation of an incon-
sistent truncation of non-perturbative effects that unitarize the semiclassical
black hole. Namely, we show that a naive truncation of quantum corrections
to the Hawking spectrum at order O(e−S), inexorably leads to a “localised”
divergent energy density near the black hole horizon. Nevertheless, in the
same approximation, a distant observer only sees a discretised spectrum and
concludes that unitarity is achieved by O(e−S) effects. This is due to the
fact that instead, the correct quantum corrections to the Hawking spectrum
go like O(gtte−S). Therefore, while at a distance far away from the horizon,
where gtt ≈ 1, quantum corrections are perturbative, they do diverge close to
the horizon, where gtt →∞. Nevertheless, these “corrections” nicely re-sum
so that correlations functions are smooth at the would-be black hole horizon.
Thus, we conclude that the appearance of firewalls is just a signal of the
breaking of the semiclassical approximation at the Page time, even for large
black holes.
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1 Introduction

Within the realm of quantum field theory, it is expected that quantum effects
become more and more important at smaller and smaller distances. Thus,
one would infer that a large Black Hole (BH) (i.e. a BH with a radius much
larger than the Planck scale Mp) is entirely described classically, at least,
up to its own horizon. In addition, the dominant quantum corrections to
the classical BH should be well described in the semiclassical limit where
self-gravitational interactions are neglected, i.e. in the decoupling limit of
gravity. In this context, Hawking [1] showed that a BH radiates a thermal
spectrum and very slowly “evaporates”.

Because of its nature, the Hawking evaporation carries no information.
This, in combination with the classical no-hair theorem, stating that a BH
is only described by its mass, angular momentum and charge, immediately
leads to a possible (information) paradox [2]:

If the Hawking evaporation continues up to a Planck size BH (the size in
which semiclassical analysis breaks down), the whole information about the
BH precursor (a collapsing star for example) would be lost forever and then
quantum physics would be non-unitary.

In the present form, this (information) paradox is related to the assump-
tions that gravity back-reactions, during the evaporation, do not dramati-
cally change the thermal nature of the radiation1. Therefore, in order to
overcome the information paradox, one needs non-negligible contributions to
the Hawking radiation. It has been suggested in [4], that the information
paradox is related to the fact that quantum O(1/S) corrections (with S the
black hole entropy) to the original Hawking calculation are not taken into
account, as opposed to the semiclassical O(e−S) ones. At the time in which
the entropy is reduced to half (the Page time [5]) these corrections lead to a
strong departure from semiclassicality [6]. In this paper, we will show that
an additional paradox arises if one carries on considering the quantum cor-
rections to the black hole to be perturbative: the so-called firewall paradox.
It is a paradox because one would immediately conclude that the assumption

1In addition, but related to that, the paradox only appears when there is a classical
horizon. However this might not be the case for a collapsing star as it has been argued in
[3] by using holography.
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of small corrections to the black hole geometry fails right at the horizon, due
to a large energy stored there.

The information paradox becomes more concrete for a big BH in AdS. In
this case, a large BH semiclassical in AdS is in thermal equilibrium with its
own Hawking radiation. This is because the AdS space works effectively as
a box of physical size R (the AdS radius)2. However, correlation functions
on this background exponentially decay after a long time [7] making the sys-
tem non-unitary. In the context of AdS/CFT [8]-[10], the BH configuration
should be dual to a thermal CFT. A thermal CFT is however unitary. A
typical signal of a unitary theory at finite temperature is a very long wave-
length modulation of the correlation functions with Heisenberg time period
tH ∼ 1

T
eS(T ) [7], where S is the entropy of the CFT and T is the tempera-

ture. Smaller frequencies would instead be contaminated by thermal noise,
disappearing for T → 0. In addition, the unitary system is periodic at even
larger time, the Poincaré time tP ∝ ee

S
[7].

Because a large semiclassical BH in AdS is believed to be eternal, one
might then infer that the lost information is disclosed within the BH horizon
and eventually retrieved in a Heisenberg time by some e−S correction to the
Hawking’s original calculation3. However, as it is well understood from AdS
holography, there is no way for local operators inside the BH horizon to be
dual to local operator in the CFT [11], and thus the CFT cannot retrieve
information from inside the horizon.

We then have a clear mismatch that seemingly contradicts the AdS/CFT
conjecture: there is no (unitary) CFT dual to the (non-unitary) bulk BH.
The only way out for the AdS/CFT to be correct is therefore that the initial
assumption that large BH can be treated semiclassically is invalid.

All information issues are related to the existence of a horizon that
causally disconnects two parts of the spacetime, the exterior and the in-
terior of the BH. Because O(e−S) corrections are believed to be too tiny to

2With a BH, the radial volume of the spacetime is actually infinite. However, this is
due to the infinite redshift of the horizon of the BH. Therefore, excluding the vicinity of
the BH, AdS is still a box of size R. This is what is important for the thermodynamical
equilibrium.

3e−S is the suppression appearing for quantum fluctuations around the BH saddle point
in the Euclidean path integral.
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modify the spacetime structure of the BH (we will see that this is not true!)
and no corrections are expected far away from the BH, insisting on the ex-
istence of a horizon and local physics, necessarily implies that at least part
of the information must be stored within a tiny region outside the BH hori-
zon. In this case [11] and [12] argued that an in-falling observer would see a
firewall (i.e. it would burn while crossing the horizon). Vice-versa, allowing
non-local operators, that are able to retrieve information from behind the
horizon would (most probably) solve the information paradox [13, 14].

Note however that there is a limit in which no firewall would appear.
This is the case in which the metric is classical. Here the black hole mass is
infinitely large but the horizon size is finite. Classical no-hair theorem tells
us that all information of the inside horizon black hole is just encoded in the
black hole mass. Therefore, in this limit, the dual CFT has “access” to the
inside horizon physics, in turn, following the previous discussion, no firewalls
would appear.

The mass of a black hole in asymptotically AdS is bounded to be larger
than some positive power of the cosmological constant (depending on space-
time dimensions). On the other hands, the number of fields in the dual CFT
(N) is also proportional to the cosmological constant (in AdS/CFT). Thus,
an infinite BH mass is readily obtained in the N → ∞ limit. In the CFT
language then, firewalls disappear in the infinitely large N limit, a known
result (note also that in this limit tH → ∞). A similar conclusion can also
be reached from a different corner. Based on [15]-[19], the Authors of [14, 20]
noticed that the necessary non-local operators that would avoid firewalls,
become local in the N →∞ limit.

An alternative resolution to the information paradox is that local quan-
tum operators see no horizon (and thus the bulk state is described by two
entangled state of CFTs4): To calculate correlation functions one should con-
sider the integration over geometries in the path integral. What we mean
here is that geometries with trivial topology, i.e. with no-horizon, would
dominate the path integral over the classical saddle points at large time5, as
already suggested in [21] and [22] (see [23, 24] for later discussions related

4Those are the two otherwise causally disconnected AdS boundaries.
5Since we expect the system to be unitary, it is quasi-periodic with very very large

period tP . With “large time” we mean here, and in the rest of the paper, a large time
interval within this period.
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to the firewall problem). Note that going away from the semiclassical limit,
the dominant contribution to the correlation functions seems not to belong
to the leading (Euclidean) saddle point approximation [7, 21]; we will make
this more clear later on.6

What we are going to show, is that firewalls simply arise as inconsis-
tent expansions of non-perturbative dominant metrics (compared to other
Euclidean saddle points) around a large BH background. In other words,
as seen from the semiclassical BH observer, this simply means that the as-
sumption that quantum gravity corrections to the Hawking spectrum are of
order O(e−S) is not enough to retrieve information, unless there is a firewall
at the horizon that stores it. Therefore, if the firewall is refused, quantum
gravity corrections to the Hawking evaporation must be far larger than what
expected, in particular, close to the horizon and after a Page time [5], they
cannot even be recast as perturbative corrections to the BH metric.

2 Black Holes and AdS/CFT at finite tem-

perature

As we have already mentioned, in the field theory side, one way to see the
signature of unitarity is by looking at correlators. A CFT is uniquely deter-
mined by its gauge group and the dimension N of matrix fields of the field
theory. For a finite N (but large enough to be in semiclassical approxima-
tion), the CFT spectrum is discrete. If the system is unitary and the phase
space volume is compact, the correlators are periodic unless the system is
dissipative (i.e. the state we are checking is not pure). In the presence of
temperature, at shorter time, the system is dominated by thermal noise and
the correlators do not show a periodic behaviour. However, after waiting a
long time, precisely the Heisenberg time tH , the system evolves into pure
states and correlators start to periodically oscillate. Finally after even an ex-
ponentially longer Poincaré time ee

S
the system approaches its original state

it started with7.

6An alternative approach based on stringy microstructure instead of the path integral
approach is the so called fuzzball proposal [26].

7Note the confusion of time scales definitions in [25].
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According to AdS/CFT, the quasi-periodic behaviour of the correlation
functions is dual to the path integral calculation of the correlation functions
in the gravity side. Because of the decaying behaviour of correlation functions
on a BH background, considering only the Lorentzian saddle points, would
only capture the short time behaviour of the correlation functions in the
CFT. In two dimensions for example, in [27], it has been shown that, in the
semiclassical limit, Euclidean saddle points are as dominant as Lorentzian’s.
In three dimensions the same conclusion was shown in [21]:

Considering, as in the rest of the paper, a Bañados, Teitelboim and Zanelli
(BTZ) black hole [28], Maldacena showed that the correlation functions cal-
culated on a thermal AdS (TAdS) (an Euclidean saddle point), becomes as
large as the ones calculated on a BH’s background, after large time [21].
Specifically:

〈O(x)O(0)〉 ≈ e−SBTZ 〈OO〉BTZ + e−STAdS〈OO〉TAdS (1)

where SBTZ and STAdS are the Euclidean action of BTZ and TAdS respec-
tively. Nevertheless, although the TAdS contributes to the large time be-
haviour of the correlation functions, it still does not help to retrieve the
correct Heisenberg time for the finite N case. It was then argued by Malda-
cena [21] that one should therefore consider all SL(2, Z) family of the BTZ
black holes in the calculation of the correlation functions.

It was later shown in [25] and [29] that, unfortunately, even the sum over
these topological diversities does not reconcile with the CFT behaviour at
large time. Furthermore, the Authors in [29] showed that at the time scale
t0 in which finite entropy effects becomes important, the perturbation theory
on gravitational saddle points necessarily break down. After this time, the
correlation functions must then be dominated by the next-to-leading order
approximation in saddle points: usually, in the semiclassical limit of quantum
gravity, a path integral is well approximated by the leading saddle point
approximation, i.e., given some operator O of metric and matter fields Φ we
have (after Wick rotation)

〈O(x)O(0)〉 = N

∫
DΦDgO(Φ(x), g(x))O(Φ(0), g(0))e−S(Φ,g) '

N
∑

g=gi

∫
DΦ [O(Φ(x), gi(x))O(Φ(0), gi(0)) + · · · ] e−S(Φ,gi) ,(2)
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where gi are the gravitational saddle points obtained by solving δS/δg = 0,
andN is a normalisation factor. The ellipses denotes the next to leading order
terms in the saddle point approximation and are proportional to subsequent
derivatives of the operatorsO with respect to the metric, e.g. the first of those

is proportional to δ2[O(Φ(x),g(x))O(Φ(0),g(0))]
δg2

∣∣∣
g=gi

. Since, as we already noticed,

the correlation functions on a BH background decay to zero at large time,
the true correlations functions must be dominated by the next-to-leading
order approximation to the saddle point. The evaluation of these integrals
is obviously an almost impossible task and the saddle point approximation
ceases to be helpful. It is then a common practice to hope for the existence
of some localized geometries in the path integral that keep a geometrical
description of the BH correlation functions. Obviously this is an assumption
that has to be eventually proven, following the literature on the topic, here
we use it as a working assumption. In any case, even if this assumption turns
out to be incorrect, our findings are the proof of the concept that firewalls
only appear as a naive O(e−SBH) expansion of the path integral of gravity.

Following the Hawking conjecture that only trivial topologies dominate
on long time scales [22] we can then try to search for a topologically trivial
metric gNP such that

〈O(x)O(0)〉
∣∣∣
t�t0
≈ 〈O(x)O(0)〉

∣∣∣
g=gNP

e−SNP . (3)

This question has been answered by Solodukhin in [25]. The Author proposed
a candidate smooth metric that is subdominant at early time and then dom-
inates over BTZ and TAdS at t � t0 so as to reproduce the expected long
wave oscillation of the correlation functions with period tH . In this paper, we
consider (3) and show that firewalls emerge in (unitary) correlation functions
whenever the metric expansion gNP = gBTZ +O(e−2S), is performed8. In fact
the situation is even more dramatic: If (3) is valid, there is no parameter, say
α, such that gNP = gBTZ +O(α) and firewalls are avoided. On the contrary,
by using the full non-perturbative metric no firewall appear.

Note that the firewall resolution of [30], the so called “ER=EPR” pro-
posal, can be reinterpreted as a close parent of the proposal of [25] aiming for
a resolution of the unitary problem for BTZ black holes. Both resolutions can

8Note that, in order to have a O(e−S) correction to the Hawking spectrum the metric
must be corrected at order O(e−2S).
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indeed be naively understood as the existence of a quantum wormhole con-
necting the two timelike asymptotic regions of the BTZ solution. The main
difference be that the resolution of [25] involves a traversable wormhole, i.e.
a non-semiclassical contribution. We fail to see how a non-traversable worm-
hole as in [30] could solve the unitarity problem of the BTZ. If this was true
then semiclassical corrections would be enough for unitarity, a conclusion
contradicting [21].

3 A warm up: the would-be firewall in Rindler

In this section, following [31], we will review the fact that a Rindler ob-
server would be tempted to declare that at its own horizon there should be
a firewall. Of course, we already know that this cannot be possibly true as
the Rindler space is just a section of a Minkowski space. The reason the
Rindler observer would declare that there is a firewall is due to the fact that
this observer has no access to the physics behind its own horizon and would
naively think that quantum operators have the same blindness. However,
a judicious path integral calculation that includes the Minkowski metric,
would show that the information behind the horizon is in fact retrievable.
Of course, in this case, the Rindler space is just a coordinate transformation
from the Cartesian coordinates, but for the Rindler observer, the Minkowski
space is a new smooth geometry that has to be added to the path integral
calculation. The Rindler observer will then understand the fact that in its
own space, there are always observers that can see behind its own horizon.
Therefore, he/she would understand that quantum operators in the left and
right Rindler wedges are in fact entangled, as well as those inside and outside
the Rindler’s horizon (see figure 1). In other words he/she would quantum
mechanically discover diffeomorphisms!

Conversely to the trivial topology case (e.g. Rindler), because of the end
of space (the singularity) in non-trivial topologies (e.g. a BH), there are no
observers who can entangle operators in the whole spacetime (see figure 2).
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P" Q"

A" B"

Figure 1: Rindler patches of flat space for different accelerated observers
(labeled by their horizon’s color). Even though for the blue observer the
points P and Q are non-entangled (in this case, non-causal), they are en-
tangled for the red, purple and green observer. Similarly, points A and B
are non-entangled for blue, red and purple observers, but entangled for green
observer.

P" Q"

Figure 2: Eternal or BTZ BH spacetimes. The black dashed lines are the light
cones of the observer for whom most of the spacetime outside the horizon
is causally connected. However, still e.g. points like P and Q are causally
disconnected to her at finite N .
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3.1 Rindler firewall: a mini review

The appearance of a firewall for a Rindler observer has been proven in the
case of compact Rindler space [31].

In [31] it was argued that pure AdS spacetimes have a dual description in
terms of an entangled pair of two hyperbolic space CFT’s which can be seen
by conformal transforming the Poincaré patch of AdS to Minkowski (and
then to hyperbolic spaces) (see figure 3), which are related to Rindler spaces
with metric

ds2
Rind = −a2y2dt2 + dy2 . (4)

These hyperbolic spaces, related to an accelerated observer with acceleration
a, see an Unruh temperature T = a

2π
[32] (we use here and for the rest of the

paper units ~ = c = 1). In Euclidean time, this implies that typical quantum

states in this space are thermal and get a Boltzmann factor e−
βE
2 (β ≡ T−1):

|0global AdS〉 = |0Sd〉 → |0Mink〉 =
1

Z

∑
i

e−
βEi
2 |EL

i(Rind)〉 ⊗ |ER
i(Rind)〉

=
1

Z

∑
i

e−πRHEi|EL
i 〉Hd ⊗ |ER

i 〉Hd (5)

with RH being the radius of the hyperbolic spacetimes, Z is the partition
function and Ei are the energy levels. This is just like the entangled descrip-
tion of Minkowski space in terms of two Rindler patches (or the description
of eternal Schwarzschild BHs in AdS in terms of entanglement between two
CFT states [21]).

The Authors in [31] considered a mass-less scalar field φ in a two dimen-
sional Minkowski spacetime (with coordinates T and Z) and expanded the
field in Rindler modes (we focus for simplicity solely to right handed modes)

φ =

∫ ∞
0

dω(bω,Rφω,R + b†ω,Rφ
∗
ω,R) + L↔ R .

where, with U = T − Z and V = T + Z,

φω,R(U) = Θ(−U)
1√
4πω

(−aU)iω/a and

φω,L(U) = Θ(U)
1√
4πω

(aU)−iω/a . (6)
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Conformal"

Transforma0on"

Figure 3: Conformal transformation from Poincaré (the right triangular re-
gion of the global AdS cylinder bounded by lightcones) to Minkowski space-
times. One can do another conformal transformation to go to the hyperbolic
CFT’s.

The energy momentum tensor for the massless scalar field is

Tµν = ∂µφ∂νφ−
1

2
(∂φ)2gµν . (7)

It is then clear that upon using the Rindler modes, the stress tensor has a
pole in U = 0 corresponding to the horizon. One should then regularise the
modes expansions (6) in order to use them in the energy momentum tensor
[33]. The regularised mode expansions are

φω,R(U) =
1√
4πω

(a(U − iε))iω/a − (a(U + iε))iω/a

eπω/a − e−πω/a
and

φω,L(U) =
1√
4πω

eπω/2(a(U − iε))−iω/a − e−πω/2(a(U + iε))−iω/a

eπω/a − e−πω/a
,

where ε is an arbitrarily small parameter.

Focusing on the UU component, we have

〈TUU〉 = 〈0, L|〈0, R|(∂Uφ(U))2|0, R〉|0, L〉 − 〈0,Mink|(∂Uφ(U))2|0,Mink〉

= −2

∫ ∞
0

dω[β2
ω(|∂Uφω,R|2 + |∂Uφω,L|2) + 2αωβωRe(∂Uφω,L∂Uφω,R)] , (8)
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with αω = eπω/aβω = (1 − e−πω)−1/2 being the Bogliubov coefficients con-
necting the Minkowski with the Rindler vacuum. In the above, the UV
renormalisation of the stress tensor is obtained by subtracting the Minkowski
counterpart and by using the transformations between the Minkowski and
Rindler vacuums

|0,Mink〉 = U|0, Rind〉 with U =
∏
ω>0

exp(− tan−1(e−πω/a))(b†ω,Rb
†
ω,L−bω,Rbω,L) .

It is now a tedious but straightforward computation to find [33]

〈TUU〉 ≈ −
1

ε2
. (9)

This divergence is precisely the hypothetical firewall that a Rindler observer
would calculate. In terms of the energy density E ≡ 〈T tt〉 as seen by a Rindler
observer, it is easy to see that

E ∝ −e
2at

ε2
. (10)

Note that this divergence can never be canceled out if one considers the
stress tensor in a general product state

|ψ〉 =
∞∑

k,ni=1

∫ ( k∏
i=1

dωi

)
f(n1,...,nk)(ω1, . . . , ωk)

(
k∏
i=1

(b†ωi,L)ni

)
|0〉L

⊗
∞∑

k,ni=1

∫ ( k∏
i=1

dωi

)
g(n1,...,nk)(ω1, . . . , ωk)

(
k∏
i=1

(b†ωi,R)ni

)
|0〉R .

This is due to separability of the states and to the fact that each term con-
tributes to TUU non-negatively9. In other words, without entangled states
between the right and left side of the Rindler wedge, the dangerous divergence
of the stress tensor cannot be removed.

9Here b, b†’s are annihilation-creation operator corresponding to the scalar field, ω’s
are conjugate momenta and f and g are general momentum dependent coefficients of the
product state. It can be shown that each terms of the TψUU are either complete squares
or are rapidly oscillating function of momentum around U → 0, so that upon integrating
them over momentum gives zero.
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On the other hand, for an entangled state

|ψ1〉 =

∫
dωf(ω)b†ω,L|0〉L|0〉R

with

f(ω) =
e−

(ω−ω0)
2

2δ2

√
2πδ

one has, for aU ∈ [e−a/δ, ea/δ],

〈Tψ1

UU〉 = 2
∣∣∣ ∫ dωf(ω)∂UϕLω

∣∣∣2 =
ω2

0

2πa2U2
e−

δ2(log aU)2

a2 . (11)

Taking δ = − a
ln aε

, the stress tensor (11) can be evaluated at the regularised
horizon U = ε. One then finds

〈Tψ1

UU〉
∣∣∣
U=ε
≈ +

1

ε2
, (12)

which is precisely the same divergence (9) but with opposite sign. What we
have discovered here is that, by an appropriate choice of ω0, the divergence
of the stress tensor calculated from the point of view of a Rindler observer
is precisely canceled out by the divergence of the stress tensor constructed
by using L and R entangled states defined by ψ1. Since the left and right
wedges of the Rindler space are entangled from the point of view of a non-
accelerated observer, we are in fact allowed to use the ψ1 state. Thus, this
proves the non-existence of a firewall, despite what a Rindler observer would
guess.

On a BH spacetime, instead, as discussed before, no entangled state con-
necting the two future asymptotic regions, separated by the horizon, exist.

4 Firewall in BTZ

We will now consider a non-rotating BTZ black hole metric in AdS3 which
is given by [28]

ds2 =

(
8GM − r2

R2

)
dt2 +

(
−8GM +

r2

R2

)−1

dr2 + r2dφ2 . (13)

12



Here M is the ADM mass, R is the AdS radius and G is 3-dimensional
Newton’s constant which has dimension of length. The BTZ horizon (rH),
temperature (TBTZ) and entropy (S) are (see e.g. [34])

rH = R
√

8GM , TBTZ =

√
8GM

2πR
, S =

πrH
2G

. (14)

For rH ≥ R the black hole has a large but finite entropy and is in thermal
equilibrium. Thus, without considering any quantum corrections, it is a so-
called eternal black hole, or big black hole in AdS. This is the case we shall
consider.

By using the coordinate transformation r =
√

8GMR cosh y
R

, that map
the BH exterior to real y and the interior to complex y, we have

ds2 = −8GM sinh2 y

R
dt2 + dy2 + 8GMR2 cosh2 y

R
dθ2 . (15)

In these coordinates, the horizon is at yH = 0. The near horizon geometry
is of Rindler type. Suppressing the angular direction, we have for y ∼ 0

ds2
n.h. = −a2

BHy
2dt2 + dy2 , (16)

which is a Rindler metric with aBH =
√

8GM
R

.

We can now define the light-cone coordinates U, V by performing the
following coordinate transformations

T = y sinh

(√
8GM

R
t

)
and X = y cosh

(√
8GM

R
t

)
and then U = T +X and V = X − T . Then we have

U = e
√

8GM t
R y . (17)

Thus, the future horizon is at U = 0. In complete analogy to the Rindler
case we then find that the energy density close to the horizon diverges as

E ∝ −e
2aBH t

ε2
. (18)

In the BTZ case, the states living inside and outside the horizon are not
entangled (see figure 2). Thus this divergence cannot be cancelled out by
entangled states. However, is this divergence really there?

13



Let us make a quick digression. Minkowski space is not a perturbation
of Rindler space. The reason is that Rindler space is just a subsection of
Minkowski. Therefore, although the two spaces are trivially related to each
other by diffeomorphisms (or just by analytical extensions), we could have not
removed the firewall arising in Rindler by “quantum correcting” the Rindler
space. Note however, contrary to the black hole case, that the field theory
on the Rindler wedge is unitary. This is due to the fact that Rindler space
has an infinite entropy and thus, all information is encoded in the classical
parameters, the acceleration of the Rindler observer.

Conversely to the Rindler case, for a finite size BH, where the entropy S is
finite, correlation functions of semiclassical solutions decay in time [7]. This
is the essence of the information paradox for BH. However, if the whole infor-
mation is retrieved by quantum corrections of order O(e−S) to the hawking
spectrum (going to zero at infinite entropy) they can never entangle states
from the inside to the outside of the BH. Thus, although these quantum
back-reactions to the Hawking evaporation may solve the information para-
dox, they cannot solve the firewall paradox, i.e. a divergent negative energy-
density at the horizon similar to the one we found before. This is the message
of [12].

More clearly: Resolving the BH information by O(e−2S) corrections to the
classical metric immediately implies a firewall at the black hole horizon.

In the following we are going to show that this is indeed true but also
that the expansion of quantum corrections in terms of O(e−S) breaks down
precisely as soon as the firewall emerges. Specifically, we will show that “cor-
rections” to the classical metric go instead like O(e−Sgtt). These corrections
are small far away but diverge at the BH horizon where gtt →∞. Neverthe-
less, they re-sum to a smooth non-perturbative geometry without firewalls.
In other words, any truncation of non-perturbative quantum effects at order
O(e−Sgtt), even solving the information paradox, would inexorably generate
a firewall. Thus:

The firewall is just a mirage due to an inconsistent truncation of non-
perturbative corrections to the classical metric.
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5 The fake firewall

Usually, in quantum field theory classical trajectory dominates the path in-
tegral. However, sometimes, non-classical configuration may be as important
as the classical one, e.g. QCD instantons.

In the BTZ case, correlation functions calculated on the classical back-
ground exponential decay in time, as already said many times. Nevertheless,
they dominate the path integral at early time. Thus, at early time, the BTZ
geometry dominates over all the other paths in the gravity path integral.

At later time, however, when the correlation functions calculated on the
BTZ geometry decay, the off-shell configurations become more important.
One may try with Euclidean saddle points, such as thermal AdS, however, as
discussed already, this contribution does not retrieve unitarity so one needs to
go beyond the Euclidean saddle point approximation. Assuming that at late
time one can select a specific metric dominating the correlations, Solodukhin
proposed a candidate metric that would match the very long time t ∼ tH
behaviour of the CFT correlation functions. As we mentioned already, this
metric should be smooth in the sense that the whole spacetime should be
entangled. With this in mind the proposed non perturbative metric gNPµν is
[25]

ds2 = −(8GM sinh2(y/R) + λ2)dt2 + dy2 + 8GMR2 cosh2(y/R)dθ2 . (19)

Here λ is a non-perturbative, small, correction. Note that this metric rapidly
approaches the BTZ metric away from the would be horizon and therefore it
has the same AdS asymptotic as BTZ. We could then use, also in this case,
AdS/CFT.

Without λ, i.e. in the BTZ background, there are no normalisable modes
for a scalar field. This is due to the fact that the effective potential expo-
nentially decays to zero at the horizon. The factor λ however produces a
potential barrier before the horizon. This potential barrier allows for nor-
malisable modes. The minimal frequency, corresponding to the largest time
scale of the system, i.e. the expected Heisenberg time, is proportional to λ.
One then fixes

λ =

√
16GM

2π
e−S . (20)
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Thus, as it should, for an infinitely entropic black hole this metric becomes
BTZ. Note that in order to have the correct correction to the Hawking spec-
trum of order e−S, and so to obtain the correct Heisenberg time, the metric
has to be corrected by order e−2S. This is clear as the metric is associated
to the square of frequencies.

Let us pause here for a moment. It would seem that the non-perturbative
metric (19) is just an O(e−2S) correction to the BTZ BH metric, as one
naively expects from a semiclassical treatment. However, although this is
true far away from the horizon, it is not so, close to the horizon. This is due
to the fact that, even though tiny, λ completely changes the topology of the
manifold. It is precisely for this reason that insisting on treating the metric
(19) as a perturbation of the BTZ BH would require a firewall at the horizon,
as we are going to show. In this sense the firewall will just signal the breaking
of the perturbation treatment. Note that, although the equivalence principle
is violated by the contribution of (19), correlations functions are smooth
everywhere and the stress tensor never explodes. In other words, what we
are concerned about is whether the near horizon geometry is described by a
smooth wavefunction. Specifically in this sense, we then conclude that the
geometry of [25] does not produce a firewall. Indeed, the firewall is described
by a divergent stress tensor, which obviously also violate the equivalence
principle.

One question that remains to be answered is when the non-perturbative
metric (19) would take over the BTZ metric for the calculation of correlation
functions.

In [12], for an evaporating black hole, the Authors have suggested that the
firewall appears after the Page time [5] in which the entropy of the system is
half of what we started from. As proven by Page, after this time, the system,
if unitary, as it is assumed to be a black hole, starts to release information.

At the semiclassical level our black hole is eternal, meaning that the black
hole is in thermal equilibrium with its own Hawking temperature. However,
if this was true at the full quantum level, there would be a contradiction with
the assumption of unitarity, as Hawking process is not unitary. Therefore,
even if big, an “eternal” black hole must release information breaking the
thermal equilibrium. Each bit of information released, even if adiabatically
as we are assuming, will then diminish the entropy of the black hole. As
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discussed in [11], this re-introduced the concept of Page time even for big
asymptotically AdS black holes. We then expect that the time tc in which
the non-perturbative corrections start to dominate is precisely the Page time.

5.1 Firewall as a e−S expansion

As discussed before, at very long time t� t0, any correlation functions in the
path integral must be dominated by non-saddle points of the gravitational
action. In particular, following [25], we will assume that the correlators will
be dominated by the metric (19).

We consider a massless test scalar field φ with Lagrangian

LNP = −1

2

√
−gNPgαβNP∂αφ∂βφ . (21)

Taking the point of view of a BTZ observer, with the expansion around the
saddle point in mind, he/she would state that the quantum contributions
to the metric are of order O(e−2S), leading to corrections of O(e−S) to the
Hawking spectrum.

Thus, keeping only order λ2 in (21) we have

Lλ2 = −1

2

√
−g
[
gtt
(

1− λ2

2
gtt
)
φ̇2 + gij

(
1 +

λ2

2
gtt
)
∂iφ∂jφ

]
, (22)

where the metric gαβ is the BTZ metric and ˙≡ ∂t. Since we are considering
the expansion of the non-perturbative metric as a background-dependent
“quantum correction” to the BTZ metric, we should not be surprised that
the action (22) breaks Lorentz invariance, as does the background.

We will now analyse the theory (22). Firstly we notice that the canoni-
cally normalised field (in coordinates (y, t))

ϕy =

[√
−ggtt

(
1− λ2

2
gtt
)]1/2

φ (23)

is strongly coupled when the normalisation factor

Norm =

[√
−ggtt

(
1− λ2

2
gtt
)]1/2

(24)
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goes to zero. This happens for λ2

2
gtt = 1, i.e. at (taking small y approxima-

tions)

yc ' e−S
R

2π
, (25)

where we have considered the approximation of large entropy. As it is ex-
pected, the strong coupling effect is removed in the infinite entropy limit as
there yc coincides with the position of the horizon yH = 0.

Schematically, the theory (22) is of the following type10

A =
1

2

∫
dydt

[
−α(y)2φ̇2 + β(y)2(∂yφ)2

]
, (26)

where α and β can be easily read off from (22).

To handle the system, it is easier to define a new radial variable

z =

∫
α

β
dy , (27)

so that the action now reads

A =
1

2

∫
dzdt

α3

β

[
−φ̇2 + φ′2

]
. (28)

By canonically normalising the field, i.e. by defining

ϕ ≡

√
α3

β
φ , (29)

we have

A =
1

2

∫
dzdt

[
−ϕ̇2 + ϕ′2 + V (z)ϕ2

]
, (30)

where ′ ≡ ∂z and V is a complicated function of z which is not very enlight-
ening to see. Recalling however that the system is strongly coupled at y = yc,
it is clear that the potential V must have a divergence there. In figure 4 this
divergence is shown explicitly (numerically). The reason the divergence is
negative is simply a manifestation of the strong coupling. The divergence at
large y is instead the usual AdS barrier at spatial infinity.

10Without lost of generality, we have integrated out the angular direction and assumed
the φ field is independent of θ.
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Figure 4: The thick line is effective potential V (z(y)) while the dashed line
is |V (z(y))|.
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We now search for mode solutions

ϕω(t, z) = eiωthω(z) . (31)

Requiring hω to be normalizable, i.e.
∫∞

0
|hω|2 = 1. We have the boundary

conditions
lim

z→z(yc),∞
hω = 0 . (32)

The energy density of the system is the Hamiltonian. Each modes will then
carry an energy density

Eω =
1

2
V (z)|ϕω|2 + derivative contributions . (33)

Real frequencies: ω2 > 0 In this case, the behaviour of the functions hω is
very simple to guess. Defining z1 and z2 the two intersections of |ω2| = |V |, as
in figure 4, we have that for z > z2 hω exponentially falls off. For z1 < z < z2,
by using the WKB approximation (see e.g. [36]), we instead have

hω(z) ≈ 1√
z2 − z1

eiωz (34)

Finally for z < z1, again using the WKB approximation and recalling that
limz→z(yc) V = −∞, hω falls quickly off as (in y coordinates, falls off expo-
nentially)

hω(z) ∝ 1

[ω2 − V ]1/4
. (35)

Note that the divergence of the potential acts as a rigid wall at the point
z = z(yc).

Again, within the context of WKB, the frequencies will be thus quantised
via the Born-Sommerfeld prescription11∫ z2

z1

√
ω2 − V = nπ + k , (36)

where k is a constant phase of the wave function and n are integers.

11We have neglected the contribution coming from z < z1.
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Eq.(36) approximately implies, as an order of magnitude estimate,

∆ω ≡ ωi − ωi−1 ≈
1

z2 − z1

. (37)

Considering a small λ, it is a straightforward exercise to find12

z2 − z1 ' −
R√

4GM
lnλ =

R√
4GM

S . (38)

Thus, the continuum Hawking spectrum is corrected by O(1/S) and becomes
discrete, as suggested in [4] and as required by the firewall arguments [11].

In other words, a distant observer will declare the “quantum corrected”
Hawking spectrum to be unitary. However, the same observer, would also
declare that the energy density close to the horizon diverges negatively as

Eω
∣∣∣
z→z(yc)

≈ −
√
|V |
∣∣∣
z→z(yc)

, (39)

since close to the pole of the potential (by using again WKB) hω ∝ |V |−1/4.
This matches our expectations, i.e. that the firewall is related to a divergent
negative energy density close to the horizon, as found before in the Rindler
case.

In the following, we shall discuss another source of firewalls due to the
existence of imaginary frequencies. We will however see that, even in this
extreme case, the firewall is only localised within a tiny reason close to the
horizon, thus once again, only short wavelengths can probe it, as suggested
in [35].

Imaginary frequencies: ω2 < 0 Since the negative divergence of the po-
tential is at y = yc, imaginary frequencies are allowed. Those frequencies lead
to an exponentially (in time) divergent energy density, which adds to the lo-
calised divergence of the energy density discussed above. However, even for
imaginary frequencies, this divergent energy density is only localised within
a tiny region close to the horizon. The reason is that, requiring regularity at

12Note that z2 − z1 is also a function of ω and goes as ∼ ln(λ/(Rω)), for all interesting
physical values of ω. However, for semiclassical values of ωR, the lnλ dominates.
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infinity, the wave function hω exponentially decays in z. Of course though,
being unbounded, the states with imaginary frequencies cannot be associated
to any quantum states. Thus, a far observer might discard them claiming
that some short scale physics (some UV completion) should project out those
imaginary frequencies as usually happens in presence of singularities. Nev-
ertheless, even in this case, the firewall associated to real frequencies (i.e. to
genuine quantum states) would not be removed.

The size of the firewall To give an estimate of the size of the firewall, we
can bound it by considering the point in which the potential passes through
zero. Obviously this point will be an O(e−S) distance from the horizon [35].
An explicit calculation indeed finds y0 ≈ R√

80GM
λ, i.e. the firewall is localised

within a linear volume `firewall . Re−S (neglecting order one coefficients).
Thus, as it is expected, the firewall disappears for infinite entropy.

What we have discovered in this section is that an asymptotic observer,
believing that unitarity is restored by e−S “corrections” to the Hawking spec-
trum, would infer that a free falling observer sees a firewall at a distance
`firewall to the horizon. Of course, as we already know, this hypothesis is only
due to an inconsistent truncation of non-perturbative effects at order O(e−S).

6 Conclusion

In the context of quantum field theory, correlation functions of quantum
operators are usually dominated by Lorentzian saddle points of the path
integral. However gravity turns out to be a very special case that contradicts
this expectation.

Correlation functions calculated on a black hole spacetime of, e.g., scalar
operators, eventually exponentially decay in time. This same fact signals the
break-down of predictability, or loss of unitarity, of the back hole systems.
For an asymptotically AdS black hole, in the AdS/CFT framework, however,
unitarity cannot be lost since the boundary CFT is unitary. Unitarity can
then only be retrieved if the path integral for gravity is not dominated, at
least after long time, by Lorentzian saddle points. This is clear. As the CFT
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is supposed to be dual to the bulk spacetime, it must have also access to the
inside horizon. By a judicious calculation of the correlation functions one
finds, at least in the two and three dimensional toy models, that Euclidean
saddle points are indeed as relevant as the Lorentzian ones [21, 27]. However,
as it has been proven by [29], even the contribution of Euclidean saddle points
cannot solve the problem of unitarity for black holes. One therefore expects
some non-perturbative effect to play an important role.

By assuming that the black hole geometry is only corrected by some
operators of order O(e−2S) it has been proven that the energy momentum
tensor of in-falling observer must necessarily diverge at the horizon [12].
This is the so-called firewall paradox. It is a paradox because one would
immediately conclude that the assumption of small corrections to the black
hole geometry fails right at the horizon, due to a large amount of energy
stored there.

Assuming the existence of a semiclassical black hole at early times, we
showed that corrections to the black hole metric that solves the information
paradox are instead of order O(gtte−2S). While being small far away from
the horizon, they are dominant at the horizon. These (re-summed) correc-
tions all together avoid the firewall and the information paradoxes. However,
insisting on expanding the non-perturbative corrections in terms of the naive
parameter O(e−2S), we showed that a distant observer (while observing a
discrete Hawking spectrum) would infer the existence of a fictitious firewall
at the horizon, precisely as discussed in [11]. Thus, the message here is that
a firewall simply signals the limitations of the expansion in terms of saddle
point approximations.

Our findings address the problem of the very long time behaviour of corre-
lation functions on a quantum “black hole” spacetime. What we have proved
is that, from Page time onwards, quantum corrections to the semiclassical
solution must be non-perturbative in order to avoid the firewall paradox. In
other words, at the Page time, no matter how big the black hole is, semiclas-
sical physics breaks down. Then by continuity, early time corrections to the
Hawking radiation cannot be exponentially suppressed by the entropy (unless
one accepts the firewall), as usually naively assumed. It is very interesting
to see that this independent conclusion is quite similar to the suggestions
of [6], where inverse power law corrections in entropy to the early Hawking
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radiation are proposed. In that scenario, the Page time is, as in our case,
the moment in which any perturbative expansion to the semiclassical “black
hole” breaks down.
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