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Abstract 

Liver X receptors (LXRs) are transcription factors from the nuclear receptor family that 

can be pharmacologically activated by high-affinity agonists. LXR activation exerts a 

combination of metabolic and anti-inflammatory actions that result in the modulation of 

immune responses and in the amelioration of inflammatory disorders. In addition, LXR 

agonists modulate the metabolism of infected cells and limit the infectivity and/or growth 

of several pathogens. This review gives an overview of the recent advances in 

understanding the complexity of the mechanisms through which the LXR pathway 

controls inflammation and host-cell pathogen interaction. 
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Introduction 

Liver X receptors (LXRs), namely, NR1H3 (LXRα) and NR1H2 (LXRβ), are 

transcription factors from the nuclear receptor family (reviewed in [1]). LXRβ is 

ubiquitously expressed, whereas LXRα expression is more predominant in tissues that 

are highly involved in lipid metabolism. Within the immune system, macrophages, 

dendritic cells, and neutrophils express both isoforms, B lymphocytes express mainly 

LXR, and T cell populations have been reported to express either LXR or both isoforms 

[2–6]. LXRs can be activated by endogenous agonists, including specific oxysterols and 

intermediates of cholesterol biosynthesis, and by specific high-affinity agonists that are 

frequently used in vivo to explore the consequences of pharmacological LXR activation.  

LXRs form heterodimers with retinoid X receptors (RXRs) on LXR response elements 

and, once activated by agonists, they positively regulate the expression of target genes. 

Recent studies have proposed three possible modes of action for LXR- and LXR-

mediated transcriptional activation [7]. Two mechanisms are based on the canonical 

induction of target gene expression by RXR-LXR heterodimers in a pharmacologically 

responsive-manner. In the absence of agonistic activation, the target genes are repressed 

by LXR/RXR heterodimers, which may lead to de-repression in the absence of functional 

LXRs [8]. A third mechanism was proposed, by which the expression of a number of 

transcripts depends on the presence of LXRs, but these transcripts are not upregulated 

upon pharmacological LXR activation [7].  

Most of the targets that are positively induced in response to LXR agonists play key roles 

in lipid and glucose metabolism (reviewed in [1]). These include (but are not restricted 

to) several sterol transporters from the ATP binding cassette (ABC) family, e.g., ABCA1 

and ABCG1; transcription factors sterol regulatory element-binding protein 1c 
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(SREBP1c) and carbohydrate regulatory element-binding protein with important 

lipogenic roles; the E3 ubiquitin ligase inducible degrader of the low-density lipoprotein 

receptor (IDOL); and several apolipoproteins involved in lipid transport.  

The use of immortalized murine macrophages that express equivalent levels of FLAG-

tagged LXR or LXR in an LXR-deficient background has contributed in defining the 

specific roles of LXR isoforms in gene regulation. In addition to a signature 

simultaneously regulated by both isoforms, LXRα selectively regulates the expression of 

genes linked to the control of apoptosis and leukocyte migration, whereas LXR-specific 

functions are associated with lymphocyte differentiation and selection [7]. 

In addition to its positive effects on gene transcription, LXRs can negatively affect the 

expression of inflammatory mediators through a plethora of mechanisms, which will be 

further revised in the following section. Agonist-bound LXRs undergo conjugation to 

small ubiquitin-related modifier (SUMO), a process known as SUMOylation, which is 

required for some of the repressive actions of these proteins [9]. Moreover, a study in 

astrocytes proposed different SUMOylation pathways for agonist-bound LXR and 

LXR, mediated by separate members of the SUMO E3 ligase family [10]. 

In a complex scenario combining metabolic and anti-inflammatory actions, LXRs are able 

to modulate immune responses. These actions are particularly relevant in the management 

of an infection, as a number of pathogens are able to hijack host metabolic pathways for 

their own benefit. This review integrates the recent conceptual advances in understanding 

the complexity of mechanisms used by the LXR pathway to control inflammation and the 

response of the host to infection. 
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LXRs as attenuators of inflammatory disorders 

Accumulated evidence indicates the importance of the LXR pathway in the negative 

control of inflammatory conditions. For example, pharmacological activation of LXRs 

reduced the extent of the inflammatory response in murine models of dermatitis [11,12], 

neuroinflammation [13,14], lupus [15], arthritis [16], and atherosclerosis [12], consistent 

with the fact that LXR-deficient mice develop an age-related lupus-like autoimmune 

disease [17]. Furthermore, several polymorphisms affecting the promoter region of the 

gene encoding LXRα were associated with susceptibility to systemic lupus erythematosus 

in a Korean cohort [18]. 

To explain the anti-inflammatory actions of pharmacologically activated LXRs, many 

studies have focused on the capability of high-affinity agonists to repress pro-

inflammatory gene expression in macrophages and other cell types activated by the 

engagement of toll-like receptors (TLRs) or by endogenous inflammatory cytokines 

[9,12,14,19,20]. The LXR pathway impairs the transcriptional activity of nuclear factor 

kappa B (NF-B) [12] and the recruitment of signal transducer and activator of 

transcription (STAT)1 to target gene promoters [10,14]. Putting together the pieces of 

evidence reported by different groups, it is apparent that several mechanisms contribute 

to the antagonizing actions of the LXR pathway on pro-inflammatory signaling (Figure 

1). First, agonist-bound LXRs underwent SUMOylation and exerted transrepression by 

inhibiting the removal of nuclear receptor co-repressor (NCoR) complexes from pro-

inflammatory gene promoters in response to lipopolysaccharide (LPS) [9,21,22]. In 

macrophages, this process involves the interaction of SUMOylated LXRs with the actin-

binding protein CORONIN 2A (CORO2A). This interaction prevented actin recruitment 

to inflammatory gene promoters [21], in line with more recent evidence on the important 

roles of nuclear actin in the transcriptional control of macrophage activation [23]. In the 
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hepatic acute phase response in mice, the anti-inflammatory effects were selectively 

mediated by SUMOylated LXR and its interaction with the corepressor complex subunit 

G protein pathway suppressor 2 (GPS2) [22]. LXR also attenuated inflammatory 

cytokine production in murine mast cells stimulated with LPS or FcRI crosslinking [24]. 

By contrast, both SUMOylated LXR and LXR contributed in inhibiting the 

transcriptional response of murine macrophages and astrocytes to interferon (IFN)- 

through interference with STAT1 [10,14], which supports the notion that the relative 

contribution of each isoform depends on the cell type and the inflammatory trigger.  

Direct repressive actions have also been proposed involving the binding of LXRs to 

specific sites within macrophage inflammatory gene enhancer elements and potential 

chromatin closure, although additional studies are required to better define this 

mechanism. Gene signatures affected by this repressive activity are associated with 

leukocyte cell-cell adhesion and neutrophil chemotaxis, in line with the inhibitory effects 

of LXR agonists on neutrophil infiltration in a model of zymosan-induced peritonitis in 

mice [25].  

Other mechanisms contributing to the repression of inflammation imply the increased 

transcription of LXR targets in macrophages (Figure 1). First, the cholesterol and 

phospholipid transporter ABCA1, whose upregulation results in changes in membrane 

cholesterol homeostasis that are able to disrupt the recruitment of key adaptor molecules 

to lipid rafts, thereby antagonizing TLR signaling [20]. Second, several enzymes involved 

in the synthesis of fatty acids (fatty acid synthase) and in their conversion to derivatives 

with anti-inflammatory properties (predominantly mediated by stearoyl-CoA desaturase-

2 (SCD2) and its products 9Z palmitoleic acid and oleic acid). The induction of these 

enzymes is exerted directly by LXRs or indirectly through the upregulation of the 
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transcription factor SREBP1c, depending on the type of agonist mediating LXR 

activation [26]. Third, MER, a receptor tyrosine kinase that recognizes the plasma protein 

growth arrest-specific 6 (GAS6) bound to phosphatidylserine (PtdSer) on the surface of 

apoptotic bodies and contributes to apoptotic cell clearance. The upregulation of MER 

has been proposed as a mechanism coupling the engulfment of apoptotic cells 

(efferocytosis) with the suppression of inflammatory pathways. Indeed, LXR deficiency 

resulted in an aberrant pro-inflammatory response of macrophages to apoptotic cells and 

in the development of autoimmune disease in mice [17]. Fourth, interferon regulatory 

factor (IRF)8, a transcription factor with multiple roles in myeloid cells. Through the 

upregulation of IRF8, the LXR pathway indirectly induced the expression of interleukin 

(IL)-18 binding protein (IL18BP) in the murine and human systems. IL18BP is a potent 

endogenous inhibitor of the pro-inflammatory cytokine IL-18 [27]. In parallel, LXR 

agonists also repressed IL18 transcription and blocked the processing of pro-IL-18 to its 

bioactive form by interfering with pro-caspase 1 expression and activation, indicating that 

the LXR pathway uses a combination of mechanisms to inhibit IL-18 production [27]. In 

addition, increased expression of IRF8 in murine macrophages overexpressing LXR 

resulted in the upregulation of the anti-inflammatory enzyme arginase 1 [28]. 

Aside from the mechanisms described above, LXR agonists also induce the expression of 

apoptosis inhibitory factor secreted by macrophages (AIM)/CD5L [29,30]. In the murine 

system, this effect is mediated specifically by LXR. AIM/CD5L is a soluble 

scavenger receptor that can also act as a pattern-recognition receptor [31]. The 

endogenous production of human AIM/CD5L enhanced the expression of molecules 

involved in the resolution of inflammation, namely, MER and CD163, increased 

autophagy, and promoted an anti-inflammatory profile in human monocytes, resembling 



 
 

7 
 

the actions of IL-10 [32], which suggests the possibility that AIM might also be involved 

in facilitating the resolution of inflammation in response to LXR agonists. 

In contrast to predominant anti-inflammatory activities of LXR agonists in macrophages, 

both pro- and anti-inflammatory actions have been reported in dendritic cells. In this 

regard, LXR activation downregulated the expression of the actin-bundling protein fascin 

in human myeloid dendritic cells, suppressing T cell stimulation due to inefficient 

immunological synapse formation [33]. However, prolonged NF-B activation was 

detected in a different study, which translated into increased pro-inflammatory and T cell 

stimulatory activities [34]. Moreover, LXR agonism increased the chemotaxis of murine 

dendritic cells to signals generated in inflammatory settings, such as chemokine (C-C 

motif) ligand (CCL)19 and CCL21. This action was mediated through transcriptional 

activation of the ectoenzyme CD38, which is capable of converting nicotinamide adenine 

dinucleotide (NAD) into cyclic adenosine diphosphoribose (cADPR), an important 

second messenger in leukocyte trafficking [6]. These contrasting observations raise the 

question as to whether the effects of the LXR pathway are influenced by additional factors 

involved in dendritic cell maturation, which requires further exploration. 

In addition to the actions in myeloid cells, LXR agonists inhibited the differentiation of 

murine and human helper T (Th)17 cells [35], which are a subset of CD4+ T cells that 

secrete IL-17 and contribute to the pathogeny of inflammatory diseases [36]. An indirect 

mechanisms was proposed, by which LXR-induced SREBP1 negatively interfered with 

the activity of the transcription factor aryl hydrocarbon receptor on the Il17 promoter. 

The differentiation of other CD4+ T cell populations was also inhibited by LXR agonists 

[37], consistent with the anti-proliferative actions of LXR in murine T cells mediated by 

the upregulation of ABCG1 and subsequent changes in sterol homeostasis [3]. Moreover, 



 
 

8 
 

LXR activation induced regulatory T cell (Treg) expansion. Although a molecular 

mechanism was not defined, the oral administration of an LXR agonist in mice increased 

the abundance of gut-associated Treg with high suppressive capacity [38], which may 

provide additional explanation to the protective effects of the LXR pathway against the 

development of autoimmune diseases.  

The interplay between the metabolic actions of LXRs and their role in the modulation of 

adaptive immune responses was further illustrated by the observation that excessive lipid 

accumulation in LXR-deficient antigen presenting cells induced the expression of B cell 

activating factor (BAFF) and a proliferation inducing ligand (APRIL) that support B cell 

survival and differentiation [39]. This scenario triggered the expansion of auto-reactive 

B cells and contributed to the development of autoimmune disease. In addition, despite 

the fact that B cells mostly express the LXR isoform, the activation of LXR repressed 

BAFF production in human B cell lines through interference with NF-κB, STAT1 and 

mothers against decapentaplegic homolog 3 (SMAD3) signaling [40]. 

Beyond the anti-inflammatory actions in immune cells, transcriptional activation by 

LXRs impairs inflammatory responses in the liver in the context of metabolic disease. In 

particular, lysophosphatidylcholine acyltransferase 3 (LPCAT3) is highly induced by 

LXR agonists in hepatic cells, where it drives the incorporation of unsaturated fatty acids 

into phospholipids [41]. The activity of LPCAT3 resulted in reduced membrane lipid 

saturation, thus inhibiting pro-inflammatory c-Src kinase activation, and in decreased 

availability of saturated lipids for the synthesis of inflammatory mediators.  
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Impact of metabolic and anti-inflammatory actions of LXRs on host cell–pathogen 

interaction 

Despite contributing to immunopathology, inflammatory responses are crucial for the 

establishment of an effective immune response against infection. Based on the anti-

inflammatory actions of the LXR pathway, one could expect that LXR agonism would 

lead to deficient immune responses against infection. However, as will be discussed in 

this section, several studies have shown otherwise. Notably, a number of pathogens have 

developed mechanisms to hijack the host immune response and establish intracellular 

infection, particularly in phagocytic cells, even under adverse inflammatory conditions. 

Metabolic reprogramming of host cells or adaptation to their metabolic status are indeed 

common strategies used by intracellular pathogens for survival and replication [42]. 

Interestingly, many studies have shown increased expression and/or activity of LXR 

isoforms in leukocytes infected by intracellular pathogens [30,43–46]. Although the 

signaling pathway/s leading to increased LXR expression during infection have not been 

fully characterized, muramyl dipeptide, a ligand of nucleotide-binding oligomerization 

domain-containing protein 2 (NOD2) that is present in many bacteria, was able to induce 

LXR expression in murine macrophages [30]. In addition, type I and II IFNs and IL-36, 

which are produced during the immune response to infection, as well as LPS from Gram-

negative bacteria, upregulated the expression of enzymes that transform free cholesterol 

into endogenous LXR agonists, such as 25-hydroxycholesterol (25-HC) [14,43,47,48]. 

However, the involvement of LXRs in the physiological actions of 25-HC is still unclear 

[49]. Sterile acute inflammation also increased LXR expression and activity through a 

mechanism requiring functional MER signaling [50], in line with the observation that 

efferocytosis via MER activates the LXR pathway [17].  
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By contrast, LXR expression was inhibited in experimental models of sepsis [51,52] 

and the transcriptional control of LXR target genes was compromised in several 

infection/inflammatory settings [14,15,53]. In this regard, TLR3/4 ligands and IFN- 

interfered with the LXR-mediated control of cholesterol metabolism through activation 

of IRF3 and STAT1, respectively [14,53]. Competition for the coactivator p300/CREB-

binding protein (CBP) was proposed as a mechanism for IRF3 and STAT1 to inhibit the 

transcriptional activity of LXRs on specific target genes.  

Such divergent consequences of infection/inflammation on LXR signaling have fueled 

the need to explore the roles of this pathway in host-pathogen interaction (Figure 2). 

Initial studies in mice have defined the general role for LXRs in promoting macrophage 

survival after infection by different bacteria, namely Listeria monocytogenes, Bacillus 

anthraci), Escherichia coli, and Salmonella Typhimurium, which correlated with the 

upregulated expression of the anti-apoptotic molecule AIM/CD5L, a specific target of 

LXR and with the downregulation of pro-apoptotic factors [29,30]. Deficient LXR 

expression, particularly in bone marrow-derived cells, resulted in a higher susceptibility 

to infection by L. monocytogenes, with increased bacterial burden and neutrophilic 

abscesses in the liver and a lower survival rate [30]. In studies comparing the relative 

contribution of LXR isoforms, the lack of expression of LXR was responsible for the 

increased susceptibility to L. monocytogenes. 

Later on, a solid amount of evidence supported the involvement of LXRs in the control 

of the infection by Mycobacterium tuberculosis (M. tuberculosis). In human macrophages 

and in a murine model of mycobacterial infection, LXR agonists reduced the intracellular 

bacterial burden [43–45]. In line with these observations, LXR-deficient mice had higher 

bacterial burdens and increased granulomatous lesions in the lungs and underwent more 

rapid progression to systemic infection than their wild-type counterparts [45]. The 
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increased susceptibility of LXR-deficient mice was associated with the impaired activities 

of the innate and adaptive immune systems, including the infiltration of neutrophils to the 

lungs and the establishment of local Th1 and Th17 responses. These observations are in 

contrast with the general anti-inflammatory roles of the LXR pathway in non-infectious 

inflammatory diseases described in the previous section. Interestingly, whereas both 

LXR and LXR participated in limiting mycobacterial infection in human macrophages 

in vitro [43], LXR was specifically required to control the course of infection in mice 

[45], mirroring the selective contribution of this isoform in the protection against L. 

monocytogenes [30].  

In addition, LXR agonists increased the production of antimicrobial peptides in M. 

tuberculosis-infected macrophages [43], consistent with the capability of the LXR target 

AIM/CD5L to enhance this mechanism of defense and to contribute to mycobacterial 

clearance [54]. Therefore, it is plausible that activities regulated by AIM/CD5L beyond 

the control of apoptotic cell death also contribute to the protective effects of LXR agonists 

against bacterial infection. On the other hand, in contrast to the pro-survival actions 

described above, LXR agonists promoted apoptosis in human macrophages infected with 

M. tuberculosis, which may represent a mycobactericidal strategy [44]. Although the 

mechanisms leading to increased cell death were not determined, further investigation is 

required to better understand the implications of the LXR-AIM axis in different types of 

infection and how this pathway integrates with the other transcriptional effects of LXR 

agonists.   

In this regard, the upregulation of the LXR targets ABCA1 and ABCG1, which mediate 

intracellular cholesterol efflux, may also represent an important host mechanism for 

inhibiting mycobacterial growth [44]. Indeed, interference with ABCA1 expression 

facilitated the growth of the vaccine strain Bacille Calmette–Guérin in human 
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macrophages [55], probably because mycobacteria have a preference for intracellular 

fatty acids and cholesterol as carbon sources (reviewed in [56]). The obligate intracellular 

bacterium Chlamydia pneumoniae also relies heavily on intracellular cholesterol and uses 

the TIR domain-containing adapter inducing IFN-β (TRIF)-IRF3 signaling pathway to 

promote the conversion of infected macrophages into cholesterol-loaded foam cells [57]. 

Although this study did not evaluate the effects on cholesterol transporters, the results are 

consistent with the capability of IRF3 to inhibit ABCA1 expression [53]. Interestingly, 

LXR activation interfered with IRF3 activity and inhibited foam cell formation during C. 

pneumoniae infection [57]. Therefore, it is possible that LXR agonists use cooperative 

mechanisms based on the induction of ABCA1/G1 and the repressive actions on IRF3 to 

limit the accumulation of cholesterol and control the infection by bacterial species that 

benefit from intracellular lipid storages. 

Accumulated data support that alterations in the membrane cholesterol as a consequence 

of increased ABCA1 expression may also affect other critical steps in the infection cycle 

of several pathogens. Lipid rafts are membrane microdomains enriched in cholesterol and 

glycosphingolipids that concentrate molecules specifically targeted by a number of 

microorganisms for host cell binding, invasion, or dissemination, as well as receptors that 

initiate signaling pathways in host cells in response to environmental stimuli [58]. Indeed, 

a number of pathogens disrupt cellular cholesterol homeostasis either to promote lipid 

raft formation and gain entry into host cells or to hijack host cell signaling pathways that 

facilitate intracellular survival/replication [59]. For example, human immunodeficiency 

virus (HIV)-1, via its protein Nef, diminished cholesterol efflux from macrophages by 

modulating the post-transcriptional expression of ABCA1 and its redistribution, thus 

facilitating viral infectivity [60]. Reciprocally, the activation of the LXR-ABCA1 axis 

resulted in antiviral effects against HIV-1, including inhibitory effects on viral entry into 
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human CD4+ T cells [61], on virus production and the fusion activity of the virions [62], 

and on the capability of human dendritic cells to capture HIV-1 and trans-infect T cells 

[63]. Furthermore, pharmacological treatment with an LXR agonist reduced the viral load 

in humanized models of HIV infection in mice [62,64]. The antiviral effects were not 

exclusive for HIV infection, as the control of cholesterol homeostasis by the LXR-

ABCA1 pathway also impacted the capability of hepatitis C virus (HCV) to establish 

virus-host cell fusions and consequently enter the liver cells [65], as well as both the entry 

and replication capacity of Newcastle disease virus (NDV) [66].  

In addition to mechanisms for cholesterol efflux, LXRs control cholesterol uptake 

through the transcriptional upregulation of IDOL, an E3 ubiquitin ligase that triggers the 

ubiquitination and degradation of several members of the low-density lipoprotein receptor 

(LDLR) family [67]. Therefore, the role of IDOL in lowering intracellular cholesterol 

could help, in combination with the activity of ABCA1/G1, reduce the infectivity and/or 

growth of some pathogens. Moreover, HCV associates with lipoproteins and benefits 

from the surface expression of the LDLR to infect hepatocytes (reviewed in [68]). As the 

overexpression of IDOL inhibited the infection of human hepatocytes with HCV [69], it 

is plausible that a reduction in the LDLR levels represents an additional mechanism 

mediating the inhibitory actions of LXR agonists on HCV entry into host cells.  

Most studies exploring the role of synthetic LXR agonists in viral infection have not 

addressed the exact contribution of LXR isoforms. However, the expression of at least 

LXR(in the absence of pharmacological treatment) was required to restrict the 

reactivation of gammaherpesvirus in chronically infected mice [70]. LXR-deficiency 

resulted in viral reactivation in peritoneal cells, but not in splenocytes, despite intact virus-

specific T cell responses. 
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The recent discovery of the multifunctional protein CD38 as an additional LXR 

transcriptional target provided new insights to the way LXR agonists control bacterial 

infection [6,71]. Indeed, CD38 exerts multiple roles in the regulation of the immune 

response to pathogens [72]. Its expression in cells originating at the bone marrow was 

required for LXR agonists to ameliorate the clinical severity of S. Typhimurium infection 

in mice [71]. These effects were consistent with the reduced internalization of S. 

Typhimurium by macrophages [71] and may be influenced by an enhanced migratory 

potential of dendritic cells [6] upon activation of the LXR-CD38 axis. CD38 displays 

strong NADase activity, being able to modulate cellular NAD+ homeostasis while 

generating calcium-mobilizing second messengers [73]. It also exerts important 

receptorial and accessory functions in immune cells. Interestingly, the effects of LXR 

agonists on bacterial cell internalization were overcome with exogenous supplementation 

of NAD+ [71], highlighting the potential significance of intracellular NAD+ levels in host 

cell-pathogen interaction. Whether the effects in NAD+ metabolism cooperate with other 

LXR-mediated metabolic changes in the control of infection has not been determined. In 

addition, the contribution of the LXR-CD38 axis in controlling the progression of other 

types of infection requires investigation. 

The LXR pathway can also impact the course of infection through mechanisms based on 

transcriptional repression. As an example, LXR agonists repressed the basal transcription 

of HIV-1 in infected macrophages and counteracted HIV-1 replication in response to TLR 

signaling. These effects were mediated by preventing the release of the corepressor NCoR 

and inhibiting the recruitment of NF-кB, AP1 components, and CBP to the proviral DNA 

[74]. Additionally, the repression of pro-inflammatory genes was also proposed as a 

potential mechanism to downregulate the activation of HIV-1 expression in infected cells.  
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In line with anti-inflammatory effects in the context of endotoxemia [75], LXR agonists 

reduced organ dysfunction and mortality associated with sepsis in rodent models [51,52]. 

The functional expression of silent mating type information regulation 2 homolog (Sirt)-

1 was required for the protective effects of LXR agonists on myocardial function in septic 

mice, which coincided with a reduction in NF-кB activity, oxidative stress, and 

myocardial cell apoptosis, although the mechanism leading to increased Sirt-1 

transcription/activation was not defined [51]. In addition, evidence was provided for a 

selective role of LXRα, but not of LXR, in the protection against liver injury during 

sepsis [52], which contrasts with the role of LXR in ameliorating the hepatic acute 

response [22]. In general, these observations argue that the LXR pathway plays a role in 

limiting exacerbated tissue damage due to infection. However, in a different study, LXR 

agonism increased sepsis-induced mortality in mice due to an impairment of neutrophil 

infiltration to the infection site [5], raising the possibility that the outcome of LXR 

activation in sepsis depends on additional factors, which warrants further investigation.  

In contrast to the predominant protective effects of the LXR pathway on bacterial and 

viral infections, the anti-inflammatory environment potentiated by LXR agonists may be 

a favorable scenario for certain pathogens. In this regard, LXR deficiency conferred 

resistance to the parasite Leishmania chagasi/infantum [76], despite the fact that 

Leishmania spp. are NAD+ auxotrophs and highly sensitive to the host cell membrane 

cholesterol for infection [77]. Resistance to infection was associated with increased 

production of nitric oxide and IL-1 and augmented parasite killing by LXR-deficient 

macrophages [76]. Similarly, LXR agonists enhanced mortality during Klebsiella 

pneumoniae infection in mice, which correlated with the changes in the course of 

infiltration of neutrophils to the infected lungs [78]. The inhibition of chemokine-induced 

RhoA activation was proposed as a potential underlying mechanism.  
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Putting together all of the pieces of evidence obtained from the different models of 

infection, the modulation of inflammatory and metabolic responses by LXRs has different 

consequences depending on the pathogen. Therefore, targeting the LXR pathway as a 

strategy against infection must take into account the multiple mechanisms contributing to 

the effects of LXRs in host cell-pathogen interaction.  

 

Conclusions and future perspectives 

Due to the emergence of antimicrobial resistances and the absence of effective vaccines 

for a large number of pathogens, one of the major necessities in public health is the 

development of innovative host-directed therapies (HDTs) against infection. LXRs, by 

virtue of their condition as druggable targets and their multiple roles at the intersection 

between metabolism and inflammation, are promising candidates for HDT. 

As summarized in this review, LXR activation exerts a protective role in many pre-

clinical models of viral and bacterial infection. Different studies have focused on at least 

one molecular mechanism to explain these protective effects, but it is likely that several 

mechanisms cooperate simultaneously to reduce the capacity of infection of pathogens 

and the inflammatory response. As discussed here, some commonalities exist in relation 

to the metabolic resources hijacked by different pathogens. Accumulated evidence points 

toward the LXR pathway as part of the host response to modulate the metabolism of the 

infected cell and limit the infectivity and/or growth of intracellular pathogens, a role that 

can be boosted upon pharmacological LXR activation. In this regard, cholesterol 

metabolism is targeted by LXR agonists in a manner that is beneficial to limiting the 

infection, at least in animal and in vitro studies. Reciprocally, pathogens that are able to 

interfere with the capacity of LXRs to alter the host cell metabolism may benefit from a 
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more favorable environment. In fact, there is significant evidence of the LXR pathway 

itself being modulated at the level of both expression and activity by signals derived from 

pathogen recognition or from cytokines produced at the infection site. 

In addition, excessive tissue damage due to an exacerbated immune response is a common 

feature in infection and in inflammatory disorders. Beyond its role in limiting the extent 

of infection, activated LXRs trigger mechanisms to keep the inflammatory response under 

control and to avoid excessive organ injury in pre-clinical studies.  

Given their role at the intersection of lipid metabolism and immune responses, the effects 

of LXR activation in the context of infection have been studied in depth in macrophages. 

Indeed, despite their relevance in microbial killing and in the recruitment of immune cells 

to the site of infection, macrophages are commonly targeted by intracellular pathogens 

for their replication and dissemination [79]. Therefore, LXRs limit the extent of infection 

and restrict excessive inflammatory responses in a cell type that represents a selective 

niche for intracellular infection and, at the same time, is crucial for the preservation of 

tissue integrity. Despite the importance of LXRs in macrophage biology, this review also 

integrates data showing the beneficial effects of LXR agonists in other host cells that are 

targets of the infection, especially in the context of viral infection.  

A major limitation in the use of LXR agonists is their adverse effects in pre-clinical 

models of disease due to the activation of a lipogenic program [80]. Based on hepatic 

LXRα as the main isoform involved in agonist-induced lipogenesis, attempts have been 

made to develop LXR-specific ligands to circumvent this problem (reviewed in [1]). 

However, this kind of approach would probably have limitations as a HDT against 

infection. Whereas the anti-inflammatory effects of LXR agonists depend on LXR in a 

number of disease models in mice, LXR activity is essential for the development of 
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protective immune responses against several types of infection (Table I). Therefore, the 

development of more sophisticated agonists that are capable of promoting selective LXR 

functions while inhibiting specific targets [81] and/or new routes of administration 

targeting specific immune compartments [82] deserves further attention in the context of 

infection.  
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FIGURE LEGENDS 

Figure 1. LXRs inhibit the inflammatory response in macrophages through multiple 

mechanisms. TLR signaling or IFN- stimulation induce inflammatory gene expression. 

Agonist-bound LXRs mediate mechanisms of transrepression, which interfere with the 

release of corepressors or with the activity/recruitment of transcription factors (NF-B, 

STAT1) required for inflammatory gene expression. In addition, LXRs inhibit 

inflammatory responses indirectly through the transcriptional activation of LXR targets 

(in blue) involved in the modulation of metabolic and/or immune responses. The 

cholesterol efflux mediated by ABCA1 results in changes in the lipid composition of the 

membrane, which interferes with TLR signaling. SREBP1c induces the expresion of 

enzymes involved in the generation of lipids with anti-inflammatory properties. MER 

couples efferocytosis with the suppression of the inflammatory response. AIM/CD5L 

enhances the expression of molecules involved in the resolution of inflammation and 

promotes an anti-inflammatory profile. IRF8 induces the expression of IL18BP, which 

binds to secreted IL-18 and inhibits its biological actions. Some elements in this image 

have been downloaded from SMART - Servier Medical ART. Arg1, arginase 1; Casp1, 

caspase 1; Fas, fatty acid synthase; HDL, high-density lipoprotein; IFNR, IFN- 

receptor; Il1b, interleukin 1; Il12b, interleukin 12 subunit b; Il6, interleukin 6; MyD88, 

Myeloid differentiation primary response 88; TRAF6, tumor necrosis factor receptor 

associated factor 6. 

 

Figure 2. LXR activation induces protective mechanisms that limit viral and 

bacterial infection. LXR agonists upregulate the expression of LXR targets (in blue) that 

contribute in reducing the infection by several pathogens (names of pathogens in green). 
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AIM/CD5L confers resistance to apoptosis and induces the synthesis of antimicrobial 

peptides. CD38 reduces intracellular NAD+ levels and the infection by S. Typhimurium. 

ABCA1 promotes cholesterol efflux. As a consequence, reduced intracellular cholesterol 

limits the growth of mycobacteria and, potentially, of other bacterial strains that depend 

on intracellular cholesterol. In addition, changes in the cholesterol levels within lipid rafts 

may interfere with the entry of several viruses into host cells. IDOL, by virtue of its role 

in controling the turnover of the LDLR, inhibits the capability of HCV to infect host cells. 

LXRs can also affect the intracellular replication of HIV-1 through mechanisms of 

transrepression, which affect corepressor release or transcription factor recruitment to the 

proviral DNA. Ub, ubiquitin. Some elements in this image have been downloaded from 

SMART - Servier Medical ART.  
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Table I. Specific contributions of LXR isoforms to the control of inflammation and infection. Ref., reference. TPA, phorbol 12-myristate-

13-acetate. 

Disease / Cellular model Trigger Species LXR isoform Effects Ref. 

Macrophages (in vitro) LPS; IFN- Mouse LXR LXR Repression of inflammatory genes  [12,14] 

Astrocytes (in vitro) IFN- Mouse LXR LXR Repression of inflammatory genes  [10]  

Lupus-like autoimmunity Aging Mouse LXR LXR Protection from autoimmunity [17] 

Hepatic acute phase response (in vivo) LPS Mouse LXR Repression of acute phase response [22] 

Ear inflammation (in vivo) TPA Mouse LXR Inhibition of inflammation [11] 

Mast cells (in vitro) LPS; FcRI 

crosslinking 

Mouse LXR Repression of inflammatory cytokine 

production 

[24] 

T cells (in vivo; in vitro) Aging; mitogens Mouse LXR Inhibition of proliferation [3] 

Antigen presenting cells (in vivo) Cholesterol 

accumulation  

Mouse LXR Limitation of B cell expansion [39] 

B cell lines (in vitro) Basal conditions Human LXR Repression of BAFF production  [40] 

Table I



Macrophages (in vitro) M. tuberculosis Human LXR LXR Limitation of mycobacterial infection [43] 

M. tuberculosis infection in vivo  M. tuberculosis Mouse LXR Increased resistance to infection [45] 

L. monocytogenes infection in vivo L. monocytogenes Mouse LXR Increased resistance to infection [30] 

GHV infection in vivo GHV Mouse LXR Restriction of viral reactivation in 

peritoneal cells 

[70] 

Cecal ligation and puncture (in vivo) Sepsis Mouse LXR Protection against liver injury [52] 
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