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Abstract  

Thiols are among the compounds that have the greatest impact on the flavor of coffee. Due to 

their extremely low odour thresholds, they have a significant sensory impact even at very low 

concentrations. Thiols are formed during coffee roasting and are described as the key odorants 

responsible for the typical “coffee” and “roasty” odour notes, greatly influencing the sensory 

characteristics of coffee. They are particularly reactive and prone to oxidation; their rapid 

depletion after preparation of a coffee brew and during storage of roasted coffee has been 

associated with sensory quality decrease and coffee going stale. For these reasons, their 

determination and insight into their formation and degradation mechanisms could help us to 

preserve the sensory quality of coffee and to modulate its sensory features. Coffee aroma has 

been widely studied in recent decades, and it has become evident that the role of certain volatile 

thiols is paramount. Nevertheless, a limited number of studies have specifically addressed this 

class of compounds, and several aspects have not yet been satisfactorily elucidated. The aim of 

this review is to provide an overview of the current state on knowledge about coffee thiols, 

focusing on their occurrence, determination, sensory impact, formation and evolution in roasted 

and brewed coffee. 
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1. Introduction  

Coffee has a series of peculiar characteristics that make it a unique beverage and consequently it 

is one of the most commonly consumed and appreciated products around the world. In addition 

to the stimulant properties of caffeine and its capability to promote beneficial  health effects 

(Higdon & Frei, 2006; Hall et al., 2015), the popularity of brewed coffee stems mainly from its 

pleasant and attractive aroma:determined by its volatile fraction. Around 800 compounds have 

been identified to date in the volatile fraction of coffee (Sunarharum, Williams, & Smith, 2014), 

including ketones, aldehydes, furans, pyrroles, pyridines, pyrazines, phenols, alcohols, esters, 

hydrocarbons oxazoles, carboxylic acids, lactones, terpenes, amines and sulfur compounds. Their 

concentrations range from a few ng/L to hundreds of mg/L. Despite this complexity, only a small 

number of compounds are responsible for the majority of the olfactory sensation coffee provokes 

(Tressl, 1989; Holscher, Vitzum, & Steinhart, 1990; Blank, Sen & Grosch, 1992; Semmelroch, 

Laskaway, Blank, & Grosch, 1995; Semmelroch, & Grosch, 1995; 1996; Czerny, Mayer, & Grosch, 

1999; Mayer & Grosch, 2001), although sensory studies indicate that synergies among stimuli, oral 

processing, and dynamic evolution of the sensory stimulus, could play a major role in the aroma 

perception (Ferreira, 2011; Foster, Grigor, Chehong, Yoo, Bronlund, & Morgenstern, 2011). Most 

of the impact odor compounds of coffee are formed during the roasting of beans through the 

Maillard reaction, Strecker degradation and autooxidation, among other processes (Buffo & 

Cardelli-Freire, 2004; Baggenstoss, Poisson, Kaegi, Perren, & Esche, 2008; Cerny, 2008; 

Sunarharum et al., 2014). Some sulfur-containing compounds are among the most significant for 

coffee flavour. In particular, certain volatile thiols are extremely influential on the sensory profile 

of coffee. Despite their low concentrations, their extremely low odour thresholds mean that they 

have a great olfactory impact (Holscher & Steinhart, 1992; Semmelroch & Grosch, 1995; Cerny, 

2008; McGorrin, 2011). 
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Coffee flavour has been reviewed by various authors in recent years (Grosch, 1998; Buffo & 

Cardelli-Freire, 2004; Kumazawa, 2006; Sunarharum et al., 2014). This review aims to outline the 

current state of scientific knowledge of coffee thiols, some of the flavour compounds that have 

the greatest impact on the product. Research from the last three decades is summarized, focusing 

on the occurrence, assessment, sensory impact, formation and evolution of thiols in roasted and 

brewed coffee.  

2. Thiols in coffee: occurrence and sensory impact  

Thiols or mercaptans, are organic compounds containing an SH group. They are sulfur analogues of 

alcohols, where the SH group replaces the OH group, and are highly susceptible to oxidative 

degradation. Their boiling points are lower than those of the corresponding alcohols and some of 

them are characterized by a very strong odour. Due to the extremely low odour thresholds of 

certain thiols, they have a significant sensory impact even at very low concentrations, and their 

identification and quantification is crucial for the assessment and improvement of food sensory 

quality. Many studies report the relevance of volatile thiols as aroma components in foodstuffs 

such as wine (Roland, Schneider, Razungles, & Cavelier; 2011), beer (Vermeulen, Lejeune, Tran, & 

Collin, 2006), cheese (Sourabié, Spinnler, Bonnarme, Saint-Eve, & Landaud, 2008) and foods 

products that have undergone the Maillard reaction (Schieberle, 1991; Hofmann, Schieberle, & 

Grosch, 1996; Kerscher & Grosch, 1998), including roasted coffee (Cerny, 2008; McGorrin, 2011). 

The major thiols reposted in roasted and brewed coffee are summarized in Table 1, and their 

molecular structures are shown in Figure 1. The concentrations of thiols in roasted and brewed 

coffee, as reported by different authors over the last two decades, vary from a few ng/kg to 

several mg/kg (Table 1). Several factors such as the degree of roasting and the coffee species, 

variety and origin, can have an effect on the thiol content of coffee, but the use of different 

analytical methods for their determination could be a cause of certain differences between 
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results. The principles and the performance of the methods used for thiol analysis are discussed in 

the next section. An overall diminution of thiol concentration is noticeable when passing from 

roasted to brewed coffee (Table 1), due to the low extraction rate of brewing coffee (Semmelroch 

& Grosch, 1996; Mayer, Czerny, & Grosch, 2000). 

2-Furfurylthiol is a key odorant reported as the main compound responsible for the “coffee” odour 

(Mayer et al., 2000; McGorrin, 2011) and its influence on coffee sensory characteristics is highly 

dependent on its concentration. Although sensory models prepared at higher concentrations are 

similar to reference coffee samples (Czerny et al., 1999; Mayer et al., 2000; Mayer & Grosch, 2001) 

some authors reported that while concentrations of 2-furfurylthiol below 0.5-1 µg/L provide a 

freshly brewed coffee aroma, higher concentrations are perceived as sulfury, stale or rancid coffee  

(Tressl, 1981; McGorrin, 2011). Likewise, 2-methyl-3-furanthiol below 0.5-1 µg/L provides a meat-

like note, while at higher concentrations it is described as sulfurous or mercaptan-like (Tressl, 

1981; McGorrin, 2011).  

3-methyl-2-buten-1-thiol is characterized by a skunky, fox-like note and although is generally 

present in lower concentrations than other thiols, in particular in brewed coffee, it possesses one 

of the lowest odour thresholds (Table 1). 

3-Mercapto-3-methyl-1-butanol has been related to broth, cooked meat, spicy and sweat notes 

(Holscher, Vitzum & Steinhardt, 1992; McGorrin, 2011); while the corresponding formic and acetic 

acid esters have been described as contributors to the blackcurrant-like and roasty notes in coffee 

(Czerny et al., 1999; Mayer et al., 2000; Kumazawa & Masuda, 2003a). Although 3-mercapto-3-

methyl-1-butanol in coffee is much more abundant than the corresponding esters (Table 1), its 

contribution to the aroma is less important because of its higher odour threshold. According to 

Holscher et al. (1992), the free polar hydroxyl group interferes with the tertiary mercaptan group 
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which is responsible for the “catty” notes of the esters and among the most potent odorants 

known to date, causing loss of the odorant potency and conversion of the odor note.  

Methanethiol is the most abundant thiol in both roasted and brewed coffee (Table 1), and 

although as a pure compound it is described as putrid and cabbage-like (Semmelroch & Grosch, 

1995), its presence in coffee has been related to the pleasant “fresh coffee” perception (Holscher 

& Steinhart, 1992; McGorrin, 2011). 

The sensory impact of thiols in coffee is usually determined by sensory analysis, by aroma extract 

dilution assay (AEDA) and CharmAnalysisTM, or by the calculation of the odour activity values 

(OAVs; ratio of concentration to odour threshold) (Acree, Barnard, & Cunningham, 1984; Grosch, 

2001). 

Sensory studies based on the evaluation of the overall odour after the omission of one or more 

odorants indicated that 2-furfurylthiol is the thiol with the highest impact on ground coffee aroma 

whereas 2-furfurylthiol and 3-mercapto-3-methyl-1-butyl formate are among the main odorants in 

brewed coffee (Czerny et al., 1999; Mayer et al., 2000). These results are in agreement with the 

OAVs of these thiols in powdered and brewed coffee,  as reported in other studies (Semmelroch et 

al, 1995; Semmelroch & Grosch, 1996). According to the same omission tests, the absence of 2-

methyl-3-furanthiol, 3-methyl-2-butene-1-thiol and methanethiol does not affect the aroma of the 

model. 

In contrast, the flavour dilution factors (FDs) obtained by AEDA indicated that all the above 

mentioned components have an impact on the odour of coffee powder (Blank et al., 1992; 

Semmelroch & Grosch, 1995). In particular, 3-mercapto-3-methyl-1-butyl formate  appeared 

comparable or even almost 10-fold more potent than 2-furfurylthiol (Blank et al., 1992; 

Semmelroch & Grosch, 1995) and methanethiol  was described as the major contributor to the 

freshly roasted coffee aroma (Holscher & Steinhart, 1992). In brewed coffee, some AEDA results 
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confirmed the higher sensory impact of 3-mercapto-3-methyl-1-butyl formate over the other 

thiols (Blank et al., 1992; Sanz, Czerny, Cid & Schieberle, 2002; Kumazawa & Masuda, 2003a); 

while others indicated 2-furfurylthiol as the most relevant thiol (Semmelroch & Grosch, 1995; 

Kumazawa & Masuda, 2003b). Meanwhile, 3-mercapto-3-methyl-1-butyl formate and 2-

furfurylthiol were defined as potent odorants in coffee brews by CharmAnalysisTM; but their 

impact was often lower that of 3-methyl-buten-1-thiol (Akiyama et al., 2008). 

3. Analytical determination of thiols in coffee 

Analytical assaying of volatile thiols in food is mainly hindered by their low concentrations and 

their susceptibility to oxidative degradation reactions, which causes rapid conversion of thiols to 

disulfides via auto-oxidation or their degradation at high temperatures (Vermeulen, Gijs, & Collin, 

2005). In recent years, different methods have been applied to the determination of thiols in 

coffee, including non-specific techniques, suitable for a wide range of volatile compounds, and 

methods that are selective for thiol compounds.  

3.1 Non-specific techniques 

Gas chromatography coupled to mass spectrometry (GC-MS) is the most frequently used 

technique for the analysis of coffee thiols. On-column injection at low temperature has been 

applied by some authors in order to prevent thermal degradation of the thiols (Semmelroch et al., 

1995; Semmelroch & Grosch, 1996; Czerny et al., 1999).  

Simultaneous distillation/extraction (SDE) and vacuum distillation (Tressl & Silwar, 1981; Holscher 

et al, 1992; Schenker, Heinemann, Huber, Pompizzi & Escher, 2002), as well as static headspace 

analysis (Holscher and Steinhart, 1992; Mayer, Czerny, & Grosch, 1999; Bröhan, Huybrighs, 

Wouters & Van der Bruggen, 2009), have been reported to pre-concentrate thiols from coffee 

powder or brewed coffee prior to analysis. Other authors have used organic solvents for the 

extraction of thiols from coffee powder or breed coffee, and have concentrated them by 
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combining this with either vacuum distillation, preparative column chromatography, 

microdistillation, covalent chromatography (Semmelroch et al., 1995; Semmelroch & Grosch, 

1996; Mayer et al., 1999; 2000; Sanz et al., 2002; Kumazawa & Masuda, 2003a) or solvent assisted 

flavor evaporation (SAFE) (Hofmann, Czerny, Calligaris & Schieberle, 2001; Hofmann & Schieberle, 

2002; Sanz et al., 2002). Extraction times ranged from a few minutes to more than 18 h, and 

different procedures were often necessary for the determination of each thiol. More recently, 

solid-phase microextraction (SPME) has been introduced for the analysis of thiols in coffee brews 

(Charles-Bernard, Kraehenbuehel, Rytz, & Roberts, 2005a; 2005b; Baggenstoss, Poisson, Kaegi, 

Perren & Escher, 2008; Akiyama et al., 2008; Genovese, Caporaso, Civitella & Sacchi, 2014; 

Caporaso, Genovese, Canela, Civitella & Sacchi, 2014). 

In order to compensate for the losses of thiols caused by the isolation procedures and to reduce 

quantification errors, a stable isotope dilution assay (SIDA) has been applied by some authors 

when using solvent extraction and concentration (Semmelroch et al., 1995; Semmelroch & Grosch, 

1996; Czerny et al., 1999; Mayer et al., 1999; 2000) or SPME (Baggenstoss et al., 2008). Using this 

procedure, thiols in the sample are quantified by means of internal standards labeled with stable 

isotopes, which in many cases need to be synthesized. 

3.2. Selective methods  

To overcome thiol degradation during analytical procedures, selective derivatization could stabilize 

of the free thiol group. For this reason, the analysis of thiols in foodstuff frequently implies the use 

of thiol-specific derivatization agents, such as p-hydroxymercury benzoate (Tominaga, Blanchart, 

Darriet, & Dubordeu, 1998; Tominaga, Murat, & Dubordieu, 2000; Vermeulen, Lejeune, Tran, & 

Collin, 2006) or 2,3,4,5,6-pentafluorobenzyl bromide (Mateo-Vivaracho, Cacho & Ferreira, 2007; 

2008; Rodríguez-Bencomo, Schneider, Lepoutre &  Rigou, 2009), among others.  
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In coffee, derivatization of 3-methyl-2-butene-1-thiol with p-hydroxymercury benzoate has been 

reported by Mayer et al. (1999). After derivatization, glutathione was added to liberate the thiols 

which underwent solvent extraction and concentration. 

Recently, simultaneous derivatization/extraction followed by high-performance liquid 

chromatography and electrospray-high resolution mass spectrometry (HPLC-ESI-HRMS) was 

developed for the analysis of coffee thiols (Vichi, Jerí, Cortés-Francisco, Palacios, & Caixach, 2014; 

Quintanilla-Casas, Dulsat-Serra, Cortés-Francisco, Caixach & Vichi, 2015; Vichi, Dalmau, & Caixach, 

2015). This procedure is based on the selective and efficient reaction between thiols and a reagent 

containing selenium: ebselen, which enables the derivatization and isolation of the thiols in 

minimum time and with minimal sample manipulation. Moreover, HRMS provides information on 

molecular structure and composition, and is crucial in food analysis to avoid interference from 

isobaric compounds and thus false positives (Kaufmann, 2012). This method provided thiol 

concentrations in coffee below those previously reported (Table 1); although the results achieved 

in other matrices such as wine and beer were in line with those obtained using other 

derivatization reagents (Vichi, Cortés-Francisco, & Caixach, 2015). 

4. Formation of thiols in coffee 

4.1. Mechanisms of formation 

The mechanism of formation of volatile thiols in roasted coffee is still not completely understood. 

However, it is generally accepted that sulfur-containing amino acids are the key precursors and 

the sulfur source for reactions with sugars and other minor compounds that occur during coffee 

bean roasting. Maillard-type reactions play a major role in coffee thiols formation. The formation 

of 2-furfurylthiol and 2-methyl-3-furanthiol from the reaction between pentoses or hexoses and 

cysteine, through the formation of furaldehyde and H2S, has been reported in model systems  

(Hofmann & Schieberle, 1997; 1998a; 1998b; Cerny, 2003; 2008) and confirmed by biomimetic in-
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bean experiments (Poisson, Schmalzried, Davidek, Blank, & Kerler, 2009). In addition to 2-

furfurylthiol, thermally treated solutions of glucose/cysteine or rhamnose/cysteine led to the 

formation of H2S, methanethiol, ethanethiol, 3-mercapto-2-butanone and 3-mercapto-2-

pentanone. 5-Methyl-2-furfurylthiol (responsible for the roasty, coffee-like notes) was 

predominant in the rhamnose/cys model; while 2-methyl-3-furanthiol was characteristic of the 

ribose/cysteine model (Hofmann, 1997). Methanethiol is believed to result from the pyrolysis of 

methionine (Baggenstoss et al, 2008).  

Another important pathway for the formation of coffee thiols during roasting involves sulfur-

containing amino acids and prenyl alcohol (3-methyl-2-buten-1-ol); a volatile constituent of green 

coffee beans. Under roasting conditions, H2S liberated from cysteine or methionine may react with 

the double bond of prenyl alcohol to form 3-mercapto-3-methyl-1-butanol (Holscher et al., 

1992b). Prenyl alcohol was also identified as the precursor of 3-methyl-2-butene-1-thiol, which 

could be formed in the presence of H2S by substitution of the hydroxyl group by a thiol group 

(Holscher et al., 1992b). Although the addition of formic acid to model reactions could not confirm 

the formation of the corresponding ester (Holscher et al., 1992b), it is generally assumed that 

under real coffee roasting conditions, the esterification of 3-mercapto-3-methyl-1-butanol with 

short-chain fatty acids generated by carbohydrate degradation during the process (Ginz, Balzer, 

Bradbury, & Maier, 2000) leads to the formation of 3-mercapto-3-methyl-1-butyl formate and 

acetate (Holscher et al., 1992b; Kumazawa & Masuda, 2003a). 

4.2. Influence of roasting conditions on thiol formation 

Roasting plays a primary role in thiol formation, which is highly influenced by theprocess 

conditions; in particular, by roasting time and temperature. The distinct thiol species follow 

different generation and degradation kinetics, according to their mechanism of formation, 

molecular stability and the availability of their precursors (Kumazawa & Masuda, 2003a; 
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Baggenstoss et al., 2008). In general, thiols increase in amount throughout the roasting process, 

reaching a maximum at the "dark roast" point (Holscher, & Steinhart, 1992a; Mayer et al., 1999; 

Kumazawa & Masuda, 2003a; Baggenstoss et al., 2008); while at more advanced roasting stages, 

degradation reactions can induce a slowdown in their formation  or even a decrease in the amount 

of them in the coffee (Baggenstoss, et al., 2008).  

Methanethiol content increase greatly during the first stages of roasting; while 2-furfurylthiol and 

3-mercapto-3-methyl-1-butyl formate require higher temperatures than methanethiol does  for 

their formation reactions, so their formation starts later. Nevertheless, the content of 2-

furfurylthiol in coffee is mainly determined by the time of roasting (Baggenstoss et al., 2008). The 

stability of the molecular structure or the existence of a considerable pool of precursors allows the 

concentration of 2-furfurylthiol to increase over longer roasting times than those of other thiols, 

such as 3-mercapto-3-methyl-1-butyl formate, even after excessive roasting (Schenker et al., 2002; 

Baggenstoss et al., 2008). By comparing the behaviour during roasting of 3-mercapto-3-methyl-1-

butanol and the corresponding esters, different kinetics have been reported. 3-Mercapto-3-

methyl-1-butanol and 3-mercapto-3-methyl-1-butyl formate increase linearly with the degree of 

roasting; while mercapto-3-methyl-1-butyl acetate sharply increases only at advanced degrees of 

roasting (Kumazawa & Masuda, 2003a). As the acetic acid content in coffee beans is always slightly 

more than that of formic acid, this behaviour has been explained by different and temperature-

dependent reactivity of these acids, rather than the differences in their amounts (Kumazawa, & 

Masuda, 2003a).   

Moreover, the rate of heat transfer during roasting is reported to have an effect on the volatile 

profile and the evolution of thiols in coffee beans. In fact, to an equal degree of roasting, different 

time–temperature combinations lead to distinct volatile compositions, including thiol profiles 

(Schenker et al., 2002; Baggenstoss et al., 2008). Methanethiol, 3-methyl-2-butene-1-thiol and 3-
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mercapto-3-methyl-1-butyl formate seem to be favoured by higher temperatures, since 

significantly higher concentrations are reached using high-temperature-short roasting time 

processes; while 2-furfurylthiol has been reported to be more abundant when a low-temperature 

long-time process is adopted (Schenker et al., 2002; Baggenstoss et al., 2008). 

4.3. Influence of coffee species, variety and geographical origin on thiol profile 

Although the roasting process is the main determinant of coffee thiol formation, other factors 

intrinsic to the coffee bean have been shown to play a significant role in the development of the 

thiol fraction. To similar degrees of roasting, both genetic and geographical factors produce 

differences in coffee thiol profiles. By comparing coffee species, 2-furfurylthiol and methanethiol 

show significantly higher concentrations or sensory impact in robusta (Coffea canephora var. 

robusta) than arabica (Coffea arabica) coffee powders (Tressl & Silwar, 1981; Holscher & 

Steinhardt, 1992a; Semmelroch et al., 1995; Semmelroch, & Grosch, 1995); while the amounts or 

the sensory impact of 3-methyl-2-buten-1-thiol and 3-methyl-1-butyl formate reported in arabica 

and robusta coffee were comparable (Semmelroch, & Grosch, 1995; 1996; Semmelroch et al., 

1995). The reports of the abundance of 2-methyl-3-furanthiol in the species are equivocal, 

indicating that this is not the main factor affecting its content. It was found to be more abundant 

in some arabica coffee powders (Tressl & Silwar, 1981); but its sensory impact was higher in other 

robusta coffee samples (Semmelroch, & Grosch, 1995).  

In brewed coffee, Semmelroch & Grosch (1995) reported in an initial  study that the contribution 

to the aroma of several thiols did not differ with the coffee species; while in a later study they 

observed that the concentration and the OAV of 2-furfurylthiol and methanethiol, but not that of 

3-mercapto-3-methyl-1-butyl formate, were notably higher in brewed robusta coffee 

(Semmelroch, & Grosch, 1996). 
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The variety and geographical origin of coffee have also been reported to influence the volatile 

thiol profile (Mayer et al, 1999; Akiyama et al., 2008; Vichi, Jerí, Cortés-Francisco, Palacios, & 

Caixach, 2014; Quintanilla-Casas, Dulsat-Serra, Cortés-Francisco, Caixach, & Vichi, 2015). 

Nevertheless, the same studies do not allow us to clearly distinguish the effects of the two factors, 

as samples of different geographical origin often also belong to different varieties. 

4.4. Influence of extraction conditions on thiols in brewed coffee  

The amount of thiols in brewed coffee is not only related to the initial concentration in the 

powder, but it also depends on the efficiency of the solid-liquid extraction during the brewing 

process. This efficiency should be proportional to the polarity of the thiols, although the extraction 

yields are not always correlated to thiol polarity (Mayer et al., 2000; Semmelroch & Grosch, 1996) 

but to physical parameters related to the brewing method. These parameters are: the proportions 

between coffee and water; the water temperature and pressure; and the extraction time. The 

influence of the extraction method on coffee aroma has been assessed by some authors (Andueza, 

Maetzu, Pascual, Ibañez, de la Peña & Cid, 2003; Caporaso et al., 2014; Genovese et al., 2014), but 

information on the behaviour of thiols under different coffee brewing methods is extremely 

scarce. In fact, for volatile sulfur compounds, only methanethiol data are available. This thiol, 

quantified as percentage of peak areas, is always more abundant in espresso coffee than in other 

types of brewed coffee. The ratio between coffee powder and water, as well as the extraction 

pressure, could justify this higher content. In addition, the water temperature is crucial to the final 

quality of the espresso coffee and the extraction efficiency of methanethiol; its effect varied 

according to the type of coffee: arabica, robusta natural blend and robusta torrefacto blend. The 

highest amount of methanethiol was achieved at 96ºC, 88ºC-92ºC and 92ºC-98ºC, respectively 

(Andueza et al., 2003).  
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Meanwhile, coffee brewed using methods, Moka method showed slightly lower contents of 

methanethiol than espresso coffee did (Genovese et al., 2014; Caporaso et al., 2014); while the 

lowest content of methanethiol was observed in either American coffee (Genovese et al., 2014) or 

in Neapolitan coffee (Caporaso et al., 2014). These varying results hinder the drawing of clear 

conclusions regarding the influence of these methods on coffee thiol extraction.  

5. Degradation of thiols and coffee going stale 

5.1. Thiol depletion in brewed coffee 

The main problem with storing or processing brewed coffee is the instability of its typical aroma; 

in particular of the roasty-sulfury note, which decreases in intensity shortly after coffee is brewed 

(Hofmann et al., 2001; Hofmann & Schieberle, 2002). The modification of coffee aroma quality, 

also known as going stale or staling, is caused by a decrease of some potent odorants; in particular 

volatile thiols. Several studies have sought to clarify the mechanisms of thiol degradation in 

brewed coffee. In addition to thiol volatility, their sensitivity to oxidative processes and their 

reactivity toward the matrix compounds are considered the principal causes of thiols loss. 

Thiols in an organic model solution were observed to oxidize rapidly to disulfides even at low 

temperatures (Hofmann, Schieberle, & Grosch, 1996). Oxidation of thiols under Fenton type 

reactions has also been studied (Blank, Pascual, Devaud, Fay, Stadler, Yeretzian, & Goodman, 

2002), indicating that hydroxyl radicals (·OH), generated in brewing coffee from hydrogen peroxide 

and transition metals, can induce the formation of thiol dimers as oxidation products. Model 

studies with 2-furfurylthiol revealed the formation of difurfuryl disulfide as the major component.  

Regarding flavour binding phenomena, Maillard reaction products, melanoidins, phenols and their 

quinones have been indicated as being mainly responsible for thiol depletion in brewed coffee 

(Hofmann et al., 2001; Hofmann & Schieberle, 2002; Charles-Bernard et al., 2005a; 2005b; Müller 

& Hoffmann, 2005; Müller, Hemmersbach, Van’t Slot & Hofmann, 2006; Müller & Hofmann, 2007). 
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Thiols have been demonstrated to covalently bind (excluding disulfide bonds) to coffee 

melanoidins by the results of Hofmann et al. (2001; 2002). The proposed reaction pathway 

involved diquaternary pyrazinium ions derived from the CROSSPY radical; an intermediate of 

melanoidin formation in roasted coffee (Hofmann & Schieberle, 2002). Thioether derivatives from 

pyrazinium intermediates, and 2-furfurylthiol, 3-mercapto-3-methyl-1-butyl formate and 2-

methyl-3-furanthiol have been identified in model solutions, thus corroborating the proposed 

mechanism (Hofmann & Schieberle, 2002). 

Although the effect of chlorogenic acids on the decrease of free thiols was not clear in model 

system (Hofmann & Schieberle, 2002), biomimetic “in-bean” experiments demonstrated that 

chlorogenic acids and their thermal degradation phenolics, catalysed by transition metals, are 

relevant thiol-binding site precursors in raw coffee (Müller & Hoffmann, 2005). Thiol conjugates 

with phenols and with quinones formed by chlorogenic acid degradation, such as catechol, 4-

ethylcatechol and hydroxyhydroquinone, were shown to be present in both model studies and 

real coffee brews, and the oxidative coupling of 2-furfurylthiol and hydroxyhydroquinone was 

stated as one of the principal causes of thiol losses during storage of brewed coffee brew (Müller 

et al., 2006; Müller & Hofmann, 2007).  

Finally, the degradation of 3-mercapto-3-methyl-1-butyl formate and acetate observed in 

thermally-treated coffee drinks has been attributed to the hydrolysis of the esters with the 

production of 3-mercapto-3-methyl-1-butanol (Kumazawa & Masuda, 2003b). 

The molecular structure of thiols plays a primary role in their reactivity and in their depletion 

during storage of brewed coffee. First, although all thiols decrease in the presence of melanoidins, 

the most pronounced effects have been observed for 2-furfurylthiol (Hofmann & Schieberle, 

2002). Likewise, the formic acid ester of 3-mercapto-3-methyl-1-butanol showed a lower thermal 

stability and a higher pH dependence than the corresponding acetic acid ester, which was ascribed 
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to its molecular structure (Kumazawa & Masuda, 2003b). In addition, tertiary thiols were found to 

be more stablebrewed in coffee, followed by secondary and primary thiols, and a correlation 

between thiol hydrophobicity and their interaction with coffee matrix components was shown 

(Charles-Bernard et al., 2005b). It was also suggested that the molecular structure determines the 

mechanism of thiol degradation in coffee brew models (Charles-Bernard et al., 2005b); while 

aliphatic thiols, such as methanethiol and ethanethiol seem to react mainly by nucleophilic 

addition on quinones or pyrazinium cations in the coffee matrix, an additional radical mechanism 

has been hypothesized for furanic and benzylic thiols.  

The characteristics and storage conditions of brewed coffee also influenced the depletion of free 

thiols. Thiol-binding activity of non-volatile components of brewed coffee was shown to be 

proportional to the roasting degree (Charles-Bernard et al., 2005a; Müller & Hoffmann, 2005; 

Müller & Hofmann, 2007). Moreover, thiol degradation and the resulting staling of the coffee 

brew are accentuated by heating or by keeping the coffee warm during storage or processing, and 

by pH > 4 (Hofmann & Schieberle, 2002; Kumazawa & Masuda, 2003b; 2003c). 

5.2. Thios degradation in roasted coffee and its influence on durability 

Thiol degradation is in general associated with a decrease in the coffee sensory quality. It is 

assumed overall  that the processes involved in thiol degradation in roasted coffee are analogous 

to those reported in brewed coffee, and comprise the volatilization of highly volatile compounds, 

oxidation with oxygen, and chemical reactions between coffee components (Glöss, Schönbächler, 

Rast, Deuberc, & Yeretzian, 2014). Nevertheless, although numerous studies have evaluated the 

effect of storage on roasted coffee aroma (Baesso, Corrêa Da Silva, Vargas, Cortez, & Pelzl, 1990; 

Holscher & Steinhart, 1992; Buffo & Cardelli-Freire, 2004; Anese, Manzocco, & Nicoli, 2006; Ross, 

Pecka, & Weller, 2006; Glöss et al., 2014), little information is available on the modifications 

volatile thiols undergo during coffee storage. 
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Holscher and Steinhart (1992) indicated that the loss of aroma freshness after coffee roasting is 

mainly due to the loss of methanethiol, whose decrease was much faster than that of other 

volatile compounds and it was noticeable just one day after roasting. In agreement with these 

results, the staling of coffee was found to be a result of volatilization or oxidation of odour-active 

coffee compounds, including methanethiol and 2-furfurylthiol, rather than of the formation of off-

flavour compounds (Marin, Po rl,  la   & Plestenjak, 2008). Finally, a recent study showed the 

strong dependence of thiols degradation rate on roasting degree in coffee beans (Vichi, Dalmau & 

Caixach, 2015). These results support the hypothesis that interactions between thiols and matrix 

components formed during roasting, not only occur in brewed coffee, but they are likely to 

account for thiol depletion in roasted coffee beans or powder during storage. 

Due to their prompt degradation and their impact on coffee sensory quality, thiols have been used 

as a marker for roasted coffee freshness. Methanethiol and its ratios versus other volatiles (Marin 

et al., 2008; Bröhan et al., 2009; Glöss et al., 2014), and in particular 2-furfurylthiol and the ratio 2-

furfuryltiol/hexanal have been described as suitable marker of coffee freshness (Marin et al., 

2008).  

6. Conclusions  

Several coffee thiols are key flavour compounds that strongly influence coffee sensory 

characteristics and quality. Many reports provide extensive information on these compounds. 

Nevertheless, a limited number of studies have specifically addressed this class of compounds, and 

an overview of coffee thiols research reveals that various important aspects remain to be clarified. 

Numerous factors throughout the coffee production chain, from plant to cup, have been shown to 

have an effect on the amounts and the relative proportions of thiols in coffee. Roasting conditions 

and the brewing procedure probably play the most important part in modulating coffee thiol 

profiles. Nevertheless, although much progress has been made, thiol chemistry under real roasting 
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conditions should be further elucidated; only fragmentary information is available on the effect of 

brewing conditions. Moreover, while extensive knowledge has been acquired regarding thiol 

degradation in brewed coffee, little information is available on the modifications volatile thiols 

undergoduring roasted coffee storage or the mechanisms driving thiol degradation during roasted 

coffee storage. In-depth information on coffee thiol chemistry, occurrence and dependence on 

technological factors would be useful to enhance coffee quality management.  

  

Acknowledgments 

This study was supported by the Spanish Ministerio de Economia y Competitividad through the 

Ramón y Cajal program (RYC-2010-07228).  

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

20 
 

References 

Akiyama, M., Murakami, K., Hirano, Y., Ikeda, M., Iwatsuki, K., Wada, A., Tokuno, K., Onishi, M., & 
Iwabuchi H. (2008). Characterization of headspace aroma compounds of freshly brewed arabica 
coffees and studies on a characteristic aroma compound of Ethiopian coffee. Journal of Food 
Science, 73, 335-346. 

Andueza, S., Maetzu, L., Pascual, L., Ibañez, C., de la Peña M.P., & Cid, C. (2003). Influence of 
extraction temperature on the final quality of espresso coffee. Journal of the Science of Food 
and Agriculture, 83, 240–248. 

Anese, M., Manzocco, L., & Nicoli, M.C. (2006). Modeling the Secondary Shelf Life of Ground 
Roasted Coffee. Journal of the Science of Food and Agriculture, 54, 5571-5576. 

Baggenstoss, J., Poisson, L., Kaegi, R., Perren, R., & Escher, F. (2008). Coffee roasting and aroma 
formation: application of different time-temperature conditions. Journal of Agricultural and 
Food Chemistry, 56, 5836- 5846. 

Caporaso, N., Genovese, A., Canela, M. D., Civitella Blank, I., Sen, A., & Grosch, W. (1992). Potent 
odorants of the roasted power and brew of Arabica coffee. Lebensmittel-Untersuchung und 
Forschung, 195, 239-245. 

Baesso, M.L., Corrêa Da Silva, E., Vargas, H, Cortez J.G., & Pelzl, J. (1990). Use of electron spin 
resonance for the determination of staling of roast coffee in polyethylene bag packs. Zeitschrift 
für Lebensmittel Untersuchung und Forschung, 191, 24-27. 

Batemburg, M., & van der Velden, R. (2011). Saltiness Enhancement by Savory Aroma Compounds. 
Journal of Food Science, 76, 280-288. 

Belitz, H.D., Grosch, W., & Schieberle, P. (2009). Aroma compounds. Food Chemistry, 714 (pp. 340–
402). Berlin Heidelberg: Springer. 

Blank, I., Pascual, E.C.,  Devaud, S.P., Fay, L.B., Stadler, R.H.,  Yeretzian, C, & Goodman, B.A. (2002). 
Degradation of the Coffee Flavor Compound Furfuryl Mercaptan in Model Fenton-type 
Reaction Systems.  Journal of Agricultural and Food Chemistry, 50, 2356-2364. 

Blank, I., Sen, A., & Grosch, W. (1992). Potent odorants of the roasted powder and brew of Arabica 
coffee. Zeitschrift für Lebensmittel Untersuchung und Forschung, 195, 239-245. 

Bröhan, A., Huybrighs, T., Wouter, T., & Van der Bruggen, B. (2009). Influence of storage 
conditions on aroma compounds in coffee pads using static headspace GC–MS. Food Chemistry, 
116, 480–483. 

Buffo, R.A., & Cardelli-Freire, C. (2004). Coffee flavour: an overview. Flavour and Fragrance 
Journal, 19, 99-104. 

Caporaso, N., Genovese, A., Canela, M. D., Civitella, A., & Sacchi, R. (2014). Neapolitan coffee brew 
chemical analysis in comparison to espresso, moka and American brews. Food Research 
International, 61, 152–160. 

Cerny, C., & Davidek, T. (2003). Formation of aroma compounds from ribose and cysteine during 
the Maillard reaction. Journal of Agricultural and Food Chemistry, 51, 2714–2721. 

Cerny, C. (2008). The aroma side of the Maillard reaction. Annals of the New York Academy of 
Sciences, 1126, 66–71.  

Charles-Bernard, M., Kraehenbuehl, K., Rytz, A., & Roberts, D. D. (2005a). Interactions between 
volatile and nonvolatile coffee components. 1. Screening of the nonvolatile components. 
Journal of Agricultural and Food Chemistry, 53, 4417-4425. 

Charles-Bernard, M., Roberts, D. D., & Kraehenbuehl, K. (2005b). Interactions between volatile and 
nonvolatile coffee components. 2. Mechanistic study focused on volatile thiols. Journal of 
Agricultural and Food Chemistry, 53, 4426–4433.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

21 
 

Cheong, M.W., Tong, K.H., Ong, J.J.M., Liu, S.Q., Curran, P., & Yu, B. (2013). Volatile composition 
and antioxidant capacity of Arabica coffee. Food Research International, 51, 388–396. 

Czerny, M., Mayer F., & Grosch W. (1999). Sensory study on the character impact odorants of 
roasted arabica coffee.  Journal of Agricultural and Food Chemistry, 47, 695-699. 

Ferreira, V. (2011) Revisiting psychophysical work on the quantitative and qualitative odour 
properties of simple odour mixtures: a flavour chemistry view. Part 1: intensity and 
detectability. A review. Flavour and Fragrance Journal, 27, 124–140. 

Foster, K.D., Grigor, J.M.V., Cheong, J.N., Yoo, M.J.Y., Bronlund, J.E., & Morgenstern M.P. (2011) 
The Role of Oral Processing in Dynamic Sensory Perception. Journal of Food Science, 76, 49-61. 

Genovese, A., Caporaso, N., Civitella, A., & Sacchi, R. (2014). Effect of human saliva and sip volume 
of coffee brews on the release of key volatile compounds by a retronasal aroma simulator. 
Food Research International, 61, 100–111. 

Ginz, M., Balzer, H.H., Bradbury, A.G.W., & Maier, H.G.  (2000). Formation of aliphatic acids by 
carbohydrate degradation during roasting of coffee. European Food Research Technology, 211, 
404–410. 

Glöss, A.N., Schönbächler, B., Rast, M., Deuberc, L., & Yeretzian, C. (2014). Freshness indices of 
roasted coffee: monitoring the loss of freshness for single serve capsules and roasted whole 
beans in different packaging. Chimia, 68, 179-182. 

Grosch, W. (1998). Flavour of coffee.  A review. Nahrung, 42, 344 – 350. 
Grosch, W. (2001) Evaluation of the key odorants of foods by dilution experiments, aroma models 

and omissions. Chemical Senses, 26, 533-545. 
Guth, H. & Grosch, W. (1994) Identification of the Character Impact Odorants of Stewed Beef Juice 

by Instrumental Analyses and Sensory Studies. Journal of Agricultural and Food Chemistry, 42, 
2862-2866. 

Hall, S, Desbrow, B., Anoopkumar-Dukie, S., Davey, A.K., Arora, D., McDermott, C., Schubert, M.M., 
Perkins, A.V., Kiefel, M.J., & Grant, G.D. (2015). A review of the bioactivity of coffee, caffeine 
and key coffee constituents on inflammatory responses linked to depression. Food Research 
International 76, 626–636. 

Higdon J.V., & Frei, B. (2006). Coffee and Health: A Review of Recent Human Research. Critical 
Reviews in Food Science and Nutrition, 46, 101–123. 

Hofmann, T., Czerny, M., Calligaris, S., & Schieberle, P. (2001). Model Studies on the Influence of 
Coffee Melanoidins on Flavor Volatiles of Coffee Beverages. Journal of Agricultural and Food 
Chemistry, 49, 2382-2386. 

Hofmann, T., & Schieberle, P. (1997). Identification of potent aroma compounds in thermally 
treated mixtures of glucose/cysteine and rhamnose/cysteine using aroma extract dilution 
techniques. Journal of Agricultural and Food Chemistry, 45, 898-906 

Hofmann, T., & Schieberle, P. (1998a) .Quantitative Model Studies on the effectiveness of different 
precursor systems in the formation of the intense food odorants 2-furfurylthiol and 2-methyl-
3-furanthiol. Journal of Agricultural and Food Chemistry, 46, 235−241. 

Hofmann, T., & Schieberle, P. (1998b). Identification of key aroma compounds generated from 
cysteine and carbohydrates under roasting conditions.  Zeitschrift für Lebensmittel 
Untersuchung und Forschung, 207, 229–236. 

Hofmann, T., & Schieberle, P. (2002). Chemical interactions between odoractive thiols and 
melanoidins involved in the aroma staling of coffee beverages. Journal of Agricultural and Food 
Chemistry, 50, 319-326. 

Hofmann, T., Schieberle, P., & Grosch, W. (1996). Model studies on the oxidative stability of odor-
active thiols occurring in food flavors. Journal of Agricultural and Food Chemistry, 44, 251−255. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

22 
 

Holscher, W., & Steinhart, H. (1992). Investigation of roasted coffee freshness with an improved 
headspace technique. Zeitschrift für Lebensmittel Untersuchung und Forschung, 195, 33-38. 

Holscher, W., Vitzum, O.G., Steinhart, H. (1990). Identification and sensorial evaluation of aroma-
impact-compounds in Roasted Colombian coffee. Café, Cacao, The, 34, 205-212. 

Holscher, W., Vitzum, O.G., Steinhardt, H. (1992) .Prenyl alcohol-Source for odorants in roasted 
coffee. Journal of Agricultural and Food Chemistry, 40, 655-658. 

Kaufmann, A. (2012). The current role of high-resolution mass spectrometry in food analysis. 
Analytical and Bioanalytical Chemistry, 403, 1233-1249. 

Kerscher, R., & Grosch, W. (1998). Quantification of 2-Methyl-3-furanthiol, 2-Furfurylthiol, 3-
Mercapto-2-pentanone, and 2-Mercapto-3-pentanone in Heated Meat. Journal of Agricultural 
and Food Chemistry, 46, 1954–1958. 

Kumazawa, K. (2006). Flavor chemistry of tea and coffee drinks. Food Science and Technology 
Research, 12, 71-84. 

Kumazawa, K., & Masuda, H. (2003a). Identification of odor-active 3-mercapto-3-methylbutyl 
acetate in volatile fraction of roasted coffee brew isolated by steam distillation under reduced 
pressure. Journal of Agricultural and Food Chemistry, 51, 3079-3082. 

Kumazawa, K., & Masuda, H. (2003b). Investigation of the Change in the Flavor of a Coffee Drink 
during Heat Processing. Journal of Agricultural and Food Chemistry, 51, 2674-2678. 

Kumazawa, K., & Masuda, H. (2003c). Effect of pH on the thermal stability of potent roasty 
odorants, 3-Mercapto-3-methylbutyl Esters, in coffee drink. Journal of Agricultural and Food 
Chemistry, 51, 8032-8035. 

Marin,  .,  o rl,  .,  la  , E., & Plestenjak, A. (2008). A New Aroma Index to Determine the Aroma 
Quality of Roasted and Ground Coffee During Storage. Food Technoogy and Biotechnoligy, 46, 
442–447. 

Mateo-Vivaracho, L., Cacho, J.,  & Ferreira, V. (2007). Quantitative determination of wine 
polyfunctional mercaptans at nanogram per liter level by gas chromatography–negative ion 
mass spectrometric analysis of their pentafluorobenzyl derivatives.  Journal of Chromatography 
A, 1146, 242-250. 

Mateo-Vivaracho, L., Cacho, J.,  & Ferreira, V. (2008). Improved solid-phase extraction procedure 
for the isolation and in-sorbent pentafluorobenzyl alkylation of polyfunctional mercaptans: 
Optimized procedure and analytical applications. Journal of Chromatography A, 1185, 9-18. 

Mayer, F., & Grosch, W. (2001). Aroma simulation on the basis of the odourant composition of 
roasted coffee headspace. Flavour and Fragrance Journal, 16, 180–190.  

Mayer, F., Czerny, M., & Grosch, W. (1999). Influence of provenance and roast degree on the 
composition of potent odorants in Arabica coffees. European Food Research and Technology, 
209, 272-276. 

Mayer, F., Czerny, M., & Grosch, W. (2000). Sensory study of the character impact aroma 
compounds of a coffee beverage. European Food Research and Technology, 211, 272-276. 

McGorrin, R. J. (2011). The Significance of Volatile Sulfur Compounds in Food Flavors.  In: Volatile 
Sulfur Compounds in Food, Qian, M., et al., Ed., ACS Symposium Series; American Chemical 
Society: Washington, DC, 2011, pp. 3-31. 

Müller, C., Hemmersbach, S., Van’t Slot, G., & Hoffmann, T. (2006). Synthesis and structure 
determination of covalent conjugates formed from the sulfury-roasty-smelling 2-furfurylthiol 
and di- or trihydroxybenzenes and their identification in coffee brew. Journal of Agricultural 
and Food Chemistry, 54, 10076-10085. 

Müller, C., & Hofmann, T. (2005). Screening of raw coffee for thiol binding site precursors using “in 
bean” model roasting experiments. Journal of Agricultural and Food Chemistry, 53, 2623-2629. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

23 
 

Müller, C., & Hofmann, T. (2007). Quantitative Studies on the Formation of Phenol/2-Furfurylthiol 
Conjugates in Coffee Beverages toward the Understanding of the Molecular Mechanisms of 
Coffee Aroma Staling. Journal of Agricultural and Food Chemistry, 55, 4095-4102. 

Quintanilla-Casas, B., Dulsat-Serra, N., Cortés-Francisco, N., Caixach, J., Vichi, S. (2015). Thiols in 
brewed coffee: Assessment by fast derivatization and liquid chromatography–high resolution 
mass spectrometry. LWT - Food Science and Technology, 64, 1085-1090.  

Poisson, l., Schmalzried, F., Davidek, T., Blank, I., & Kerler, J. (2009). Study on the role of precursors 
in coffee flavor formation using in-bean experiments. Journal of Agricultural and Food 
Chemistry, 57, 9923-9931. 

Poisson, L., Hug, C.,  Baggenstoss, J., Blank, I., & Kerler, J. (2011) Emerging Analytical Techniques 
for the Assessment of Aroma Relevant Sulfur Compounds in Coffee. In: Volatile Sulfur 
Compounds in Food, Qian, M., et al., Ed., ACS Symposium Series; American Chemical Society: 
Washington, DC, 2011 pp: 77-92. 

Rodríguez-Bencomo,  J.J., Schneider, R. , Lepoutre, J.P., & Rigou, P. (2009). Improved method to 
quantitatively determine powerful odorant volatile thiols in wine by headspace solid-phase 
microextraction after derivatization. Journal of Chromatography A, 1216, 5640-5646. 

Roland, A., Schneider, R., Razungles, A., & Cavelier, F. (2011). Varietal Thiols in Wine: Discovery, 
Analysis and Applications. Chemical Reviews, 111,  7355–7376. 

Ross, C.F., Pecka, K., & Weller, K. (2006). Effect of storage conditions on the sensory quality of 
ground arabica coffee. Journal of Food Quality, 29, 596–606. 

Sanz, C., Czerny, M., Cid, C., & Schieberle, P. (2002). Comparison of potent odorants in a filtered 
coffee brew and in an instant coffee beverage by aroma extract dilution analysis (AEDA). 
European Food Research Technology, 214, 299–302. 

Schenker, S., Heinemann, C., Huber, M., Pompizzi, R., Perren, R., & Escher, F. (2002). Impact of 
Roasting Conditions on the Formation of Aroma Compounds in Coffee Beans. Food Engineering 
and Physical Properties, 67, 60-66. 

Schieberle, P., (1991). Primary odorants in popcorn. Journal of Agricultural and Food Chemistry, 9, 
1141–1144. 

Semmelroch, P., & Grosch, W. (1995). Analysis of roasted coffee powders and brews by gas 
chromatography-olfactometry of headspace samples. Lebensmitteln-Wissenschaft. und-
Technologie, 28, 310-313. 

Semmelroch, P., & Grosch, W. (1996). Studies on character impact odorants of coffee brews. 
Journal of Agricultural and Food Chemistry, 44, 537-543. 

Semmelroch, P., Laskawy, G, Blank, I., & Grosch, W. (1995). Determination of potent odourants in 
roasted coffee by stable isotope dilution assays. Flavour and Fragrance Journal, 10, 1-7. 

Sourabié, A.M., Spinnler, H.E., Bonnarme, P., Saint-Eve, A., & Landaud, S. (2008). Identification of a 
Powerful Aroma Compound in Munster and Camembert Cheeses: Ethyl 3-
Mercaptopropionate. Journal of Agricultural and Food Chemistry, 56, 4674–4680. 

Sunarharum, W.B., Williams, D.J., & Smyth, H.E. (2014). Complexity of coffee flavor: A 
compositional and sensory perspective. Food Research International, 62, 315-325. 

Tominaga, T., Blanchard, L., Darriet, Ph., & Dubourdieu, D. (2000). A powerful aromatic volatile 
thiol, 2-furanmethanethiol, exhibiting roast coffee aroma in wines made from several vitis 
vinifera grape varieties. Journal of Agricultural and Food Chemistry, 48, 1799-1802. 

Tominaga, T., Murat, M.L., & Dubordieu, D. (1998). Development of a Method for Analyzing the 
Volatile Thiols Involved in the Characteristic Aroma of Wines Made from Vitis vinifera L. Cv. 
Sauvignon Blanc. Journal of Agricultural and Food Chemistry, 46, 1044−1048. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

24 
 

Tressl, R. (1989). Formation of flavor components in roasted coffee. In: Thermal Generation of 
Aromas. ACS Symposium Series 409. Washington, DC, USA: American Chemical Society, Pp. 
285-301. 

Tressl, R., & Silwar, R. (1981). Investigation of Sulfur-Containing Components in Roasted Coffee. 
Journal of Agricultural and Food Chemistry, 29, 1078-1982. 

Vermeulen, C., Lejeune, I., Tran, T.T.H., & Collin, S. (2006). Occurrence of Polyfunctional Thiols in 
Fresh Lager Beers. Journal of Agricultural and Food Chemistry,  54,  5061–5068. 

Vichi, S., Cortés-Francisco, N. & Caixach, (2015) Analysis of volatile thiols in alcoholic beverages by 
simultaneous derivatization/extraction and liquid chromatography-high resolution mass 
spectrometry. Food Chemistry, 175, 401–408. 

Vichi, S., Dalmau, E., & Caixach, J. Modeling thiols degradation during roasted coffee storage. Third 
International Congress on Cocoa Coffee and Tea 2015, Aveiro, 21-24 June 2015. 

Vichi, S., Jerí, Y., Cortés-Francisco, N., Palacios, O. & Caixach, J. (2014) Determination of volatile 
thiols in roasted coffee by derivatization and liquid chromatography–high resolution mass 
spectrometric analysis. Food Research International, 64, 610–617. 

 
 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

25 
 

Figure 1. Molecular structures of coffee thiols reported in Table 1. (1) 2-furfurylthiol; (2) 2-methyl-

3-furanthiol; (3) 3-methyl-2-butene-1-thiol; (4) methanethiol; (5) 3-mercapto-3-methyl-1-butyl 

formate; (6) 3-mercapto-3-methyl-1-butyl acetate; (7) 3-mercapto-3-methyl-1-butanol; (8) 4-

mercapto-1-butanol; (9) 2-methyl-3-tetrahydrofuranthiol. 
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Table 1. Thiols described in coffee, their concentrations found in roasted and brewed coffee, and thiol odor 
characteristics.  

 

Compounds 

Concentration  
Odor 

descriptor 

Odor 
threshold 

(g/L) Roasted coffee (g/kg) 
Brewed 

coffee (g/L) 

1 2-furfurylthiol 1080-1730
1
; 1680

2
; 1050-

2910
3
; 1700

4
; 1350-

1650
5
; 2600-3400

6
 ; 

2800-5080
7
; 0.06-0.18

8
 

17
4
 ; 19-39

9
; 

0.002-0.004
10

 
Roast

 5,11,12
; 

fresh coffee
13

 
0.01

11
; 

0.00004
14

 

2 2-methyl-3-furanthiol 68
2
; nd-104

3
; 60

4
 1.1

4
 Boiled meat-

like
11,13,15

;nuts
12

 
0.05

16
; 

0.004
14

; 
0.007

17
 

3 3-methyl-2-butene-1-thiol 8
2
; 8.6-27.7

3
; 13

4
; 0.08-

0.86
8
; 8.2

9
; 31.8

16
 

0.6
4
; 0.12

18
  Foxy, skunky

11
; 

amine-like
15

 
0.0002-
0.0004

19
 

4 methanethiol 4700
2
; nd-5300

3
; 4400

4
; 

4500
5
 ; 3500-6400

6
 

170
4
; 210-

600
9
 

 

Putrid, 
cabbage-like, 
sulfurous

11
, 

fresh coffee
13

 

0.2
20

; 
0.02

17
 

5 3-mercapto-3-methyl-1-
buthyl formate 

120-130
1
; 77

2
; 5.6-304

3
; 

130
4
; 130-240

6
; 0.005-

0.083
8
; ≤8.8

21
 

5.7
4
; 4.3-5.5

9
; 

0.011-0.032
10

 
roasty

1,11
; 

blackcurrant-
like

5
;  Catty

11,13
  

0.0035
11

; 
0.002-
0.005

19
 

6 3-mercapto-3-methyl-1-
buthyl acetate 

≤7.5
21

; 0.006-0.087
8
 

 
0.017-0.058

10
 Roasty

21
 - 

7 3-mercapto-3-methyl-1-
butanol 

0.167-1.3
8
 0.11-0.22

10
 broth, sulfur, 

sweet, sweat, 
onion

13
; 

cooked leeks
22 

 

2-6
19

; 
1.5

22 
 

8 4-
methylbutanethiolmercapto-
1-butanol 

0.002-0.013
8
 0.001-0.002

10
 - - 

9 2-methyl-3-
tetrahydrofuranthiol 

0.014-0.047
8
 0.001-0.002

10
 Meaty

23
 - 

1: Semmelroch et al., 1995; 2: Czerny, Mayer & Grosch, 1999; 3: Mayer, Czerny, & Gosch, 1999; 4: 
Mayer, Czerny, & Grosch, 2000; 5: Mayer, & Grosch, 2001; 6: Baggenstoss et al., 2008; 7: Cheong et al. 
2013; 8: Vichi et al., 2014; 9: Semmelroch & Grosch, 1996; 10: Quintanilla-Casas et al., 2015; 11: 
Semmelroch, & Grosch, 1995; 12: Buffo & Cardelli-Freire, 2004; 13: Mc Gorrin, 2011; 14: Tominaga, et al. 
2000; 15: Blank et al., 1992; 16: Tressl, 1989; 17: Belitz et al. 2009; 18: Poisson et al., 2011; 19: Holscher et 
al., 1992; 20: Guth & Grosch, 1994; 21: extrapolated from Kumazawa & Masuda, 2003a; 22: Tominaga et 
al., 1998; 23: Batemburg & van der Velden, 2011.  
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Highlights 

 The occurrence of volatile thiols in coffee and their sensory impact were reviewed 

 Thiol formation and degradation mechanisms in coffee were considered 

 Analytical methods for coffee thiols analysis were summarized 

 The effect of various factors affecting thiol presence in coffee was reported 


