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Abstract 

Re-esterified vegetable oils are obtained from a chemical esterification reaction between 

vegetable acid oils and glycerol. Due to their properties, it is expected that they have a 

higher nutritive value than their corresponding acid oils and a better digestibility than 

their native counterparts. The aim of the present study was to determine the effect of re-

esterified oils with a different monoacylglycerol (MAG) and diacylglycerol (DAG) 

content, produced from palm or rapeseed, on fatty acid digestibility in gilthead sea 
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bream (Sparus aurata). Triplicate groups of fish were fed nine experimental diets 

containing different oils during 28 days. For each source, four different types of oil 

were used: native, re-esterified low or high in MAG and DAG and acid. A commercial 

fish oil was used for the control diet. Diets containing re-esterified oils had better 

apparent digestibility coefficients (ADC) of total fatty acids than acid oil diets. Re-

esterified oils do not negatively affect apparent digestibility coefficients of fatty acids 

when compared to their corresponding native oils and could be incorporated as a source 

of energy in diets for gilthead sea bream. An improvement in digestibility compared to 

the native oil diet was only obtained in palm re-esterified oil high in MAG and DAG.  

 

Keywords: by-product, esterification, diacylgycerol, monoacylglycerol, gilthead sea 

bream (Sparus aurata), digestibility. 

 

Abbreviations 

ADC: Apparent digestibility coefficient(s) 

DAG: Diacylglycerol(s) 

FFA: Free fatty acid(s) 

MAG: Monoacylglycerol(s) 

MUFA: Monounsaturated fatty acid(s) 

PUFA: Polyunsaturated fatty acid(s) 

SFA: Saturated fatty acid(s) 

TAG: Triacylglycerol(s)  

VO: Vegetable oil(s) 

 

1. Introduction 
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In view of the increasing global demand of fish oil (FO), its decreasing availability and 

its large use by the aquaculture industry (FAO, 2014) oils from vegetable origin have 

been widely studied as sustainable and economically valuable FO substitutes in aqua 

feeds (Bell et al., 2001; Ng et al., 2003; Turchini et al., 2009; Yildiz et al., 2014). As 

extensively reported, certain vegetable oils (VO) are considered good alternatives to FO 

in diets for salmonids and freshwater fish (Bell et al., 2001; Caballero et al., 2002; 

Fountoulaki et al., 2009; Dernekbaşı, 2012). However, in marine fish, many studies 

have shown the limitation of the inclusion of VO in diets as a sole lipid source due to 

the low ability of these species to synthesize long-chain polyunsaturated fatty acids 

(PUFA) such as eicosapentaenoic acid (EPA, 20:5n-3) and 

docosahexaenoic acid (DHA, 22:6n-3) from their C18 precursors (Watanabe, 1982). In 

gilthead sea bream (Sparus aurata), oils from different vegetable sources can be 

included in diets as an efficient source of energy without affecting feed utilization 

(Izquierdo et al., 2003; 2005; Benedito-Palos et al., 2008; Fountoulaki et al., 2009).  

Supplies of VO are approximately 100 times higher than those of FO (Bimbo, 1990) 

and its use as feedstock for energy production by the biofuel industry has greatly 

increased since the early 2000s. Thus, the livestock and the biofuel industries have 

undergone a competition for crop feedstocks, with the consequence of the rise of feed 

grains and oilseed prices. This has also led to a steadily increase of the amount of by-

products derived from the production of biofuels (Taheripour et al., 2011). On the other 

hand, the refining process of VO also generates a considerable amount of fat by-

products (Junior et al., 2012), their incorporation in animal diets being a potential way 

to reutilize them as a cheaper alternative to priced crops. In fact, studies have shown 

that some of the compounds are valuable and can be recovered for its subsequent use in 

animal nutrition (Dumont and Narine, 2007; Nuchi et al., 2009). This is the case of acid 
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oils, a free fatty acid (FFA)-rich by-product. However, as described by Wiseman and 

Salvador (1991) in broiler chickens, acid oils have a lower nutritive value than that of 

native oils as a consequence of their high content in FFA. Even so, their nutritive value 

might be increased when chemically re-esterified with glycerol, a by-product derived 

from the biodiesel production process (Parini and Cantini, 2009; Vilarrasa et al., 2014; 

Trullàs et al., 2015). The chemical esterification process does not change the fatty acid 

composition and the degree of saturation of the processed oil in relation to the original 

oil. However, the resulting fat has a different positional distribution of fatty acids in the 

glycerol molecule compared to that in native oils since the chemical esterification 

process is not regioselective. This means that part of the saturated fatty acids (SFA) 

present in the oil could be incorporated in the sn-2 position of acylglycerols (Vilarrasa 

et al., 2014; Trullàs et al., 2015). As it is widely known in mammals, the main products 

of the hydrolysis by pancreatic lipase during lipid digestion are FFA and 2-

monoglycerides (MAG). While 2-MAG are directly absorbed (Schulthess et al., 1994) 

the rate of absorption of FFA depends on their chain length and degree of saturation 

(Small, 1991). In fact, free long-chain SFA have a poorer absorption than mono- 

(MUFA) and PUFA as a consequence of their hydrophobicity, their high melting points 

and their tendency to form insoluble soaps in the gut (Hunter, 2001).  

In VO, SFA are found predominantly in the external positions (sn-1 and sn-3) of the 

triacylglycerols (TAG) (Berry, 2009) so these SFA are converted to FFA during 

digestion with the risk of ending up unabsorbed. Then, having more SFA in sn-2 in re-

esterified oils could result in a higher digestibility of these oils compared to their native 

counterparts. 

In marine fish, there are indications that the dominant digestive enzyme could be a 

carboxyl ester lipase-type (CEL) (Kutovic et al., 2009), also known as bile salt-activated 
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lipase (Gjellesvik et al., 1989; 1994; Iijima et al., 1998, Nolasco et al., 2011). This 

enzyme is also present in mammals (Hui and Howles, 2002) and shows strict 

dependence on bile-salts for hydrolytic activity on insoluble lipid substrates (Gjellesvik 

et al., 1994). CEL seems to be able to hydrolyze a wide range of lipid classes and is also 

likely to have a role in hydrolyzing monoglycerides, as reported in mammals 

(Gjellesvik, 1994; Kurtovic, 2009). Nonetheless, it has been established that the 2-MAG 

pathway is the predominant for TAG resynthesis in the enterocytes of gilthead sea 

bream (Caballero et al., 2006; Oxley et al., 2007). Thus, this leads to the possibility that 

it may possess certain sn-1,3 hydrolytic activity (Bogevik et al., 2008; Bakke et al., 

2011). 

On the other hand, re-esterified VO can have different proportions of lipid classes –

TAG; diacylglycerols, DAG and MAG – which can be used to obtain a final product 

with specific desired characteristics (Parini and Cantini, 2009). For instance, when a 

major content of both MAG and DAG is present in the dietary fat, digestibility values 

might improve because of the emulsifying effect of these partial acylglycerols (Martin 

et al., 2014).  

To the best knowledge of the authors, there is only one study reporting the use of 

chemically re-esterified VO in fish diets to-date (Trullàs et al., 2015), in which the 

improvement in fatty acids digestibility of re-esterified oils compared to acid oils was 

clearly shown in rainbow trout (Oncorhynchus mykiss). Re-esterified oils resulted in 

similar apparent digestibility coefficients (ADC) than those of native VO and were 

therefore considered potentially suitable for being incorporated as a source of energy in 

diets for this species. However, there is a wide diversity in the digestive physiology and 

differences in digestive lipase specificity could exist among fish species (Kurtovic, 

2009; Bakke et al., 2011).  
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The present study aims at giving palm and rapeseed acid oils from the refining industry 

added value by transforming them to re-esterified oils with different contents of MAG 

and DAG, and to assess their effect on fatty acid digestibility in gilthead sea bream as a 

first step to determine if they can be appropriate energy sources for diets for this 

species.  

 

2. Materials and methods 

2.1. Experimental diets 

Nine experimental diets were formulated to contain 48% protein and 24% lipid using 

the same ingredient composition except for the added lipid source. Oils used for the 

experimental diets originated from two different vegetal sources with different degree of 

saturation, palm (P) and rapeseed (R). For each source, four different types of oil were 

used: native oil (N), re-esterified oil low in MAG (EL), re-esterified oil high in MAG 

(EH) and acid oil (A), all resulting in eight experimental diets (Table 1). A commercial 

fish oil was used for the control diet (FO). Native, acid and re-esterified oils were 

provided by SILO S.p.a. (Firenze, Italy). In the process of esterification, the level of the 

different lipid classes present in the oil (TAG, DAG and MAG) was previously 

established by fixing the proportion fatty acid:glycerol. The free fatty acidity was 

determined following the ISO 660:1990 method. Glycerol was calculated according to 

the following stoichiometric formula: glycerol weight = fatty acid weight · free fatty 

acid acidity · glycerol molecular weight/fatty acid molecular weight. Once the 

proportion fatty acids:glycerol was established, both components were put in the reactor 

at 190-250ºC and 1-3 mm Hg of pressure for 4 – 6 hours. Feeds were produced at the 

Skretting Feed Technology Plant (Aquaculture Research Center; Stavanger, Norway) as 

extruded pellets. Yttrium oxide (Y2O3) was added to the diets as an inert marker for 
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apparent digestibility (AD) of fatty acid measure. The ingredient formulation and 

proximate composition of the diets are shown in Table 1. Nutrient composition of 

experimental diets was determined by standard procedures (AOAC, 2005): moisture 

(934.01), ash (942.05), crude protein (968.06) and crude lipid (920.39). Gross energy of 

dried feed was determined using an adiabatic bomb calorimeter (IKA – Kalorimeter 

system C4000, Jankel – Kunkel, Staufen, Germany). Samples were analyzed for yttrium 

by inductively coupled plasma optical emission spectroscopy (ICP OES) (Perkin Elmer 

spectrometer, model Optima 4300DV) with a previous digestion in a CEM microwave 

(CEM MARSXpress).  

2.2. Fish, experimental conditions and sampling 

All the procedures were conducted in accordance with the Animal Protocol Review 

Commitee of the Autonomous University of Barcelona (UAB) and following the 

European Union Guidelines for the ethical care and handling of animals under 

experimental conditions. The trial was carried out at the Institute of Agrifood Research 

and Technology (IRTA), Sant Carles de la Ràpita, Spain. A total of 702 gilthead sea 

bream (Piscimar, Spain) with a mean initial body weight of 296±7.2 g were randomly 

distributed into 27 cylindro-conical tanks of 400l of capacity in a recirculation seawater 

system IRTAmar®. Water temperature (21.5ºC), salinity (36.1±1.20g·l-1) and dissolved 

oxygen levels (6.1±1.06 mg·l-1) were maintained constant throughout all the 

experimental period. The tanks were subjected to a photoperiod of 12h light and 12h 

dark. Following an adaptation period of a week, fish were fed the experimental diets 

during 28 days. Each diet was randomly assigned to three replicate tanks and was fed to 

satiation twice a day by automatic feeders. Feed was supplied in excess of appetite 

(20%) of measured feed intake. Uneaten feed was collected by filtering effluent water 

from each tank one hour and a half after each meal so that feed intake could be recorded 

http://cerca.cat/en/c/institute-of-agrifood-research-and-technology/
http://cerca.cat/en/c/institute-of-agrifood-research-and-technology/
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daily. At the end of the experimental period, all the animals were euthanized in excess 

anaesthetic (2-phenoxyethanol) and faeces were collected from the hindgut after 

laterally opening the peritoneal cavity. Faecal samples were pooled by tank and stored 

at −20°C prior to analysis of yttrium oxide and fatty acid composition. 

2.3. Fatty acid composition  

Fatty acid composition of oils, diets and faeces were determined by gas chromatography 

– flame ionization detector (GC-FID). For experimental oils, the fatty acid methyl esters 

(FAME) were previously obtained as described by Vilarrasa et al., (2014) and analyzed 

using an Agilent 4890D gas chromatograph. For diets and faeces, FAME were obtained 

by an adaptation of the method of Sukhija and Palmquist (1988) and analyzed using an 

HP 6890 gas chromatograph (Agilent Technologies). In both cases, fatty acid methyl 

esters were identified by comparison of their retention times with those of known 

standards, and quantified by internal normalization (FAME peak area/total FAME peak 

area, in %). Fatty acid composition of oils and diets is shown in Table 2.  

2.4. Lipid class composition of the experimental oils and diets 

Lipid class composition (TAG, DAG, MAG and FFA) of oils and diets is shown in 

Table 3 and was determined following the procedure described by Darnoko et al. 

(2000), adapted to these samples as reported in Trullàs et al. (2015). 

2.5. Sn-2 fatty acid composition of the experimental oils 

The composition of fatty acids located at the sn-2 position of the acylglycerols (TAG, 

DAG and MAG) of the experimental oils is shown in Table 4 and was determined as 

described in Trullàs et al. (2015). 

2.6. Digestibility calculations 
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ADC of fatty acids was calculated as: ADC (%) = 100 − [100 × (Y in feed/Y in faeces) · 

(FA in faeces/FA in feed)] (Maynard and Loosli, 1969), where FA = fatty acid 

(mg·kg−1) and Y = yttrium (mg·kg−1).  

2.7. Statistical analysis 

Data were subjected to a one-way analysis of variance (ANOVA) and the significance 

of the differences between means was tested by Tukey’s test. Values are given as 

means±standard error of a pooled samples each containing faeces samples from 26 fish, 

analysed in triplicate. Differences were considered significant when P<0.05. All 

statistics were performed by means of the General Lineal Model (Proc GLM) of SAS® 

software version 9.2 (SAS Institute Inc., Cary, NC, USA).  

 

3. Results  

Characterization of experimental oils and diets 

As a consequence of the lack of information about chemically re-esterified oils from 

vegetable origin in the literature, the characterization of the experimental oils was 

necessary and was already reported in Trullàs et al. (2015). Briefly, differences in the 

fatty acid composition among the four types of oil (N, EL, EH, A) within each source (P 

and R) were low (Table 2). Regarding the different lipid classes (Table 3), native oils 

(FO, PN and RN) were mainly composed of TAG (> 80%) and acid oils consisted of 

FFA in more than 50%. EL re-esterified oils resulted in MAG and DAG proportions of 

about 6% and 33-39%, respectively, which increased to 27% MAG and 46-48% DAG 

in EH oils. 1(3)-MAG constituted the major MAG isomer in most of the oils, and 

especially in re-esterified and acid oils. Similarly, 1,3-DAG constituted the highest 

DAG isomer (66-77%). No formation of TAG polymers was observed. In relation to the 

fatty acid composition of the sn-2 position (Table 4), an increase in the content of SFA 
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located in sn-2 was clearly observed in both palm and rapeseed EL and EH oils, and 

especially in EL, compared to the native oil.  

 

Apparent digestibility of fatty acids  

The nine experimental diets were well accepted and survival rates were over 97% with 

all of them. Apparent digestibility coefficients (ADC) of total and individual fatty acids 

are given in Table 5 for palm and in Table 6 for rapeseed. Significantly lower 

digestibility values were obtained in palm diets in relation to FO diet. When comparing 

among palm diets, differences in digestibility were also obtained. ADC of total fatty 

acids of acid oil diet (PA: 49.6%) was lower than that of native oil diet (PN: 61.8%), but 

it reached higher values when re-esterified (PEL: 65.7% and PEH: 74.4%). In fact, in 

PA diet, ADC of both total fatty acids and total SFA were significantly lower than in the 

rest of diets. As observed, ADC of total SFA seemed to be largely determined by ADC 

of C16:0, which represented approximately a 40% of the total fatty acids in palm oils 

and diets (Table 2). Compared to PA, higher digestibility values were also obtained in 

re-esterified oils diets (PEL and PEH) for total MUFA and PUFA. 

When comparing digestibility values of re-esterified oils diets with PN diet, differences 

were obtained between PEL and PEH. In PEL, ADC of both individual and groups of 

fatty acids did not present significant differences compared to PN in any case, although 

they were numerically higher in most cases. Contrarily, ADC of total fatty acids, as well 

as of both individual and total SFA and MUFA, were significantly higher in PEH than 

in PN, which was especially remarkable in SFA. If compared to FO, PEH diet obtained 

similar ADC of total MUFA and PUFA, but not of total SFA.  

When PEL and PEH diets were compared between them, only numerically differences 

in the ADC of the different individual and total fatty acids were observed. However, 
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digestibility values in PEH were, in general, higher than in PEL. Once more, these 

differences were particularly notable in both individual and total SFA (PEL: 47.8% and 

PEH: 62.3% for total SFA).  

 

In rapeseed, digestibility values were higher than those obtained in palm. Similarly, 

ADC of total fatty acids in REL and REH diets were higher when compared to RA, but 

similar to values of RN and FO diets. No significant differences were observed in ADC 

of fatty acids between REL and REH diets.  

 

4. Discussion 

In relation to lipid classes, the predominance of 1(3)-MAG and 1(3)-DAG over the rest 

of MAG and DAG isomers has been related to the higher stability of primary esters (sn-

1(3)) than of secondary esters (sn-2) (Cruz Hernandez et al., 2012), which could cause 

acyl migration of fatty acids from sn-2 to sn-1 or sn-3 positions of MAG and DAG 

(Destaillats et al., 2010; Martin et al., 2014).  

Regarding the higher content of SFA located at the sn-2 position of re-esterified oils 

compared to the native oil, it was more noticeable in EL than in EH oils. This was 

probably due to EH oils had more partial acylglycerols (MAG and DAG) and these 

were mainly 1(3)-MAG and DAG, so less SFA in sn-2 position were present. 

The fatty acid composition and degree of saturation of re-esterified oils compared to 

native oils were unchanged, as many studies on interesterification reactions had 

previously described (Marangoni and Rousseau, 1998; Scheeder et al., 2003; Berry, 

2009; Farfán, 2013). 
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For more details on the composition of re-esterified oils, readers are addressed to our 

previous trial in rainbow trout, in which the same oils were used and their 

characterization was already discussed (Trullàs et al., 2015). 

 

Apparent digestibility of fatty acids  

Results indicate that the dietary form of the lipid may be more influential on fatty acid 

digestibility than the fatty acid composition, as suggested by Ng et al. (2010). Indeed, as 

observed, esterification of FFA from acid oils with glycerol improves the ADC of fatty 

acids in both palm and rapeseed.  

The higher nutritive value of acid oils when re-esterified to the glycerol molecule could 

be due to several factors. The lowest fatty acid digestibility of acid oils could be related 

to a feedback inhibition on the lipase activity caused by FFA, as suggested by Bogevik 

et al. (2008) for Atlantic salmon. Thus, the richness in FFA of acid oils in our study 

could reduce the activity of lipase, resulting in a lower hydrolysis of the TAG and the 

partial acylglycerols present in these oils, which would have a negative effect on its 

digestibility. On the other hand, in chicks, secretion of bile salts seems to be stimulated 

by the presence of TAG and 2-MAG, and not FFA, in the intestine (Sklan, 1979). 

Although no information on this topic is available in fish, it has to be taken into account 

that bile salts seem to be a requirement for the hydrolytic activity of lipase in many 

marine species (Gjellesvik et al., 1989; Iijima et al., 1998; Nolasco et al., 2011). Then, 

in the present study, an impairment in lipase activity would arise in animals fed acid 

oils, this producing a lower fatty acids emulsification than in the other experimental oils 

and leading to a reduction in the absorption of fat. Moreover, as already mentioned, 

divalent ions present in the intestine have a tendency to bind to long-chain free fatty 

acids and especially free SFA. Then, in acid oils, a high subsequent formation of 
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insoluble salts would occur in fish, being detrimental in terms of fatty acid digestibility 

(Ringø, 1991; Olsen et al., 1998). 

Comparing re-esterified oils with native oils, the effects on digestibility varied between 

the oil source (palm and rapeseed) and also between the type of re-esterified oil (PEL 

and PEH). In palm, contrarily to what was expected, the increase in the content of SFA 

in sn-2 did not improve digestibility, as no differences in ADC of fatty acids between 

PEL and PN were observed. Nevertheless, although not significant, higher numerically 

digestibility values were obtained in PEL than in PN diets, especially for the most 

quantitatively important fatty acids (SFA and MUFA). Better absorption of SFA when 

located at the central position of TAG had been reported in chickens, rats, piglets and 

human infants (Filer et al., 1969; Innis et al., 1995; Lien et al., 1997; Lin et al., 2010). 

However, in these studies, the minimum percentage of SFA in sn-2 position was 33.9%, 

so it is possible that the lower content of SFA in sn-2 obtained in re-esterified oils in the 

present study (maximum 21.4%) was insufficient to have a clear effect on digestibility.  

Differently, an improvement in digestibility values were obtained in PEH diet compared 

to PN diet, although they did not always reach those obtained in the control diet (FO). 

These results seem to point out a positive effect of the partial acylglycerols on 

digestibility, since PEH had a high content of MAG and DAG. The emulsifying role of 

partial acylglycerols as amphiphilic molecules in digestion has been widely reported in 

studies in both human and animal nutrition (Hayes et al., 1994; Da Costa, 2003). 

Therefore, in the present study, having more MAG and DAG in PEH would have 

probably helped incorporating a higher amount of hydrophobic FFA in the core of 

mixed micelles during digestion than in the rest of diets. However, in rainbow trout 

(Trullàs et al., 2015) no differences among PN, PEL and PEH were found. Differences 

observed between species could be related to factors such as variations in their digestive 
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physiology but also to the effect of the different water temperatures at which the two 

species were reared (14.3 ºC in rainbow trout and 21.5ºC in gilthead sea bream) during 

the whole experimental period. As reported by Vilarrasa et al. (2014) for palm oils, a re-

esterified palm oil high in MAG and DAG had an expanded melting range if compared 

to its corresponding native oil, which means that this oil has a higher solid fat content 

than the rest of experimental oils at a given temperature. As observed by the 

aforementioned authors, a high solid fat content was slightly detrimental in terms of 

crude fat and fatty acids apparent absorption. Then, water temperature would have had 

an effect on the melting point of the oils in fish diets. As temperature was higher in sea 

bream than in rainbow trout studies, the solid fat content of PEH would have been lower 

in sea bream, producing a beneficial effect on its digestibility. 

 

Compared to rapeseed, ADC of fatty acids in palm diets were lower, which was 

expected due to the widely known fact that the process of lipid digestion and absorption 

seem to favor the utilization of unsaturated fatty acids over their more saturated 

counterparts (Sigurgisladottir et al. 1992; Olsen et al., 1998). In fact, as reported by 

many authors, high palm oil levels in fish diets significantly reduce fatty acids 

digestibility, especially in cold water (Torstensen et al., 2000; Ng et al., 2010). In the 

present study, experimental oils were the only source of fat in the experimental diets, in 

which the level of SFA of the total fatty acids (45-48%) exceeded the level of SFA 

(23%) of the total fatty acids up to which digestibility starts to decrease, as described by 

Hua and Bureau (2009). 

 

In rapeseed oil diets, in spite of the improvement of digestibility of fatty acids when re-

esterified, and contrarily to palm, no differences in ADC among RN, REL and REH 
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diets were obtained. This is in accordance with the previous results obtained in rainbow 

trout (Trullàs et al. 2015) and could probably be a consequence of the strong effect that 

the degree of unsaturation had on digestibility, which could have masked both the 

possible effect of MAG-DAG and the effect of the increased content of SFA in sn-2. 

Therefore, digestibility of fatty acids of the experimental oils seemed to be more 

affected by their degree of saturation than by their positional distribution and lipid class 

composition of the oil. In fact, as observed in palm diets, ADC of individual SFA set the 

trend of both ADC of total SFA and total fatty acids, clearly showing the importance of 

the degree of saturation on the overall digestibility.  

 

Independently from the source (palm or rapeseed) and the type of oil (native, re-

esterified or acid), digestibility values obtained in the present study for gilthead sea 

bream were lower than those described in rainbow trout (Trullàs et al., 2015) (mean of 

14.3±5.81 for palm and 9.8±5.56 for rapeseed, for total fatty acids; different faeces 

collection methods were used, -euthanasia followed by collection of faeces directly 

from the intestine in sea bream and stripping in rainbow trout-). One of the main 

differences between gilthead sea bream and rainbow trout is their habitat. In marine fish 

such as gilthead sea bream, the salinity of sea water results in a constant need to drink 

large amounts of water, rich in calcium and magnesium, to compensate what they lose 

through osmosis. Insoluble salts can be formed in the presence of these divalent ions 

and free long-chain fatty acids in the intestine. Thus, this might be affecting digestibility 

in marine fish in a greater extent than in freshwater fish. In fact, Ringø (1991) found a 

difference of a 7% in lipid digestibility in Arctic charr when fish were maintained in 

freshwater compared to sea water. 
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In conclusion, results from the present study corroborated that the esterification of FFA 

with glycerol improves the nutritive value of vegetable acid oils. Hence, both palm and 

rapeseed re-esterified oils could be incorporated as a source of energy in diets for 

gilthead sea bream without negatively affecting apparent digestibility coefficients of 

fatty acids when compared to their native oils. 

This improvement in digestibility became significantly higher only in rich-in SFA 

(palm) re-esterified oils high in MAG and DAG, this showing a possible emulsifying 

effect of the presence of partial acylglycerols. However, this improvement would not 

reach apparent digestibility coefficients as those found in oils that are mainly 

unsaturated, such as rapeseed and fish oil. It is important to take into account that all 

palm experimental diets presented low total fatty acids digestibility values (under 75%) 

in gilthead sea bream. Therefore, the inclusion of re-esterified palm oils, irrespectively 

of their type, as a dietary source of energy should be done in combination with oils with 

a higher degree of unsaturation, as it had been done with native palm oil in previous 

studies (Benedito-Palos et al., 2008; 2010).  

Further studies regarding the inclusion of these oils in diets for gilthead sea bream 

should be carried out in order to study their effect on growth, metabolism and fillet 

quality in this species. 

 

Acknowledgements 

Authors would like to thank SILO S.p.a. (Firenze, Italy) for providing the experimental 

fats and Magda Monllaó and Esteban Hernández from IRTA (Sant Carles de la Ràpita, 

Spain) for the technical assistance. This study was supported by a FPI predoctoral 

research grant from Ministerio de Ciencia e Innovación del Gobierno de España (BES-

2011-046806), a post-doctoral research grant from the Generalitat de Catalunya and the 



17 
 

EU through the Beatriu de Pinós Post-doctoral Program (2011BP_B 00113) and by the 

financial contribution from Spanish CICYT (project AGL2010-22008-C02).  

 

References 

AOAC (2005).Official Methods of Analysis of Association of Official Analytical 
Chemist (AOAC) International. 18thedn., AOAC, Gaithersburg, MD, USA. 
 
Bakke, A.M., Glover, C., Krogdhal, A. (2011). Feeding, digestion and absorption of 
nutrients. In: Grosell, M., Farrell, A.P., Brauner, C.J. (Eds), Fish Phisiology, Volume 
30: The Multifunctional Gut of Fish. Elsevier Academic Press. 
 
Bell, J.G., McEvoy, J., Tocher, D.R., McGhee, F., Campbell, P.J., Sargent, J.R. (2001).  
Replacement of fish oil with rapeseed oil in diets of Atlantic salmon (Salmo salar) 
affects tissue lipid composition and hepatocyte fatty acid metabolism. J. Nutr. 131, 
1535–1543.  
 
Benedito-Palos, L., Benedito-Palos, L., Navarro, J.C., Sitjà-Bobadilla, A., Bell, J.G., 
Kaushik, S., Pérez-Sánchez, J. (2008). High levels of vegetable oils in plan protein-rich 
diets fed to gilthead sea bream (Sparus aurata L.): growth performance, muscle fatty 
acid profiles and histological alterations of target tissues. Br. J. Nutr. 100, 992–1003. 
DOI: 10.1017/S0007114508966071 
 
Benedito-Palos, L., Navarro, J.C., Bermejo-Nogales, A., Saera-Vila, A., Kaushik, S., 
Pérez-Sánchez, J. (2009). The time course of fish oil wash-out follows a simple dilution 
model in gilthead sea bream (Sparus aurata L.) fed graded levels of vegetable oils. DOI: 
10.1016/j.aquaculture.2008.11.010 
 
Berry, S. E. (2009). Triacylglycerol structure and interesterification of palmitic and 
stearic acid-rich fats: an overview and implications for cardiovascular disease. Nutr. 
Res. Rev. 22, 3–17. DOI: 10.1017/S0954422409369267 
 
Bimbo, A.P. (1990). Production of fish oil. In: Fish Oils in Nutrition (Stansby, M.E. 
ed.), Chap. 6, pp. 141–180. Van Nostrand Reinhold, New York, USA. 
 
Bogevik, A.S., Oxley, A., Olsen, R.E. (2008). Hydrolysis of Acyl-Homogeneous and 
Fish Oil Triacylglycerols Using Desalted Midgut Extract from Atlantic Salmon, Salmo 
salar. Lipids 43, 655–662. DOI: 10.1007/s11745-008-3185-2 
 
Caballero, M.J, Obach, A., Rosenlund G., Montero D., Gisvold, M., Izquierdo M.S. 
(2002). Impact of different dietary lipid sources on growth, lipid digestibility, tissue 
fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss. 
Aquaculture 214, 253–271. DOI: 10.1016/S0044-8486(01)00852-3 
 
Caballero, M.J., Gallardo, G., Robaina, L., Montero, D., Fernández, A., Izquierdo, M. 
(2006). Vegetable lipid sources affect in vitro biosynthesis of triacylglycerols and 



18 
 

phospholipids in the intestine of sea bream (Sparus aurata). Br. J. Nutr. 95, 448–454. 
DOI: 10.1079/BJN20051529 
 
Cruz-Hernandez, C., Thakkar, S.K., Moulin, J., Oliveira, M., Masserey-Elmelegy, I., 
Dionisi, F., Destaillats, F. (2012). Benefits of structured and free monoacylglycerols to 
deliver eicosapentaenoic (EPA) in a model of lipid malabsorption. Nutrients 4, 1781–
93. DOI:10.3390/nu4111781 
 
Da Costa, T. H. M. (2003). Fats: Digestion, absorption, and transport. In: Caballero, B. 
(ed.), Encyclopedia of Food Sciences and Nutrition, 2nd ed. Academic Press, Oxford, 
UK. p. 2274–2278. 
 
Darnoko, D., Cheryan, M., Perkins, E.G. (2000). Analyses of vegetable oil 
transesterification products by gel permeation chromatography. J. Liq. Chromatogr. R. 
T. 23:15, 2327-2335.  
 
Dernekbaşı, S. (2012). Digestibility and Liver Fatty Acid Composition of Rainbow 
Trout (Oncorhynchus mykiss) Fed by Graded Levels of Canola Oil. TrJFAS 12, 105-
113. DOI: 10.4194/1303-2712-v12_1_13 
 
Destaillats, F., Cruz-Hernandez, C., Nagy, K., Dionisi, F. (2010). Identification of 
monoacylglycerol regio-isomers by gaschromatography–mass spectrometry. J. 
Chromatogr. A, 1217 (2010) 1543–1548. DOI: 10.1016/j.chroma.2010.01.016 
 
Dumont, M.J., Narine, S.S. (2007). Soapstock and deodorizer distillates from North 
American vegetable oils: Review on their characterization, extraction and utilization. 
Food Research International 40, 957–974. DOI: 10.1016/j.foodres.2007.06.006 
 
FAO (2014). The state of World Fisheries and Aquaculture. Opportunities and challenges. 
Food and Agriculture Organization of the United Nations, Rome. 

Farfán, M., Villalón, M.J., Ortíz, M.E., Nieto, S., Bouchon, P. (2013). The effect of 
interesterification on the bioavailability of fatty acids in structured lipids. Food Chem. 
139, 571–7. DOI:10.1016/j.foodchem.2013.01.024 

Filer, L.J., Mattson, F.H., Fomon, S.J. (1969). Triglyceride configuration and fat 
absorption by the human infant. J. Nutr. 99, 293-298.  

Fountoulaki, E., Vasilaki, A., Hurtado, R., Grigorakis, K., Karacostas, I., Nengas, I., 
Rigos, G., Kotzamanis, Y., Venou, B., Alexis, M.N. (2009). Fish oil substitution by 
vegetable oils in commercial diets for gilthead sea bream (Sparus aurata L.); effects on  
growth performance, flesh quality and fillet fatty acid profile. Recovery of fatty acid 
profiles by a fish oil finishing diet under fluctuating water temperatures. Aquaculture 
289, 317–326. DOI: 10.1016/j.aquaculture.2009.01.023 
 
Gjellesvik, D.R., Raae, A.J., Walther, B.T.H. (1989). Partial purification and 
characterization of a triglyceride lipase from cod (Gadus morhua). Aquaculture 79, 
177–184.  
 



19 
 

Gjellesvik, D.R., Lombardo, D., Walther, B.T.H. (1992). Pancreatic bile salt dependent 
lipase from cod (Gadus morhua): purification and properties. BBA 1124, 123–134.  
 
Gjellesvik, D.R, Lorens J.B., Male R. (1994). Pancreatic carboxylester lipase from  
Atlantic salmon (Salmo salar). cDNA sequence and computer-assisted modelling of 
tertiary structure. Eur. J. Biochem. 226, 603–612. DOI: 10.1111/j.1432-
1033.1994.tb20086.x  
 
Hayes, J.R., Pence, D.H., Scheinbach, S., D’Amelia, R.P., Klemann, L.P., Wilson, 
N.H., Finleyt, J.W. (1994). Review of triacylglycerol digestion, absorption, and 
metabolism with respect to SALATRIM triacylglycerols. J. Agric. Food Chem. 42, 
474–483. 
 
Hua, K., Bureau, D.P. (2009). A mathematical model to explain variations in estimates 
of starch digestibility and predict digestible starch content of salmonid fish feeds. 
Aquaculture 294, 282–287. DOI:10.1016/j.aquaculture.2009.06.021 
 
Hui, D.Y., Howles, P. N. (2002). Carboxyl ester lipase: structure-function relationship 
and physiological role in lipoprotein metabolism and atherosclerosis. J. Lipid Res. 43, 
2017–20130. DOI: 10.1194/jlr.R200013-JLR200. 

Hunter, J.E. (2001). Studies on effects of dietary fatty acids as related to their position 
on triglycerides. Lipids 36, 655–68. DOI: 10.1007/s11745-001-0770-0 

Iijima, N., Tanaka, S., Ota, Y. (1998). Purification and characterization of bile salt-
activated lipase from the hepatopancreas of red sea bream, Pagrus major.  
Fish Physiol. Biochem. 18, 59–69. DOI: 10.1023/A:1007725513389 
 
Innis, S.M., Dyer, R., Quinlan, P., Diersen-Schade, D. (1995). Palmitic Acid Is 
Absorbed as sn-2 Monopalmitin from Milk and Formula with Rearranged 
Triacylglycerols and Results in Increased Plasma triglyceride sn-2 and Cholesteryl Ester 
Palmitate in Piglets. J. Nutr. 125(1), 73-81.  
 
ISO (International Organization for Standardization) 660:1996 - Animal and vegetable 
fats and oils - Determination of acid value and acidity. 
 
Izquierdo, M.S., Obach, A., Arantzamendi, L., Montero, D., Robaina, L., Rosenlund, G. 
(2003). Dietary lipid sources for seabream and seabass: growth performance, tissue 
composition and flesh quality. Aquacult. Nutr. 9, 397– 407. DOI: 10.1046/j.1365-
2095.2003.00270.x 
 
Izquierdo, M.S., Montero, D., A., Robaina, L., Caballero, M.J., Rosenlund, G., Ginés R. 
(2005). Alterations in fillet fatty acid profile and flesh quality in gilthead 
seabream (Sparus aurata) fed vegetable oils for a long term period. Recovery of fatty 
acid profiles by fish oil feeding. Aquaculture 250, 431– 444. DOI: 
10.1016/j.aquaculture.2004.12.001 
 
Junior, I.I., Floresa, M.C., Sutili, F.K., Leite, S.G.F, Miranda, L.S. de M., Lealb, I.C.R , 
de Souza, R.O.M.A (2012). Fatty acids residue from palm oil refining process as 
feedstock for lipase catalyzed monoacylglicerol production under batch and continuous 

http://www.ncbi.nlm.nih.gov/pubmed/7815179
http://dx.doi.org/10.1016/j.aquaculture.2004.12.001


20 
 

flow conditions.  J. Mol. Catal. B: Enzym. 77, 53-58. 
DOI:10.1016/j.molcatb.2012.01.008 

Kurtovic, I., Marshall, S.N., Zhao, X., Simpson, B.K. (2009). Lipases from Mammals 
and Fishes. Rev. Fish. Sci. 17, 18–40. DOI:10.1080/10641260802031322 

Lien, E.L., Boyle, F.G., Yuhas, R., Tomarelli, R., Quinlan, P. (1997). The effect of 
triglyceride positional distribution on fatty acid absorption in rats. J. Pediatr. 
Gastroenterol. Nutr. 25, 167-174. DOI: 10.1097/00005176-199708000-00007 
 
Lin, C.S., Chiang S.H. (2010). Effect of sn-2 saturated fatty acids in dietary 
triglycerides on fatty acid and calcium digestibility and leg abnormalities in broiler 
chickens. J. Poult. Sci. 47, 156-162. DOI: 10.2141/jpsa.009085 
 
Martin, D., Morán-Valero, M.I., Vázquez, L., Reglero, G., Torres, C.F. (2014). 
Comparative in vitro intestinal digestion of 1,3-diglyceride and 1-monoglyceride rich 
oils and their mixtures. Food Res. Int. 64, 603–609.  
DOI: 10.1016/j.foodres.2014.07.026 

Marangoni, A.G., Rousseau, D. (1998). The Influence of Chemical Interesterification on 
Physicochemical Properties of Complex Fat Systems 1 . Melting and Crystallization.  J. 
AOCS 75(10), 1265-1271. DOI: 10.1007/s11746-998-0171-z 

Maynard, L. A., Loosli, J.K. (1969). Animal Nutrition, 6th ed. McGraw-Hill Book 
Company, New York. 
 
Ng, W.K., Lim, P.K., Boey, P.L. (2003). Dietary lipid and palm oil source affects 
growth, fatty acid composition and muscle a-tocopherol concentration of African 
catfish, Clarias gariepinus. Aquaculture 215, 229–243. DOI: 10.1016/s0044-
8486(02)00067-4 
 
Ng, W.K., Codabaccus, B.M., Carter, C.G., Nichols, P.D. (2010). Replacing dietary fish 
oil with palm fatty acid distillate improves fatty acid digestibility in rainbow trout, 
Oncorhynchus mykiss, maintained at optimal or elevated water temperature. 
Aquaculture 309, 165–172. DOI: 10.1016/j.aquaculture.2010.08.035 
 
Nolasco, H., Moyano-López, F., Vega-Villasante, F. (2011). Partial characterization of 
pyloric-duodenal lipase of gilthead seabream (Sparus aurata). Fish Physiol. Biochem. 
37, 43–52. DOI: 10.1007/s10695-010-9414-7  

National Research Council. Nutrient Requirements of Fish and Shrimp. Washington, 
DC: The National Academies Press (2011). 

Nuchi, C., Guardiola, F., Bou, R., Bondioli, P., Della Bella, L., Codony, R. (2009). 
Assessment of the levels of degradation in fat co- and byproducts for feed uses and their 
relationships with some lipid composition parameters. J. Agric. Food Chem. 57, 1952–
9. DOI:10.1021/jf803369h 



21 
 

Olsen, R.E., Henderson, R.J., and Ringø, E. (1998). The digestion and selective 
absorption of dietary fatty acids in Arctic charr, Salvelinus alpinus. Aquacult. Nutr. 4, 
13–21. DOI: 10.1046/j.1365-2095.1998.00099.x 
 
Oxley, A., Jutfelt F., Sundel, K., Olsen, R.E. (2007). Sn-2-monoacylglycerol, not 
glycerol, is preferentially utilised for triacylglycerol and phosphatidylcholine 
biosynthesis in Atlantic salmon (Salmo salar L.) intestine. Comp. Biochem. Physiol., 
Part B. 146, 115-123. DOI:10.1016/j.cbpb.2006.09.007 
 
Parini, M., Cantini, F. (2009). Socio-economical features on the application of co-
products of lipidic source for animal feeding. Part II. Riv. Ital. Sostanze Gr. 86, 49-67. 
 
Ringø, E. (1991). Hatchery-reared landlocked Arctic charr, Salvelinus alpinus (L), from 
lake Takvatn reared in fresh and sea water. II. The effect of salinity on the digestibility 
of protein, lipid and individual fatty acids in a capelin roe diet and commercial feed. 
Aquaculture 93, 125142. DOI: 10.1016/0044-8486(87)90218-3 

Scheeder, M.R.L., Gumy, D., Messikommer, R., Wenk, C., Lambelet, P., Federal, S., 
Technology, P., Orbe, C. (2003). Effect of PUFA at sn- 2 position in dietary 
triacylglycerols on the fatty acid composition of adipose tissues in non-ruminant farm 
animals. Eur. J. Lipid Sci. Technol. 105, 74–82. DOI:10.1002/ejlt.200390020 

Schulthess, G., Lipka, G., Compassi, S., Boffelli, D., Weber, F.E., Paltauf, F., Hauser, 
H. (1994). Absorption of monoacylglycerols by small intestinal brush border 
membrane. Biochemistry 33, 4500–8. DOI: 10.1021/bi00181a009 

Sigurgisladottir S., Lall, S.P., Parrish, C.C., Ackman, R.G. (1992). Cholestane as a 
digestibility marker in the absorption of polyunsaturated fatty acid ethyl esters in 
Atlantic salmon. Lipids. 27(6), 418–424. DOI: 10.1007/BF02536382 

Sklan, D. (1979): Digestion and absorption of lipids in chicks fed triglycerides or free 
fatty acids: synthesis of monoglycerides in the intestine. Poultry Science, 58: 885–889. 

Small, D.M. (1991). The effects of glyceride structure on absorption and metabolism. 
Annu. Rev. Nutr. 11, 413-434. DOI: 10.1146/annurev.nu.11.070191.002213  
 
Sukhija, P. S., Palmquist, D. L. (1988). Rapid method for determination of total fatty 
acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 36:1202–
1206. DOI: 10.1021/jf00084a019  
 
Taheripour, F., Hertel, T.W., Tyner, W.E. (2011). Implications of biofuels mandates for 
the global livestock industry: a computable general equilibrium analysis. Agr. Econ. 3, 
325–342. DOI: 10.1111/j.1574-0862.2010.00517.x 
 
Torstensen, B.E., Lie, O., Froyland, L. (2000). Lipid metabolism and tissue composition 
in Atlantic salmon (Salmo salar L.) Effects of capelin oil, palm oil, and oleic acid enriched 
sunflower oil as dietary lipid sources. Lipids 35, 653–664. 
 

http://dx.doi.org/10.1016/0044-8486(87)90218-3
http://www.ncbi.nlm.nih.gov/pubmed/1630276
http://biomedical.annualreviews.org/


22 
 

Trullàs, C., Fontanillas, R., Tres, A., Sala, R. (2015). Vegetable re-esterified oils in diets 
for rainbow trout: effects on fatty acid digestibility. Aquaculture 444, 28–35. doi: 
10.1016/j.aquaculture.2015.03.018.   
 
Turchini G.M., Torstensen B.E., Ng, W.K. (2009). Fish oil replacement in finfish 
nutrition. Rev. Aquaculture 1, 10–57. DOI: 10.1111/j.1753-5131.2008.01001.x 

Vilarrasa, E., Tres, A., Bayés-García, L., Parella, T., Esteve-Garcia, E., Barroeta, A.C. 
(2014). Re-esterified palm oils, compared to native palm oil, do not alter fat absorption, 
postprandial lipemia or growth performance in broiler chicks. Lipids 49, 795–805. 
DOI:10.1007/s11745-014-3920-9 

Watanabe, T. (1982). Lipid nutrition in fish. Comp. Biochem. Physiol., 73B: 3–15. 

Wiseman, J., Salvador, F. (1991). The influence of free fatty acid content and degree of 
saturation on the apparent metabolizable energy value of fats fed to broilers. Poult. Sci. 
70, 573–82. DOI: 10.3382/ps.0700573 

Yildiz, M., Köse, I., Issa, G., Kahraman, T. (2014). Effect of different plant oils on 
growth performance, fatty acid composition and flesh quality of rainbow trout 
(Oncorhynchus mykiss). Aquacult. Res. 1–12. DOI: 10.1111/are.1244 

 

 

 



Table 1. Ingredient formulation and proximate composition of the experimental diets.  
 Dietsa 

 FO PN PEL PEH PA RN REL REH RA 
Ingredient composition (g kg-1) 
Wheatb 162.1 162.1 162.1 162.1 162.1 162.1 162.1 162.1 162.1 
Wheat glutenc 206.9 206.9 206.9 206.9 206.9 206.9 206.9 206.9 206.9 
Soy protein 
concentrated 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 

North Atlantic fish 
meale 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 
South American fish 
oilf 210.0 0 0 0 0 0 0 0  

Experimental oilsg 0 210.0 210.0 210.0 210.0 210.0 210.0 210.0 210.0 
Yttrium premixh 1 1 1 1 1 1 1 1 1 
Mineral and vitamin 
premixh 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

Proximate composition (g kg-1) 
Dry matter (g kg-1) 937.7 947.9 948.2 948.2 941.3 945.6 941.0 940.9 940.5 
Crude protein 481.5 489.3 483.8 474.4 482.6 485.2 489.8 471.3 471.0 
Crude fat 198.8 219.5 213.8 209.9 214.3 211.9 203.7 204.6 212.6 
Ash 89.2 88.4 84.3 76.9 94.1 88.5 83.0 83.2 69.7 
Gross energy (kJ g-1) 23.1 23.3 23.4 23.3 23.6 23.4 23.2 23.2 23.3 

aExperimental diets nomenclature: FO: fish oil (control diet); PN: palm native oil; PEL: palm re-esterified 
oil low in MAG and DAG; PEH: palm re-esterified oil high in MAG and DAG; PA: palm acid oil; RN: 
rapeseed native oil; REL: rapeseed re-esterified oil low in MAG and DAG; REH: rapeseed re-esterified oil 
high in MAG and DAG and RA: rapeseed acid oil.  
bStatkorn, Norway. 
cCerestar Scandinavia AS, Denmark. 
dSelecta, Brasil. 
eWelcon AS, Norway. 
fHoltermann ANS, Norway. 
gExperimental oils.  
hSkretting standard vitamin and minerals premix, according to requirement data from NRC (2011). Trow 
Nutrition, The Netherlands. 

 

 

 

 

 

 

 



Table 2. Fatty acid composition of the experimental oils and diets. 
 Oilsa  Dietsa 
 FO PN PEL PEH PA RN REL REH RA  FO PN PEL PEH PA RN REL REH RA 

Fatty acid (%) 
C14:0                                                               7.9 1.2 1.3 1.4 1.3 0.1 0.1 0.1 0.1  7.0 1.6 1.7 1.8 1.6 0.5 0.7 0.7 0.6 
C16:0                                                                                                                                                                   16.5 40.3 39.5 40.5 44.5 4.4 7.4 7.4 6.1  19.0 38.6 36.0 35.4 40.2 6.8 8.9 8.7 8.1 
C18:0 2.2 4.5 8.5 8.4 6.0 2.0 2.7 2.6 2.4  2.8 4.2 7.6 7.4 5.4 2.2 2.5 2.4 2.5 
C16:1n-7 6.2 0.4 0.2 0.2 0.2 0.2 0.3 0.3 0.3  6.5 0.8 0.7 0.8 0.6 0.6 0.7 0.8 0.7 
C18:1n-9 12.1 38.6 39.6 39.0 37.1 60.7 53.0 52.3 54.7  17.5 33.5 34.8 34.9 33.3 53.1 45.4 45.2 47.8 
C18:1n-7 2.5 0.9 0.8 0.8 0.7 3.2 3.5 3.5 3.4  2.8 1.0 0.9 1.0 0.8 2.8 3.1 3.1 3.1 
C20:1n-9 7.6 0.2 0.1 0.1 0.1 1.2 0.9 0.9 1.0  6.0 1.2 1.1 1.2 1.0 1.8 1.7 1.7 1.7 
C18:2n-6 1.9 11.4 8.1 7.8 8.5 19.1 25.8 26.0 23.6  8.9 13.6 11.8 11.8 12.0 20.7 26.9 27.0 24.2 
C18:3n-3 2.2 0.4 0.2 0.2 0.3 8.1 5.0 5.8 7.4  2.5 0.8 0.7 0.9 0.7 7.3 5.3 5.8 6.7 
C20:4n-6 0.8 ND ND ND ND ND ND ND ND  0.7 ND ND ND ND ND ND ND ND 
C20:5n-3 (EPA) 10.5 0.3 ND ND ND ND ND ND ND  11.3 1.3 1.0 1.1 1.0 0.9 1.1 1.1 0.9 
C22:6n-3 (DHA) 10.2 0.7 ND ND ND ND ND ND ND  11.3 2.0 1.4 1.5 1.4 1.4 1.7 1.7 1.4 
ΣSFAb 26.9 46.6 50.7 51.7 52.8 7.2 10.8 10.7 9.2  30.1 45.3 47.4 46.6 48.7 10.7 13.3 12.9 12.6 
ΣUFAc 73.1 53.4 49.3 48.3 47.2 92.8 89.2 89.3 90.8  69.9 54.7 52.9 53.7 51.5 89.3 86.7 87.1 87.4 
ΣMUFAd 30.2 40.2 41.0 40.3 38.4 65.5 58.3 57.4 59.7  34.5 36.9 38.0 38.4 36.4 58.9 51.6 51.4 54.0 
ΣPUFAe 42.9 13.2 8.3 8.0 8.8 27.3 30.9 31.9 31.1  35.3 17.8 14.9 15.2 15.1 30.4 35.1 35.7 33.4 
Σn-6 PUFAe 2.7 11.5 8.1 7.8 8.5 19.1 25.9 26.0 23.7  9.9 13.6 11.8 11.8 12.1 20.8 27.0 27.1 24.3 
Σn-3 PUFAe 40.2 1.7 0.2 0.2 0.3 8.2 5.0 5.8 7.4  25.3 4.2 3.1 3.5 3.1 9.6 8.1 8.6 9.1 
SFA:UFA 0.4 0.9 1.0 1.1 1.1 0.1 0.1 0.1 0.1  0.4 0.8 0.9 0.9 0.9 0.1 0.2 0.1 0.1 

ND not detected. 
aExperimental oils and diets nomenclature as in experimental diets (Table 1). 
bSFA: saturated fatty acids. It includes other SFA of small quantity.  
cUFA: unsaturated fatty acids. It includes other UFA of small quantity.  
dMUFA: monounsaturated fatty acids. It includes other MUFA of small quantity.  
ePUFA: polyunsaturated fatty acids. It includes other PUFA of small quantity; n-6 PUFA: omega 6 polyunsaturated fatty acids; n-3 PUFA: omega 3 polyunsaturated fatty acids. 
 
 



Table 3. Lipid class composition of the experimental oils and diets. 
Oilsa 
 FO PN PEL PEH PA RN REL REH RA 
Lipid classes (%) 
ΣTAGb, c 86.0 82.3 59.6 23.6 28.8 95.6 49.9 23.3 32.2 
ΣDAGb, c 4.1 10.6 33.0 48.1 12.1 2.5 39.2 46.3 12.1 

1 (3), 2-DAGb, d 40.0 28.6 24.7 22.9 37.9 33.3 24.3 28.5 25.6 
1, 3-DAGb, d 60.0 71.4 75.3 77.1 62.1 66.7 75.7 71.5 74.4 

ΣMAGb, c 0.3 0.9 5.7 27.0 3.7 0.2 5.8 27.5 2.3 
1(3)-MAGb, d 50.0 75.0 87.5 93.1 89.5 50.0 90.9 91.6 90.9 
2-MAGb, d 50.0 25.0 12.5 6.9 10.5 50.0 9.1 8.4 9.1 

ΣFFAb, c 9.6 6.2 1.7 1.3 55.4 1.7 5.1 2.9 53.4 
Dietsa 
Lipid classes (%) 
ΣTAGb, c 91.9 82.1 61.1 30.7 34.3 94.5 54.2 26.9 40.1 
ΣDAGb, c 3.2 10.1 30.8 44.3 12.3 2.9 35.9 45.3 11.0 
ΣMAGb, c 0.4 0.8 4.5 23.2 3.5 0.2 4.7 25.0 1.6 
ΣFFAb, c 4.5 6.9 3.6 1.8 49.9 2.4 5.2 2.8 47.3 
aExperimental oils and diets nomenclature as in Table 1. 
bTAG (triacylglycerols), DAG (diacilglycerols), MAG (monoacylglycerols) and FFA (free fatty 
acids). 
cValues determined by size-exclusion chromatography. Values are given as wt% of the total lipid 
classes (TAG, DAG, MAG and FFA). 
dValues determined by 1H-NMR. Values of each isomer are given as wt% of the total 
corresponding fraction (DAG or MAG). 

 



Table 4. Selected fatty acid composition of the sn-2 position of the experimental oils. 
 Oilsa 
sn-2 (%) FO PN PEL PEH PA RN REL REH RA 
C16:0                                                                                                                                                                                      42.5 (7.0)  7.8 (3.1) 20.93 (8.3) 11.9 (4.8) 3.7 (1.6) 2.7 (0.12) 19.5 (1.4) 11.7 (0.9) 6.8 (0.4) 
C18:0 17.1 (0.4) 8.3 (0.4) 25.1 (2.1) 17.1 (1.4) 6.1 (0.4) 4.1 (0.08) 30.9 (0.8) 16.6 (0.4) 8.0 (0.2) 
C18:1n-9 23.8 (2.9) 49.0 (18.9) 27.9 (11.0) 19.7 (7.7) 21.2 (7.9) 28.8 (17.5) 29.3 (15.6) 16.5 (8.6) 12.2 (6.7) 
C18:2n-6 44.3 (0.8) 55.5 (6.3) 32.0 (2.6) 20.9 (1.6) 21.8 (1.9) 52.0 (9.9) 31.4 (7.7) 18.9 (4.9) 13.9 (3.3) 
ΣSFA 38.0 (10.0) 8.0 (3.7) 21.4 (10.9) 12.5 (6.4) 4.0 (2.1) 3.2 (0.2) 29.8 (2.5) 13.4 (1.5) 6.9 (0.7) 
ΣMUFA 23.4 (7.1) 47.8 (19.2) 28.3 (11.6) 19.8 (8.0) 21.9 (8.3) 27.3 (17.9) 29.9 (17.4) 16.7 (9.5) 11.8 (7.0) 
ΣPUFA 28.7 (12.1) 52.3 (6.9) 32.3 (2.6) 21.0 (1.7) 21.5 (1.9) 51.0 (13.9) 29.5 (9.1) 18.9 (6.0) 14.0 (4.3) 

Values are given as the % of each fatty acid at the sn-2 relative to its content in the oil. Values in brackets are given as the % of each fatty acid 
at the sn-2 position relative to the total fatty acid amount. 
aExperimental oils nomenclature as in Table 1. 
 

 



Table 5. Apparent digestibility coefficient (ADC %) of selected fatty acids in gilthead sea bream 
fed the experimental palm diets. 

Dietsa 
 FO  PN PEL PEH PA 
Fatty acid ADC (%) 
C14:0  88.1 ± 0.9a  51.6 ± 3.7cd 57.8 ± 2.3bc 66.0 ± 2.2b     44.3 ± 1.7d 
C16:0 82.7 ± 1.0a  42.4 ± 2.9c 47.6 ± 5.0bc 62.6 ± 2.2b       23.8 ± 4.3d 
C18:0 75.3 ± 0.9a  37.7 ± 3.2c 43.3 ± 5.8bc 58.4 ± 2.6b        26.6 ± 3.7c 
C18:1n-9 88.4 ± 0.7a  77.1 ± 2.4cd 81.6 ± 1.0bc 86.6 ± 0.9ab        71.7 ± 1.0d 
C18:2n-6 89.7 ± 1.1a  84.4 ± 1.8b 85.7 ± 1.1ab 86.8 ± 0.8ab        78.3 ± 0.2c 
C18:3n-3 92.9 ± 0.7a  72.9 ± 3.4b 75.5 ± 3.0b 76.9 ± 1.1b        67.3 ± 3.0b 
C20:4n-6 96.4 ± 0.4  ND ND ND ND 
C20:5n-3 (EPA) 97.3 ± 0.3a  78.8 ± 2.7b 77.3 ± 4.9b 74.5± 1.3b        69.6 ± 4.4b 
C22:6n-3 (DHA) 96.7 ± 0.4a  82.8 ± 2.2b 80.9 ± 4.1b 78.4 ± 1.4b        74.0 ± 2.1b 
ΣSFA 82.9 ± 1.0a   42.0 ± 3.0c 47.8 ± 5.0bc 62.3 ± 2.2b 25.2 ± 4.1d 
ΣMUFA 89.3 ± 0.31a  75.7 ± 2.5cd 80.5 ± 1.1bc 85.0 ± 1.1ab      70.6 ± 0.7d 
ΣPUFA 85.4 ± 1.6a  78.8 ± 2.5ab 81.0 ± 2.1a 80.7 ± 1.1a      72.2 ± 0.8b 
Σn-6 PUFA 90.1 ± 1.0a  83.9 ± 1.8b 85.5 ± 1.3ab 86.1 ± 0.8ab       77.9 ± 0.2c 
Σn-3 PUFA 96.6 ± 0.4a  79.6 ± 2.6b 78.6 ± 4.1b 76.8 ± 1.3b       71.1 ± 3.0b 
Total FAb 89.3 ± 0.1a  61.8 ± 2.6c 65.7 ± 2.8bc 74.4 ± 1.6b 49.6 ± 2.2d 

Values represent mean ± SEM of pooled samples from 26 fish analyzed in triplicate. Values in the 
same row with different letters are significantly different (P<0.05), according to ANOVA.  
aExperimental diets nomenclature: abbreviations as in Table 1. 
bTotal FA: total fatty acids. 

 



Table 6. Apparent digestibility coefficient (ADC %) of selected fatty acids in gilthead sea bream 
fed the experimental rapeseed diets. 

Dietsa 
 FO  RN  REL REH RA 
Fatty acid ADC (%) 
C14:0  88.1 ± 0.9a  69.0 ± 2.0b 71.0 ± 3.9b 64.2 ± 2.8b 56.1 ± 1.5b 
C16:0 82.7 ± 1.0a  76.0 ± 3.5a 83.2 ±2.7a 83.7 ± 0.4a 57.1 ± 1.2b 
C18:0 75.3 ± 0.9ab  67.2 ± 1.8b 80.8 ± 3.1a 81.4 ± 0.1a 40.4 ± 2.0c 
C18:1n-9 88.0 ± 0.7ab  90.0 ± 0.8ab 92.7 ± 1.2ab 93.2 ± 0.2a 77.6 ± 1.7b 
C18:2n-6 88.0 ± 1.1a  91.5 ± 1.1a 94.0 ±0.8a 94.3 ± 0.2a 83.6 ± 1.2a 
C18:3n-3 91.9 ± 0.7a  93.7 ± 4.0a 94.7 ± 0.6a 95.5 ± 0.3a 86.0 ± 1.2a 
C20:4n-6 95.8 ± 0.4  ND ND ND ND 
C20:5n-3 (EPA) 97.3 ± 0.3a  81.8 ± 0.1b 78.3 ± 3.1b 75.4 ± 2.8b 73.8 ± 0.1b 
C22:6n-3 (DHA) 96.7 ± 0.4a  84.3 ± 1.2b 82.5 ± 2.2b 79.5 ± 2.1bc 72.1±  2.2c 
ΣSFA 82.9 ± 0.9a   81.2 ± 8.6a 82.1 ± 3.3a 82.9 ± 0.8a 51.6 ± 0.8b 
ΣMUFA 89.6 ± 0.3ab  89.2 ± 1.3ab 91.9 ±  1.4ab 92.4 ± 0.2a 76.4 ± 1.7b 
ΣPUFA 85.4 ± 1.6bc  90.0 ± 1.3ab 92.1 ± 1.1a 92.2 ± 0.5a 84.5 ± 1.1c 
Σn-6 PUFA 88.4 ± 1.0a  91.2 ± 1.0a 93.8 ± 0.9a 94.1 ± 0.3a 83.1 ± 1.3a 
Σn-3 PUFA 96.6 ± 0.4a  89.9 ± 3.2ab 90.0 ±1.2ab 89.5 ± 0.9ab 85.2 ± 0.3b 
Total FAb 89.3 ± 0.1a  89.7 ± 1.5a 90.6 ± 1.1a 91.1 ± 0.4a 78.3 ± 1.2b 

Values represent mean ± SEM of triplicate pooled samples from 26 fish. Values in the same row 
with different letters are significantly different (P<0.05).  
aExperimental diets nomenclature: abbreviations as in Table 1. 
bTotal FA: total fatty acids. 
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