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Abstract

Segmentation of airways in Computed Tomography (CT) scans is a must for accurate sup-

port of diagnosis and intervention of many pulmonary disorders. In particular, lung cancer

diagnosis would benefit from segmentations reaching most distal airways. We present a

method that combines descriptors of bronchi local appearance and graph global structural

analysis to fine-tune thresholds on the descriptors adapted for each bronchial level. We

have compared our method to the top performers of the EXACT09 challenge and to a com-

mercial software for biopsy planning evaluated in an own-collected data-base of high resolu-

tion CT scans acquired under different breathing conditions. Results on EXACT09 data

show that our method provides a high leakage reduction with minimum loss in airway detec-

tion. Results on our data-base show the reliability across varying breathing conditions and a

competitive performance for biopsy planning compared to a commercial solution.

Introduction

Bronchoscopy examinations are the diagnostic cornerstone for lung cancer since they allow

biopsy of nodules with minimum risk for the patient. A main limitation of flexible bronchos-

copy is the difficulty to determine the best pathway to peripherial lesions. Physician’s accuracy

at defining proper 3D routes is only around 40% for lesions located near airways at generation

4 at most, with errors beginning as early as generation 2 [1, 2]. Despite recent advances, new

endoscopy techniques only increase diagnostic yield to 70% and still radiate the patient. Diag-

nostic yield could be improved reducing radiation and costs if imaging technologies could bet-

ter guide the bronchoscopist to the target lesion.

Virtual bronchoscopic navigation (VBN) systems [3] are used to reconstruct computed

tomography (CT) data into three-dimensional representations of the tracheobronchial tree.

VBN systems allow for coupling virtual and real-time bronchoscopy, which is useful for guid-

ing ultrathin bronchoscopes and other devices in diagnostic interventions [4]. Due to limited

extraction of the airways from the CT data, the potential of VBN is often limited in the most

peripheral regions of the lungs [5]. In a recent communication [6], segmentations not reaching

the peripheral pulmonary lesions were observed in 44% of cases and in such cases, only 35% of

them were diagnosed. This diagnostic rate is comparable to that achieved without a navigation
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software and, thus, a VBN system does not represent any advantage unless segmentations

reach the most distal airways.

The segmentation of most distal bronchi is challenging because, even using high resolution

(0.6 × 0.6 × 0.5 mm) CT scans, their caliber in the scanned volumes just covers a few voxels

and their wall is reduced to 1-2 faint intensity voxels. This requires running segmentation algo-

rithms using extreme values for their parameters (usually thresholds) that increase the pres-

ence of artifacts, such as leakage, in segmented airways. Leakage causes segmentations to

extend outside the airway and leak into the lung parenchyma [7]. To avoid leakage and other

artifacts while optimizing thresholds, several strategies have been proposed.

For methods based on region growing [8–12] an option is to iteratively increase the inten-

sity threshold used to separate air from tissue while controlling the number of voxels added

between consecutive segmentations. In [7] trachea, right and left bronchi are segmented inde-

pendently using three different thresholds optimized to be efficient across different CT scan

acquisition parameters. Another option [13–15] is to use graph structural analysis to recon-

struct the bronchial tree from a set of branches obtained after thresholding of a map of bronchi

local appearance. A graph is used to represent the connectivity of candidate branches and best

connections are selected from a global graph-partitioning algorithm based on a cost and bene-

fit scoring of connections [13]. Finally, a very recent work [16] uses convolutional neural net-

works to remove leakage from a given segmentation using local appearance. Segmentations

are partitioned into segments that are classified as leakage or bronchi using a convolutional

network. This classification allows the combination of segmentations computed using differ-

ent thresholds.

Contribution

All methods reviewed above base segmentations on functions (given, for instance, by convolu-

tion with filters or the probability of a classifier) that have high values at voxels belonging to

airways. It follows that segmentations are defined as voxels achieving values above a given

threshold. Such threshold can be set either heuristically or learned from a training set using a

classifier. In any case, threshold values are global values equal for all voxels and scans and set

according to local appearance, regardless of the global geometric structure of the resulting

segmentation.

In this paper we present a novel method able to set patient-specific thresholds locally

adapted for each airway level according to, both, bronchi local appearance and segmentation

global structure. Under the ground that airways anatomy follows a tree structure, we encode

segmentations using a directed graph and compute a measure of how much the graph devi-

ates from a tree. This measure is used to locally adapt thresholds and prune segmentations

artifacts.

To show the potential of our graph structural analysis, we also present a strategy for the seg-

mentation of most distal airways. Our strategy is based on a thresholding of a map of airways

local appearance computed by convolution with an own-designed tubular filter in a multireso-

lution scheme to account for differences in airways caliber. We call this method PICASSO:

PerIpheral bronChiAl Segmentation with Structural Optimization. We present results on the

EXACT09 database [17] and on an own series of high resolution CT scans acquired at Hospital

de Bellvitge under different breathing conditions [18].

Materials and methods

Our method is based on energy maps (describing airways appearance) binarized using a

threshold adapted for each case. Thresholds are computed to ensure that segmentations have a
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shape with optimal match to airways anatomical structure and minimum leakage. The match-

ing criterion uses a measure of anatomical consistency based on the complexity of a graph

representation of the segmented airways. Zero complexity is associated to segmentations with-

out leakage, while leakage volume increases along with complexity positive values. In case the

graph is computed for the whole segmentation, we obtain a global threshold able to provide

a leakage free initial segmentation. In case the graph is computed for a subvolume only con-

taining a distal branch, the threshold based on graph complexity is adapted according to the

branch local structure. Further, if thresholding is restricted to each branch surroundings, any

initial segmentation can be independently refined for each distal branch. Finally, the same

structural analysis based on graph complexity provides an algorithm for the suppression of

leakage which might be applied as a post-processing filtering step in case that thresholds are

computed for a positive complexity.

In the next Sections we explain our measure of anatomical consistency (Section Structural

Analysis for Anatomically Consistent Segmentations) and the main steps of the proposed seg-

mentation strategy (Section Strategy for Segmentation of Distal Airways).

Structural analysis for anatomically consistent segmentations

For any map, E = E(i, j, k), such that airway voxels have higher values than background voxels,

a segmentation of airways, SegTh, can be obtained by thresholding as:

SegThði; j; kÞ ¼

(
1 if Eði; j; kÞ > Th

0 otherwise
ð1Þ

In our case the map E is obtained (see Section Airways Local Appearance Maps) from the con-

volution with a bank of filters describing bronchi local appearance in CT-scans. Thus, from

now one, these maps will be called appearance maps.

We set an optimal Th according to the following measure of the consistency of SegTh geom-

etry with airways anatomy. Airways are tubular structures with their geometry determined by

the centerline given by bronchi lumen center. These centerlines have a tree structure given by

bronchi branching levels. In order to quantify segmentations anatomical consistency we ana-

lyze the geometry of their skeleton. To do so, the segmentation skeleton is encoded in a graph

that represents its branching geometry by nodes and edges. The nodes of the graph correspond

to skeleton branching points and its edges represent branch connectivity.

The trachea entry point allows directing the graph using Depth First Search (DFS). In the

absence of artifacts, the directed graph should be a (binary) tree with levels corresponding to

bronchial levels and leafs corresponding to the most distal points achieved by the segmenta-

tion. In practice, segmentations might include structures and artifacts not belonging to bron-

chial anatomy which alter the graph tree structure.

A connected graph is a tree if and only if it is cycle-free. A directed graph is cycle-free if and

only if for all leafs, there is only one path to the root. This last condition allows to measure how

much a directed graph deviates from a tree, and localize what distal branches have more arti-

facts in their segmentation. Let #PthLeafi be the number of paths from the i-th Leaf node, Leafi
to the graph root and NLeaf the number of leafs, then our measure of complexity is defined as:

Complexity ¼ 1 �
NLeaf

PNLeaf
i¼1 #PthLeafi

2 ½0; 1� ð2Þ

A tree has Complexity = 0, while Complexity approaches to 1 as the number of cycles increases.

Segmentation of distal airways using structural analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0226006 December 19, 2019 3 / 17

https://doi.org/10.1371/journal.pone.0226006


The complexity (2) provides scan-sensitive thresholds ensuring segmentations conforming

with bronchial anatomy and either free of artifacts (Complexity = 0) or with a controlled

amount of them. Let MxComplexity be the maximum deviation from a tree allowed for a seg-

mentation, SegTh, and let us define a function of SegTh complexity depending on Th as:

FComplex ¼ FComplexðThÞ≔

¼ ComplexityðSegThÞ � MxComplexity
ð3Þ

then the threshold that achieves the maximum complexity MxComplexity is a zero of FComplex.
We note that, assuming that the map E is the likelihood that a voxel belongs to an airway and

SegTh given by (1), the zeros of FComplex are also given by:

ThOpt≔ minThðFComplexðThÞ <¼ 0Þ ð4Þ

The computation of the optimal threshold requires finding a zero of the complexity function

FComplex defined in (3). Since it is continuous and bounded in the range [1 −MxComplexity,

−MxComplexity], the equation can be solved using any iterative numerical method for the

resolution of non-linear equations. In particular, we could use the bisection method, since Bol-

zano’s Theorem [19] ensures its convergence to one solution provided that the function is con-

tinuous and achieves opposite signs in each bound of the search interval. Bolzano’s method

can be implemented using the iterative algorithm described in Algorithm 1. Given that conver-

gence to a solution of f(x) = 0 is guaranteed, the algorithm can be stopped when a given accu-

racy for the solution, tolerance tol in Algorithm 1, is achieved. In our case, f = FComplex, xa, xb
are defined by a minimum and maximum threshold values (see Section Experimental Design

for a rule to set them) of the map E and xc = ThOpt.
Algorithm 1 Pseudo Code of Bolzano’s bisection method for the resolution of non-linear

equations
xc = (xa + xb)/2
yc = f(xc)
while abs(yc) > tol do
if ya � yc < 0 then
| xb = xc
end
else
| xa = xc
end
xc = (xa + xb)/2
yc = f(xc)

end
The solution to FComplex = 0 set a global threshold equal for all voxels in case (2) is computed

from the graph associated to the complete segmentation SegTh. In case the graph is computed

for a subvolume only containing a distal branch, its complexity exclusively depends on the

local structure of the segmented branch. Therefore the solutions to (3) provide thresholds

locally adapted to such bronchial branch (see Section Distal Refinement of Initial Segmenta-

tion for further details).

In case MxComplexity is positive, some distal subtrees might contain artifacts in their seg-

mentation. Such artifacts are detected as cycles in the graph associated to the segmentation

and are pruned as follows. For each cycle, their nodes are sorted according to increasing values

of E to be iteratively removed until the complexity of the graph is zero. The collection of all

nodes removed together with their edges defines a subset of the segmentation 3D skeleton.

The inverse skeletonization of this subset provides a volume that contains the artifacts attached
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to the segmented distal subtree. The complementary of the volume of artifacts in SegThOpt is

our final segmentation with artifact reduction.

Strategy for segmentation of distal airways

Our strategy PICASSO is based on a thresholding of bronchi local appearance maps. Appear-

ance maps are computed by convolution with a bank of own-designed tubular filters, while

threshold values are adapted using the graph structural analysis of Section Structural Analysis

for Anatomically Consistent Segmentations. Fig 1 shows a flowchart with the main steps of

our segmentation method PICASSO.

Fig 1. PICASSO main steps. 1. Initial segmentation using a multi-scale approach with global adaptation of the

threshold. The input data is the original CT scan (left image) and the output are airway segmentations (most right

meshes shown in purple) at different scales, one for each down-scaled CT volume. 2. Distal refinement of initial

segmentation (upper left orange mesh) with a threshold locally adapted for each distal branch (marked with dark

circles). The output refined distal branches are shown in purple in the lower left mesh. 3. Leakage removal by pruning

the cycles of the graph representing the segmentation skeleton. The input segmentation with leakage is shown in

orange (both in the upper left mesh and graph), while the output filtered leakage-free segmentation is shown in purple.

https://doi.org/10.1371/journal.pone.0226006.g001
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First, we compute an initial segmentation of main bronchi using a multi-scale approach

with global adaptation of the threshold for each scale. Our tubular filtering is applied at each

down scaled volume, labelled CTl, obtained by repeated pooling of the original gray-scale CT

volume. The size of the kernel used in tubular filtering is the same for all scales and it is set to

the scale of distal bronchi at full resolution. By performing a pooling, followed by a filtering at

a fix small scale, we can detect airways of different levels and sizes without increasing the ker-

nel size [20]. For each pooled volume at scale l, its appearance map, namely El, is binarized

with the threshold that solves (3) for FComplex computed using El. For each such a map at scale

l, the optimal threshold is computed by applying Algorithm 1 to FComplex computed from El.
Second, we refine the initial segmentation at full resolution with local adaptation of the

threshold according to the consistency of each distal branch. To do so, we compute a graph for

subvolumes that only contain each distal branch, so that the threshold based on graph com-

plexity computed by applying Algorithm 1 is exclusively obtained according to the branch

local structure. The subvolumes are computed using a binary mask of the surroundings of

each distal branch and the thresholding is also restricted to such surroundings. This way the

initial segmentation can be independently refined for each distal branch.

Finally, leakage removal could be applied at any of the former steps in case we allow for a

drop in consistency in the computation of the thresholds. This is controlled by setting a posi-

tive value for the tolerance parameter MxComplexity in Eq (3).

Pre-Processing. CT scans are first pre-processed to in-paint [21] pulmonary vessels and

body tissue outside lungs in order to suppress responses at such interfaces prone to introduce

artifacts. In-painting requires the segmentation of the volume regions that have to be in-painted.

Body tissue is defined as the complementary of lungs in CT scans. To segment lungs and

pulmonary vessels we apply a threshold to CT scans Hounsfield units. Before thresholding,

scans are convolved with a bank of 3D anisotropic Gaussian kernels in order to homogenize

Hounsfield values. Let σ = (σx, σy, σz) be the scale of the filter and Θ = (θ, ϕ) its orientation

given by the unitary vector η = (cos(ϕ)cos(θ), cos(ϕ)sin(θ), sin(ϕ)), then an oriented anisotropic

3D Gaussian kernel, gY
s

, is given by:

gY
s
¼ gY

s
ðx; y; zÞ ¼

1

ð2pÞ
3=2
sxsysz

e
� ~x2

2s2
x
þ

~y2

2s2
y
þ ~z2

2s2
z

� �

ð5Þ

for ð~x; ~y; ~zÞ the change of coordinates given by the rotations of angles θ and ϕ that transform

the z-axis into the unitary vector η. The convolution of the CT scan with the Gaussian kernel

enhances areas of homogeneous intensity, like air in lungs, trachea and main bronchi (negative

responses) and blood in pulmonary vessels (positive responses). Lungs and vessel are seg-

mented applying Otsu thresholding to the negative response to an isotropic Gaussian kernel

for the lungs and the positive response to a bank of anisotropic Gaussian kernels for pulmo-

nary vessels.

The in-painting inside the segmented structures is based on a nearest neighbor interpola-

tion of CT intensity values. The in-painted volumes, denoted by CT = CT(i, j, k), are the input

for the computation of bronchi local appearance maps.

Airways local appearance maps. The filter describing bronchi local appearance is given

by a blob detector customized to detect tubular structures. The blob detector is given by a

Laplacian operator, D
Y

s
computed using the 2nd derivatives of the Gaussian kernel (5) as:

D
Y

s
¼ D

Y

s
ðx; y; zÞ ¼ @xxgYs þ @yyg

Y
s
þ @zzgYs ¼

¼ ð~x2=s4
x þ ~y2=s4

y þ ~z2=s4
zÞg

Y
s
� ð1=s2

x þ 1=s2
y þ 1=s2

zÞg
Y
s

ð6Þ

Segmentation of distal airways using structural analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0226006 December 19, 2019 6 / 17

https://doi.org/10.1371/journal.pone.0226006


with the scales set to σz>> σy = σx in order to detect tubular-like anisotropic structures. We

crop the filter along its long axis (z-axis) to obtain a filter consistent with a tubular shape. The

cropping planes are set at z-levels including the most negative values of (6), so that our tubular

kernel, denoted by c ¼ c
Y

s
, is given by:

c ¼ c
Y

s
¼

(
D
Y

s
jzj � ~z

0 otherwise
ð7Þ

for ~z the value such that the left tail of a 1D gaussian distribution given by gY
s
ð0; 0; ~zÞ is under

0.01. The kernel ψ is normalized to have unitary L2 norm and centered to have zero integral.

The convolution of the CT scan with ψ enhances airways tubular structures (positive

responses) and airways walls (negative responses).

The maximum positive response to a bank of oriented anisotropic tubular filters defines the

local appearance maps of, both, main and distal airways provided that filter scales are adapted

to the size of main and distal airways.

Initial segmentation of main bronchi. Main bronchi up to 4-6 level have very different

calibers. Instead of convolving CT volumes with filters of varying scales, we adopt a multi-

scale approach and repeatedly down-sample the original volume. For each down-sampling

scale, denoted by l, we convolve the scaled volume with a bank of filters of fixed size. For each

such convolution, the appearance map, noted El, is binarized using a global threshold, denoted

by ThOptl, adapted to the scale using Algorithm 1 for FComplex computed from El binarizations.

The volume CT is subsequently down-sampled by a factor of 2 using a max pooling opera-

tor [22]. Max-pooling was preferred to smoothing operators (like average or median) for the

sake of the preservation of the highest contrast voxels and under the assumption that partial

volume attenuation of bronchial borders is over noise. A max pooling of window size SzePool
= H ×W × D and stride (Sh, Sw, Sd) = (H, W, D) is given by:

MxPoolSzePoolðVÞði; j; kÞ ¼ max
i0 ;j0;k0

Vðiþ ði0 � 1ÞSh; jþ ðj
0 � 1ÞSw; kþ ðk

0 � 1ÞSdÞ

1 � i0 � H; 1 � j0 �W; 1 � k0 � D

for V = V(i, j, k) denoting any 3D volume. In our case, since H = W = D = 2, we will note

MxPoolSzePool by MxPool2.

Using the above notation, the down-scale volumes, denoted by CTl, are subsequently com-

puted from the original scans, CT = CT0, as:

CTl ¼ MxPool2ðCTl� 1Þ ð8Þ

for l = 1, . . ., L, being L the maximum number of poolings.

For each level of down-sampling, CTl is convolved with a bank of oriented filters c
Y

s
with

the scale σ fixed for all levels. The maximum response to such filter bank defines the appear-

ance map El that characterizes bronchi at the level of detail given by the down-sampling. These

maps El are computed as:

El ¼ max
Y
ðCTl � c

Y

s
Þ ð9Þ

For each scale, l, we applied Algorithm 1 to FComplex computed from El in order to obtain optimal

thresholds, noted by ThOptl, globally adapted to each scale. Let Segl denote the segmentation at
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the scale l obtained by thresholding El with ThOptl:

Segl ¼ SeglThOptði; j; kÞ≔

(
1 if Elði; j; kÞ > ThOptl

0 otherwise

then, the multiresolution segmentation scheme we propose is given by:

Segl� 1;l ≔ max ðSegl� 1; SegUplÞÞ l ¼ 1; . . . ; L

SegL;Lþ1 ≔ SegL

with SegI≔ Seg0,1 and SegUpl denoting the un-pooling of Segl given by:

UnPoolSzePoolðVÞði0; j0; k0Þ ¼ MxPoolðVÞði; j; kÞ

Shði � 1Þ � i0 � Shði � 1Þ þ H

Swðj � 1Þ � j0 � Swðj � 1Þ þW

Sdðk � 1Þ � k0 � Sdðk � 1Þ þ D

ð10Þ

In our case, H = W = D = 2, so that UnPoolSzePool = UnPool2. We observe that the max/un-

pooling operation on segmented volumes given by (10) can be understood as an OR operation

between two increasing pooling levels. If the coarser level l is above the threshold, all the neigh-

boring voxels of the finer level l − 1 are forced to belong to the segmentation. Otherwise, only

those above threshold in the finer scale l − 1 (if any) will be included.

Distal refinement of initial segmentation. In order to refine the initial segmentation

using thresholds locally adapted to each distal branch, tubular filtering and its binarization

required to optimize (4) are restricted to a Region of Interest (ROI) containing each distal

branch of the initial segmentation, SegI. Such ROIs are defined as binary masks computed

from SegUp1 and SegI as follows.

Let SegIc denote the complementary mask of SegUp1 in SegI given by SegIc≔ SegI \ SegUp1.

The connected components of this mask are a collection of SegI most distal branches.

For each such component, denoted by SegIBcc, consider its complementary in SegI,
SegIBc

cc ≔ SegI n SegIBcc. Then, the ROI mask, namely ROIcc, containing exclusively the distal

component SegIBcc is computed from SegIBcc and SegIBc
cc distance maps as:

ROIcc ≔

(
1 if dðSegIBccÞ � dððSegIBccÞ

c
Þ

0 otherwise

for d(�) denoting the 3D distance map to a volume mask.

The intersection between E0 and ROIcc defines an appearance map, Ecc≔ E0
T
ROIcc which

cancels outside ROIcc. This way the graph encoding Ecc binarization only represents the local

anatomy of the segmented distal branch and, thus, the optimization of its complexity provides

a threshold adapted to such branch.

Finally, we recall that in case that we set MxComplexity> 0 to optimize either global or

local thresholds, we apply the leakage removal strategy as a post-processing filtering step.

Experimental design

We carried out 2 experiments to validate our method. In Experiment1 we run our method on

the EXACT09 database for comparison to existing segmentation methods. In Experiment2 we
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use our own CT data acquired under different breathing conditions to compare to a commer-

cial software (LungPoint1, Broncus, USA) for VBN [4].

Computations were performed using a serial code implemented in MATLAB (Math-

Works1, Natick, MA, USA) run on a Fujitsu using a Intel(R) Xeon(R) CPU E5-1620 v3 @

3.50GHz with a Titan X Pascal to accelerate the computation of convolutions.

In order to convert segmentations to a graph, the skeleton of the segmented CT volume was

obtained using [23] which is an automatic algorithm for computing subvoxel precise skeletons

of volumetric data based on subvoxel precise distance fields. The skeletonization algorithm

uses as input a subvoxel precise distance field and employs a number of fast marching method

propagations to extract the skeleton at subvoxel precision. The skeleton is converted into a net-

work (undirected) graph describing the segmented bronchi anatomy by nodes and edges using

[24]. The input of the method [24] is a 3D binary image containing a one-dimensional voxel

skeleton, generated e.g. using [23], as well as, the output is the adjacency matrix of the graph,

and the nodes and links of the network as MATLAB structure.

Parameter settings

Table 1 lists PICASSO’s parameters with a brief description, a criterion for their selection and

the values used in these experiments. PICASSO has to set parameters for the optimization of

segmentation’s complexity (MxComplexity, and Bolzano’s stop tolerance, tol, and search inter-

val limits, [xa, xb] = [ThMn, ThMx]), the computation of appearance maps (filter bank parame-

ters, σ, Θ) and the multi-scale approach maximum pooling levels, L.

The parameter MxComplexity measures the deviation of the segmentations from airways

anatomy and, thus, high values increase detection of distal airways at the cost of a higher

computational cost required to remove leakage. In our first experiment, we used two different

complexity values and threshold selection approaches in order to illustrate its impact in segmen-

tations. Regarding Bolzano’s stopping parameter in Algorithm 1, it is related to the accuracy of

the optimal threshold and we heuristically fixed it to achieve a compromise between segmenta-

tion improvement and algorithm efficiency. Finally, the minimum, ThMn, and maximum, ThMx,

thresholds defining Algorithm 1 search interval, should satisfy that FComplex(ThMn)> 0 and

FComplex(ThMx)< 0. We learned this values from EXACT09 training set as the minimum (ThMx)

and maximum (ThMn) values such that FComplex> 0 and FComplex< 0, for all cases in the training

set.

The scale of appearance maps was the same for all resolutions and was set to detect most

distal bronchi to a size including bronchi and parenchyma. Orientations were discretized so

that the rotated kernels are included in the discrete support of an unrotated kernel. This size is

33 × 33 × 33 voxels and is given by the volume containing 99% of the unrotated tubular filter.

Table 1. PICASSO parameters.

Parameter Description Selection Values

MxComplexity deviation from airways anatomy high values increase detection and computational cost (leakage removal) PICASSOB,0

PICASSOL,0

PICASSO,0.15

tol Bolzano’s stopping criterion ThOpt accuracy 50 units of appearance maps

[ThMn, ThMx] Bolzano’s search interval opposite sign of FComplex [750, 975]

σ tubular filter scale distal bronchi size and scan resolution (1,1,4)

Θ tubular filter orientations filters included in σ kernel support Θn,m = (nπ/6, mπ/6)

L multiresolution pooling levels reduce main bronchi to distal size 3

https://doi.org/10.1371/journal.pone.0226006.t001
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Finally, the number of multiresolution levels, L, was set to 3 to ensure that main bronchi

have a similar size than distal ones and, thus, can be detected with tubular filters of scale

(1, 1, 4).

Data sets

Experiment1 (EXACT09 challenge). Our method was applied to the 20 testing CT scans

of the MICCAI Challenge EXACT09 [17] (http://image.diku.dk/exact/) acquired with different

acquisition conditions including variable slice thickness (0.5-1.0 mm), in-plane voxel sizes

(0.55-0.78 mm) and radiation dose (120/140 kVp, 10.0-411.5 mAs).

For evaluation we considered the reference set and metrics presented in [17] and offered by

the EXACT09 site. For the reference segmentations, experienced observers manually evaluated

the results offered by the 15 algorithms compared in the original competition to construct a

common reference standard. Concerning quantitative metrics we considered false positive

rate (artifacts), leakage volume, branches detected (count, percentage) and length (absolute

and in percentage) of the detected bronchial tree.

Experiment2 (CPAP study). This data set was acquired at Hospital de Bellvitge in a clini-

cal study [18] to compare the quality of airway segmentations from CT acquisitions performed

both in end-inspiration and end-expiration with different continuous positive airway pressure

(CPAP) protocols (available at http://iam.cvc.uab.es/portfolio/cpap-study-database/). Scans

were obtained from patients undergoing study of pulmonary lesions and referred for a diag-

nostic thoracic CT scan. For each patient 4 CT acquisitions of the entire lung were obtained

including inspiration, expiration, inspiration with CPAP and expiration with CPAP. Scans

were acquired with a 320-detector row device with slice thickness and interval of 0, 5 and 0, 4

mm respectively performed with Aquilion ONE (Toshiba Medical Systems, Otawara, Japan)

with a 80 x 0.5 mm collimator, tube voltage of 100 kVp. Since this data set has not any annota-

tion nor ground truth for segmentations, we used the number of segmented branches as vali-

dation metric.

Statistical analysis

Experiment1 (EXACT09 challenge). PICASSO’s EXACT09 metrics were compared to

the metrics EXACT09 top performers. PICASSO’s EXACT09 metrics were compared to the

metrics EXACT09 top performers. Top performers were selected as those methods having tree

length detected above 50%. The teams selected were Team2 (automated), Team4 (automated),

Team5 (automated), Team7 (automated), Team13 (automated), Team14 (automated) and

Team15 (interactive). For each metric, descriptive statistics as computed by EXACT09 chal-

lenge were considered.

In order to illustrate the benefits of our adaptive thresholding and leakage removal based

on graphs, we applied our method using 3 different configurations. The first one is a PICASSO

base line (labelled PICASSOB) computed using a common global threshold learned from

EXACT training set to achieve zero complexity, MxComplexity = 0. This configuration sets the

maximum amount of branches that can be detected without artifacts using a fixed threshold.

The second configuration (labelled PICASSOL) is a PICASSO with adaptive local threshold

and MxComplexity = 0.15 to include high number of distal branches. This configuration

sets the maximum number of branches that the tubular kernel of Section Airways Local

Appearance Maps is able to detect. The last configuration (labelled PICASSO) is the full meth-

odology with adaptive local threshold and leakage removal. Like PICASSOL, complexity was

set to MxComplexity = 0.15 to assess the capability for leakage reduction and distal branch

preservation.
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Experiment2 (CPAP study). For the CPAP-Study data was managed and analyzed using

software R version 3.2.5. A descriptive statistical analysis was carried out for number of air-

ways, noted by NAir, using the number of samples, mean and standard deviation (SD). Main

analysis was performed using generalized mixed models in logarithmic scale. In particular, we

followed the model that was used in the CPAP study [25] with an extra variable for the seg-

mentation method. The CPAP model was designed by the Statistical Service of Hospital Uni-

versitari de Bellvitge.

The regression model included as factors the acquisition protocol (EXP, for expiration and

INS for inspiration) and the segmentation method (LungPt/PICASSO) and a random subject

effect to account for intra-individual variability among patients. Inspiratory acquisitions seg-

mented with the commercial software LungPoint were considered the reference baseline. Mea-

sured lung volume (in mm3 as estimated by the CT scan software) was used as adjusting factor

to correct for variations in respiratory maneuvers [26]. The regression model was:

logðNAirijÞ ¼ b0 þ b1Volij þ b2SegMth þ b3I þ Pati þ �ij ð11Þ

for Pati� N(0, σPat) denoting the random effect that models intra-patient variability, Volij lung

volume and SegMth, I two grouping factors for, respectively, the segmentation method (SegMth

= 0 for LungPt, SegMth = 1 for PICASSO) and the acquisition protocol (I = 0 for expiration and

I = 1 for inspiration).

Model assumptions were validated by means of residual analysis and influential values. We

computed model coefficients, p values and 95% confidence interval (CI) for significance in

main effects. The 95% CI for the difference LungPt-PICASSO was also computed. CIs were

back transformed to the original scale for their interpretation. In original scale differences

between segmentation methods are expressed as a ratio. A ratio of 1 indicates an expectation

that the outcome of the methods is not different. A ratio greater than 1 indicates an expected

improvement (a better performance) of PICASSO relative to baseline LungPt. A ratio less than

1 indicates an expected worse performance of PICASSO. A p value < 0.05 was considered sta-

tistically significant.

Results

Experiment1: EXACT09 challenge data set

Fig 2 shows the 3 PICASSO configurations in different colors. The baseline segmentation

PICASSOB is shown in green, PICASSOL leakage is shown in red and PICASSO with leakage

removal is shown in blue. We note that PICASSO graph structural analysis is able to remove

large amounts of leakage while keeping the majority of distal branches.

Fig 3 shows the average tree length versus average false positive rate of all EXACT algo-

rithms including the 3 different configurations of our method: PICASSOB, PICASSOL and the

full method with leakage removal PICASSO. Table 2 shows descriptive statistics (as reported

by EXACT09) for the results obtained by the 3 PICASSO configurations and top teams mean

results at the bottom rows.

The baseline PICASSOB has TLD = 43.8% and FPR = 1.58%. This numbers are compara-

ble to the ones obtained by most newer methods (available at http://image.diku.dk/exact/

newresults.php) evaluated after the challenge. In spite of setting MxComplexity = 0, PICAS-

SOB has FPR>0%. We think this is due to two main factors: EXACT09 metrics and using a

fixed threshold learned on EXACT training set. On one hand, EXACT09 metrics base on a

ground truth created from all results submitted to the original challenge. This means that if

a method detects a (part of) a branch that was not detected by any of the submitted methods

it will be counted as false positive [17]. These makes metrics of all methods evaluated after
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Fig 2. EXACT09: Performance of PICASSO in terms of leakage suppression (red voxels) and branch detection

with varying complexity (complexity 0, green voxels; complexity 0.15, blue voxels). Case 24 in the left panel and

case 34 in the right one.

https://doi.org/10.1371/journal.pone.0226006.g002

Fig 3. EXACT09: False positive rate vs tree length detected. The 15 bullets are results represented in [17] after the 15

algorithms originally tested, while the 3 asterisks are relevant to the 3 versions of the proposed PICASSO algorithm,

which are newly inserted for a comparison.

https://doi.org/10.1371/journal.pone.0226006.g003
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2009 to be overstated in FPR and understated in TLD. On the other hand, due to variability

across cases, a threshold having FPR = 0% on the training set, might include some leakage on

(EXACT test set) new cases.

The configuration PICASSOL with adaptive threshold and positive complexity, incre-

ments TLD 24.2% at the cost of a high increase (a 25.76%) in FPR. After leakage suppression

(PICASSO), FPR drops 20.82% (which represents 76% of leakage removal) while 92% of

branches are preserved with only 5.7% decrease in TLD. We observe that compared to

EXACT top performers PICASSO is competitive in terms of airway detection (being the 3rd

best in terms of % of detected branch and tree length in cm) and fair in terms of leakage pres-

ence (even good in terms of mm3).

Experiment2: CPAP-Study data set

Descriptive statistics and model adjustment for the number of airways is given in Table 3.

Both factors, segmentation method and inspiration, were significant (p-val < 0.001). In

particular, PICASSO significantly (p-val < 0.001) increased the number of airways 1.3-fold

over LungPt with a 95% CI for rate ratio equal to (1.26, 1.32). As expected the number of

airways in inspiration was significantly higher than in expiration, with an average 1.7-fold

increase.

Fig 4 shows segmentations obtained for LungPt and PICASSO for two cases in inspiration

and expiration. For both methods, the number of branches in inspiration is larger than in expi-

ration. PICASSO segments more branches than LungPt for the inspiration of the upper case

and the expiration of the lower case, whereas is comparable in the remaining cases.

Table 2. EXACT09: PICASSO experiments vs top teams.

Branch count Branch (%) Tree length (cm) TLD (%) Leak count Leak (mm3) FPR (%)

PICASSOB 103.5 43.8 74.5 36.8 7.5 179.3 1.58

PICASSOL 164.9 68.0 131.8 61.4 103.7 3804.9 27.34

PICASSO 151.6 62.3 118.9 55.4 73.2 987.3 6.52

Team2 158 62.8 122.4 56 12 563 2.0

Team4 187 76.5 158.7 73.3 35 5138 15

Team5 150 59.8 118.4 54.0 2 18 0.1

Team7 147 57.9 125.2 55.2 6 577 2.4

Team13 151 63.0 122.4 58.4 5 372 1.4

Team14 161 67.2 115.4 57.0 44 1873 7.2

Team15 149 63.1 119.2 58.9 10 159 1.2

https://doi.org/10.1371/journal.pone.0226006.t002

Table 3. CPAP-Study: Model for number of airways.

Explicative variables Descriptive Model

n mean SD coeff p-val 95% CI

SegMth

LungPoint 64 190 117 1 - (134, 213)

PICASSO 64 239 172 0.17 <0.01 (159, 252)

Inspiration

INS 64 305 152 1 - (198, 327)

EXP 64 124 69 -0.65 <0.01 (103, 171)

https://doi.org/10.1371/journal.pone.0226006.t003
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Discussion

Evaluation on EXACT09 cases shows that our method for leakage removal is able to reduce

leakage 76% in average while keeping 92% of the detected branches. Comparing to top

EXACT methods, PICASSO achieves a relatively high branch detection rate TDL = 62.3%,

although still keeps FPR = 6.2%. Although TDL is relatively far from top performers evaluated

on EXACT, like Team 4 (TDL = 76.5%; FPR = 15%) or the newer [15] (TLD = 71.6%;

FPR = 9.75%) and [27] (TDL = 79.9%; FPR = 11.92%), PICASSO has a substantially lower

FPR. We would like to note that metrics are bounded by the underlying method for airway

detection. In this case, the multi-resolution scheme based on hand-craft filters has (PICASSOL)

a top TDL = 68% with FPR = 27.34%.

Comparing to recent methods for threshold adaptation [7] evaluated on EXACT09 cases,

PICASSO is superior in terms of detection but inferior in terms of leakage presence. The

increase in airway detection could be attributed to different approaches for the detection of air-

ways (multiresolution appearance maps in our case versus region growing in the case of [7])

rather than to the threshold optimization process. Also, as the same authors admit, to avoid

leakage segmentation in some cases the algorithm may stop too early, avoiding possible seg-

mentation of peripheral branches.

Comparing to newest methods for leakage removal [16] also evaluated on EXACT09 cases,

our graph strategy is fairly inferior in terms of leakage removal but superior in terms of branch

preservation. Experiment3 in [16] on EXACT Team14 (TDL = 59%; FPR = 7.13%) report a

drop of 6.12% in FPR (20.82% for PICASSO) and a drop of 7.2% in TDL (5.7% for PICASSO).

These numbers represent a 85% (76% for PICASSO) of total leakage removal with a 87.8%

(91.6% for PICASSO) of detections preserved.

Concerning the computational complexity, Table 4 reports the ranges (μ ± σ) for the 2 data-

bases (EXACT and CPAP), as well as, average scan resolution and number of cases. We report

the complexity for each of the main steps of our algorithm: 1. Multi-scale initial segmentation

with global threshold adaptation; 2. Distal refinement with local threshold adaptation (PICAS-
SOL); and, 3. Distal refinement leakage removal (PICASSO). The highest computational cost is

in the computation of the segmentation skeleton required for threshold optimization. In the

case of the global adaptation (Step1), since the computation of the skeleton is based on fast

marching, its complexity increases with scan resolution. In the case of the local refinement

Fig 4. CPAP-Study:PICASSO vs LungPoint.

https://doi.org/10.1371/journal.pone.0226006.g004
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(Step2), given that distal branches are sequentially processed, complexity also depends on their

number and, thus, it also increases along with scan resolution.

Conclusion

Segmentation of most distal airways is a must for virtual bronchoscopy biopsy guiding [28].

The variability in appearance of distal regions across patients suggests using thresholds

adapted for each patient and bronchial level. This paper presents an original strategy based

on graph structural analysis for selecting optimal thresholds of maps codifying bronchi local

appearance.

Results show that graph structural analysis can provide interesting approaches to anatomi-

cal modelling and pattern analysis without the need of exhaustive training. By incorporating

anatomical structure information to segmentation methods, it is possible to achieve optimal

specificity (leakage presence). Even if results are not superior in terms of sensitivity to current

state-of-art supervised techniques, structural methods do not need annotated data for their

design (training). Given the difficulty to produce high quality annotated clinical data, this is a

main advantage for the development of clinical support systems.

The analysis of complexity in Table 4 shows that PICASSO has an average overall cost of

10.87 minutes for high resolution scans and 21.36 minutes for very high resolution scans using

a MATLAB serial implementation. On one hand, such times could drop using a parallel imple-

mentation. On the hand, we observe that this complexity is not so critical for a clinical use,

since airway segmentation is mainly used off-line during intervention planning.

Still, PICASSO could be improved in three aspects: leakage characterization, baseline

method for airways detection and computational cost. First, the description of leakage struc-

ture as a graph cycle excludes tubular leakage that might appear parallel to airways. Although

these are rare cases, they represent a portion of PICASSO 6.2% FPR and, thus, they should be

also characterized to complete our measure of complexity. Second, PICASSO could improve

its performance if the baseline method for airway detection was more sensitive to airways, like

EXACT Team4. In this context, we think that the combination of our graph structural analysis

with a baseline method based on self-learned kernels (like CNNs) could provide an optimal

approach to distal branch segmentation. Although it is not a critical point for clinical use, the

method complexity would significantly improve if the local refinement was parallelized to pro-

cess several branches together.
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