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Incorporating Fuzzy Information in Pricing Substandard Annuities 
 

ABSTRACT 
There is a growing interest in the insurance industry in offering substandard annuities. These annuities, 
based on medical underwriting, provide a greater pay out than the standard ones to those individuals who 
are expected to have a lower than average life expectancy. Medically underwritten annuities often involve 
imprecise or vague information about the individuals such as health status and lifestyle. To address this 
issue, this paper proposes two approaches based on Fuzzy Sets Theory tools. Firstly, in order to determine 
substandard annuity payments, fuzzy mortality factors (also known as mortality multipliers) are 
introduced. These fuzzy mortality factors, modelled by means of triangular fuzzy numbers, can be 
estimated using conventional statistical confidence intervals. Secondly, by designing a fuzzy inference 
system, we demonstrate how to obtain the substandard annuity payment based on imprecise or vague 
personal information about annuitants. Numerical applications based on Spanish mortality data are 
provided for illustration.  
 
KEYWORDS 
Substandard annuity payment; Underwriting; Fuzzy number; Frailty; Fuzzy mortality factor (or 
multiplier); Fuzzy inference system. 
 
 
1. INTRODUCTION 
 
Traditionally, it has been a common practice for insurance companies that sell annuities to offer the same 
price to all policyholders of the same age. It is assumed that each policyholder has an “average” health 
condition based on their age. In such a way, no risk classification is considered when pricing standard 
annuities. Thus, they are expensive and unfair for those who have a life expectancy below average due to 
their poor health condition and/or lifestyle. To improve marketing, there is a growing interest in offering 
substandard annuities (also known as underwritten or enhanced annuities) on a medically underwritten 
basis. A substandard annuity contract uses insureds’ health and lifestyle information to offer a greater pay 
out to those individuals who are expected to have a lower than average life expectancy.  
 
Substandard annuities have been the subject of several papers. Gatzert and Klotzki (2016) discussed three 
different research focuses of substandard annuities: description of market characteristics, analysis of the 
implications of introducing substandard annuities and pricing and underwriting techniques. The market 
characteristics includes development, size, products, customer behaviour, key success factors/drivers of 
profitable business, underwriting methods and processes in the UK and the US/Canada. A comprehensive 
description of some of these areas can be found in LIMRA and Ernst & Young (2006). Papers on the effects 
of introducing substandard annuities discussed how they might affect in, for example: the insurer’s profits, 
the standard annuity market, distribution channels, reinsurance, the so-called annuity puzzle, adverse 
selection and the demand for annuities. Several authors, as Hoermann and Ruß (2008), Gatzert, Schmitt-
Hoermann and Schmeiser (2012) and Olivieri and Pitacco (2016) concluded that, in general, the practice 
of individual underwriting always increases insurer’s profitability and that offering substandard annuities 
would have a beneficial effect on the insurer’s risk profile. Papers on pricing and underwriting techniques 
of substandard annuities, as Gatzert, Schmitt-Hoermann and Schmeiser (2012) and Meyricke and Sherris 
(2013), dealt with medical underwriting, pricing factors and risk classification. Further, Ramsay and 
Oguledo (2019) analized doubly enhanced annuities that provide not only greater annual benefits to 
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insureds with shorter than average life expectancies, but also long-term care benefits and a bequest motive 
through a death benefit. Other papers related to substandard annuities are provided in Table 1. 
 
The development of the annuity market is likely to make substandard annuities an important provision 
saving asset (Gatzert and Klotzki (2016)). This leads to a change in the annuity market from the age-based 
pricing to a medically underwritten pricing, allowing for heterogeneity among an age class. This 
phenomenon is already happening in some countries (such as the UK and the US) where substandard 
annuities are present and it has given rise to the consideration of different risk factors, including postal 
code, smoking condition, blood pressure level, cholesterol value and body-mass-index. 
 
This paper contributes to current pricing and underwriting techniques to price substandard annuities by 
using Fuzzy Sets Theory (FST). Traditional actuarial methodologies have been built upon classical or 
binary logic and probabilistic models, which are the cornerstones of the Actuarial Science. However, a 
significant amount of information that insurance companies use is imprecise, vague or does not have a 
clear definition and thus, cannot be modelled using traditional methods. For this purpose, FST provides a 
useful way of formally treating such imprecise information. Since the paper by De Wit (1982) that first 
used FST in an actuarial context, FST has been applied to a wide range of actuarial areas (see Table 1). 
Although actuarial quantitative analysis is essentially based on statistical methods, it is nowadays accepted 
that FST is a useful complemental tool to statistics (see Derrig and Ostaszewski (2004)). 

TABLE 1 
OVERVIEW OF THE LITERATURE ON SUBSTANDARD ANNUITIES AND FST INSURANCE APPLICATIONS 

Actuarial topic Papers (chronological order) 

Substandard annuities 

Brown and McDaid (2003), Kwon and Jones (2006), LIMRA and 
Ernst & Young (2006), Hoermann and Ruß (2008), Becker and 
Hurley (2011), Telford et al. (2011), Gatzert, Schmitt-Hoermann and 
Schmeiser (2012), Ridsdale (2012), Charrington (2013), Meyricke 
and Sherris (2013), Woo (2013), Kling, Ritcher and Ruß (2014), 
Fong (2015), Gatzert and Klotzki (2016), OECD (2016), Olivieri and 
Pitacco (2016) and Ramsay and Oguledo (2019). 

Fuzzy classification 
Lemaire (1990), Ostaszewski (1993), Derrig and Ostaszewski 
(1995), Verrall and Yakoubov (1999), Subudhi and Panigrahi (2017) 
and Majhi et al. (2019). 

Fuzzy underwritting 
De Wit (1982), Lemaire (1990), Young (1993), Horgby, Lohse and 
Sittaro (1997), Jablonowski (1997), Horgby (1998), Shapiro and 
Koissi (2015), Esfandabadi and Esfahani (2018), Torbati and Sayadi 
(2018). 

Fuzzy projected liabilities 
Cummins and Derrig (1993), Dalkilic, Tank and Kula (2009), Huang, 
Zhao and Tang (2009), Heberle and Thomas (2014), Andrés-Sánchez 
(2016), Kemaloglu et al. (2018) and Apollinaire, Le Doux and 
Ronald (2019), 

Fuzzy future and present values 
Buckley (1987), Lemaire (1990), Ostaszewski (1993), Betzuen, 
Jiménez and Rivas (1997), Jiménez and Rivas (1998), Mircea and 
Covrig (2015) and Vernic (2016). 

Fuzzy insurance pricing 
Lemaire (1990), Young (1996), Cummins and Derrig (1997), Koissi 
and Shapiro (2006), Shapiro (2013), Andrés-Sánchez and González-
Vila (2012, 2017, 2019), Anzilli, Facchinetti and Pirotti (2018) and 
Subartini et al. (2018). 

Asset allocation, cash flows 
and investments with FST 

Derrig and Ostaszewski (1997), Andrés-Sánchez and Terceño 
(2003), Chang (2003), Zhang et al. (2011) and Wang (2019). 
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To the best of our knowledge, little research has been done using FST in pricing substandard annuities. 
However, as it has been previously discussed, pricing this type of annuity requires collecting individual 
policyholder’s medical information that may be imprecise or vague. For instance, information like “high 
blood pressure”, “overweight”, “very good health status”, can be hard to define precisely. So, using fuzzy 
sets to represent this vague information and constructing a Fuzzy Inference System (FIS) based on these 
fuzzy sets is very suitable to price substandard annuities. As stated in LIMRA and Ernst & Young (2006, 
pages 32–34), once the health information of the prospective policyholder is collected (usually by a 
questionnaire and/or by interviews with the policyholder’s doctor), the insurance company will determine 
the reduction of individual’s life expectancy and, from it, the corresponding annuity payment. This 
payment can be based on a mortality factor applied to the mortality base table used by the insurance 
company, thus obtaining modified mortality probabilities. This paper models both mortality factors and 
modified mortality probabilities by means of fuzzy numbers (FNs), the main instrument used in FST to 
represent uncertain quantities. The intrinsic nature of some information collected with an unclear definition 
makes it reasonable to consider both fuzzy mortality factors and fuzzy probabilities related to mortality (or 
survival) rates as discussed in several papers (e.g. Lemaire (1990), Koissi and Shapiro (2006) and Shapiro 
(2013)). 
 
The remainder of this paper is organised as follows. Section 2 provides some basic notations and definitions 
of FST used in the paper. Section 3 describes a framework for pricing substandard annuities with a fuzzy 
mortality factor and proposes several ways to adjust this parameter with a triangular FN (TFN). Section 4 
develops an FIS that allows determining the level payment of a substandard annuity. Conclusions and 
further extensions are summarized in Section 5. 
 
 
2. BASIC NOTATION ON FUZZY SETS 
 
Throughout this paper, a fuzzy set defined over a reference set 𝑋𝑋 is denoted by �̃�𝐴, being its membership 
function 𝜇𝜇𝐴𝐴�:𝑋𝑋→[0,1], i.e. �̃�𝐴 =  ��𝑥𝑥, 𝜇𝜇𝐴𝐴�(𝑥𝑥)�|𝑥𝑥 ∈ 𝑋𝑋�. Furthermore, the 𝛼𝛼-cuts of �̃�𝐴 are 𝐴𝐴𝛼𝛼   with 𝐴𝐴𝛼𝛼 =
{𝑥𝑥 ∈ 𝑋𝑋|𝜇𝜇𝐴𝐴�(𝑥𝑥) ≥ 𝛼𝛼}, for any 𝛼𝛼 ∈ (0, 1] with the convention that 𝐴𝐴𝛼𝛼=0 is the closure of the support1 of �̃�𝐴. 
An FN can be interpreted as a fuzzy quantity approximately equal to the real number for which the 
membership function takes the value 1. 
 
A triangular fuzzy number (TFN) over the set of real numbers ℜ, is denoted as �̃�𝐴 = (𝐴𝐴𝑙𝑙 ,𝐴𝐴𝑐𝑐 ,𝐴𝐴𝑢𝑢), being 𝐴𝐴𝑐𝑐 
the core (also known as center or mode) of the FN with 𝜇𝜇𝐴𝐴�(𝐴𝐴𝑐𝑐) = 1, whereas [𝐴𝐴𝑙𝑙 ,𝐴𝐴𝑢𝑢] is its support and 
𝐴𝐴𝛼𝛼 = �𝐴𝐴(𝛼𝛼),𝐴𝐴(𝛼𝛼)� = [𝐴𝐴𝑙𝑙 + (𝐴𝐴𝑐𝑐 − 𝐴𝐴𝑙𝑙)α,  𝐴𝐴𝑢𝑢 − (𝐴𝐴𝑢𝑢 − 𝐴𝐴𝑐𝑐)α] are their 𝛼𝛼-cuts. The core 𝐴𝐴𝑐𝑐 can be 
understood as the most reliable value of the TFN . TFNs are often used to quantify imprecise quantitative 
predictions. For example, a physician's statement as "Risk factor X increases mortality probabilities by 
about 100% -150%" can be quantified in a natural way as (100%, 125%, 150%). 
 
Let be 𝑓𝑓 be a continuous real-valued function of 𝑛𝑛-real variables 𝑥𝑥𝑗𝑗, 𝑗𝑗 = 1,2, … ,𝑛𝑛. If 𝑥𝑥𝑗𝑗𝑠𝑠  are not crisp 
numbers, but FNs �̃�𝐴𝑗𝑗 with α–cuts 𝐴𝐴𝑗𝑗 𝛼𝛼 = �𝐴𝐴𝑗𝑗(𝛼𝛼),𝐴𝐴𝑗𝑗(𝛼𝛼)�, 𝑗𝑗 = 1,2, … ,𝑛𝑛, an FN 𝐵𝐵�  is induced via 𝑓𝑓 such that 
𝐵𝐵� = 𝑓𝑓��̃�𝐴1, �̃�𝐴2, … , �̃�𝐴𝑛𝑛�. It is often difficult to obtain a closed expression for the membership function of 𝐵𝐵� . 

                                                           
1 The support of �̃�𝐴 is the set of all 𝑥𝑥 ∈ 𝑋𝑋 with 𝜇𝜇𝐴𝐴�(𝑥𝑥) > 0. 
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However, if 𝑓𝑓 increases with respect to 𝑥𝑥𝑗𝑗,  j=1,2,…,m, 𝑚𝑚 ≤ 𝑛𝑛, and decreases in the last 𝑛𝑛 −𝑚𝑚 variables, 
Buckley and Qu (1990) demostrated that the closed expression of 𝐵𝐵𝛼𝛼 is 

𝐵𝐵𝛼𝛼 = �𝐵𝐵(𝛼𝛼),𝐵𝐵(𝛼𝛼)� = �𝑓𝑓 �𝐴𝐴1(𝛼𝛼),𝐴𝐴2(𝛼𝛼), … ,𝐴𝐴𝑚𝑚(𝛼𝛼),𝐴𝐴𝑚𝑚+1(𝛼𝛼),𝐴𝐴𝑚𝑚+2(𝛼𝛼), …𝐴𝐴𝑛𝑛(𝛼𝛼)� , 

𝑓𝑓 �𝐴𝐴1(𝛼𝛼),𝐴𝐴2(𝛼𝛼), …𝐴𝐴𝑚𝑚(𝛼𝛼),𝐴𝐴𝑚𝑚+1(𝛼𝛼),𝐴𝐴𝑚𝑚+2(𝛼𝛼), … ,𝐴𝐴𝑛𝑛(𝛼𝛼)��  (1) 
 
It is worth noting that the result 𝐵𝐵�  of evaluating a non-linear 𝑓𝑓 with the TFNs �̃�𝐴𝑗𝑗 is not necessarily a TFN. 
However, the FN 𝐵𝐵�  can be approximated by a TFN, through secant approach (SA). It builds up the shape 
of the approximate FN 𝐵𝐵�′ on 𝐵𝐵�  by means of the secant lines that unite the 0-cut and the 1-cut of 𝐵𝐵� . Such 
that 𝐵𝐵�′ is a TFN as (𝐵𝐵𝑙𝑙 ,𝐵𝐵𝑐𝑐 ,𝐵𝐵𝑢𝑢) = �𝐵𝐵(0),𝐵𝐵(1) = 𝐵𝐵(1),𝐵𝐵(0)�. This approximation, as shown in 
Kaufmann (1986), works relatively well for nonlinear functions of TFNs like product, division, power, etc. 
In that paper, it has shown that this approach fitted fuzzy net present values with triangular fuzzy 
parameters. Other applications of the SA in financial and insurance contexts can be found in Jiménez and 
Rivas (1998) and Heberle and Thomas (2014). Notice that this approximating method only requires 
evaluating 𝑓𝑓 at three different points: the lower value 𝐵𝐵𝑙𝑙  , the upper value 𝐵𝐵𝑢𝑢 and the most feasible value 
𝐵𝐵𝑐𝑐.  
 
 
3. PRICING SUBSTANDARD ANNUITIES WITH FUZZY PARAMETERS 
 
3.1. Modelling fuzzy heterogeneity in substandard annuity payments 
 
As pointed out by Pitacco (2019), modeling mortality heterogeneity commonly follows two steps. Firstly, 
a biometric function (presented, e.g. as a mortality base table) to represent the average age-pattern of 
mortality for a given population (e.g.  population of a country, members of a pension fund, etc.) is set. 
Secondly, a “specific” age-pattern of mortality (in particular, mortality of people in poorer or better 
conditions than the average) must be expressed as a transformation of that biometric function. Olivieri 
(2006) outlines that it is commonplace in actuarial mathematics capturing mortality heterogeneity by 
modifying standard yearly mortality rates as 

𝑞𝑞′𝑥𝑥 = 𝑑𝑑 ∙ 𝑞𝑞𝑥𝑥 + 𝑐𝑐     (2) 

𝑞𝑞′𝑥𝑥 = 𝑞𝑞𝑥𝑥+𝑡𝑡 ,   𝑡𝑡 = 1,2, …     (3) 

Here 𝑞𝑞𝑥𝑥 is the mortality probability of dying between age 𝑥𝑥 and 𝑥𝑥 + 1 in the base table, the superscript “ ′ 
“ symbolizes modified rates, the coefficient 𝑑𝑑 is the mortality factor (also known in the insurance industry 
as “the multiplier”) and 𝑐𝑐 is a parameter that, following Olivieri (2006), models extra-mortality due to 
accidents (related either to occupation or to extreme sports) in certain insurance contracts. As stated in 
LIMRA and Ernst & Young (2006), one of the most common practices of insurance companies is to choose 
a mortality base table, to perform prospective insured's individual underwriting and to collect their medical 
information. Then, medical underwriters must estimate, at least, one of the following two parameters: 

• Mortality factor (or multiplier), 𝑑𝑑, that must be applied in (2) on the mortality base table to obtain 
modified mortality probabilities. For example, an extra-mortality of 100% implies multiplying 
annual mortality probabilities for each age 𝑥𝑥, 𝑞𝑞𝑥𝑥, by 𝑑𝑑 = 2. From the modified mortality 
probabilities, the insured’s modified life expectancy can be obtained. 

• Insured’s modified life expectancy that will allow determining their modified age group and 
obtaining (3). 
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Olivieri (2006) indicated that in the field of substandard annuities (2) is often used. So, this paper focuses 
on the modification of mortality probabilities of a base table by a mortality factor. It is also often assumed 
in the insurance industry that, in (2), 𝑐𝑐 = 0 and 𝑑𝑑 = 1 + 𝛾𝛾, with 𝛾𝛾 > 0 for the case of substandard annuities. 
For example, in Gatzert, Schmitt-Hoermann and Schmeiser (2012), Hoermann and Ruß (2008) and Kling, 
Ritcher and Ruß (2014) each person is characterized by a factor 𝑑𝑑 (referred to as frailty factor) and their 
individual mortality probabilities are given by 𝑑𝑑 times the mortality probabilities from a standard mortality 
base table. Therefore, an insured (annuitant) with an individual factor 𝑑𝑑 > 1 has an above-average 
mortality rate (or, equivalently, a below-average life expectancy). Obviously, this factor cannot be greater 
than 1

𝑞𝑞𝑥𝑥
 as 𝑞𝑞′𝑥𝑥 ≤ 1 for all age 𝑥𝑥. 

 
In practice, as stated by Pitacco (2019), γ  can be adjusted by using the credit-debit method, where each 
factor that affects an insured’s life expectancy negatively (positively) generates a debit (credit). A debit 
increases mortality probabilities whereas a credit diminishes them. A common and intuitive 
implementation of this method is the numerical rating system. For 𝑚𝑚 factors, γ  can be expressed as 𝛾𝛾 =
∑ ρ𝑗𝑗
𝑚𝑚
𝑗𝑗=1 , where ρ𝑗𝑗 is a debit (positive value) or credit (negative  value) for the jth factor, and so 

𝑑𝑑 = 1 + γ = 1 + ∑ 𝜌𝜌𝑗𝑗𝑚𝑚
𝑗𝑗=1  (4) 

 
Alternatively, it is possible to use the estimate of modified life expectancy for a person aged 𝑥𝑥, 𝑒𝑒′𝑥𝑥, with 
repect to the standard life expectancy, 𝑒𝑒𝑥𝑥. So, the modified life expectancy for a person aged 𝑥𝑥 can be 
defined as 

𝑒𝑒′𝑥𝑥 = 𝑓𝑓 ∙ 𝑒𝑒𝑥𝑥,      (5) 
where 𝑓𝑓 < 1 for substandard annuities. Therefore, 𝑓𝑓 = 1 − 𝜙𝜙, for 0 < 𝜙𝜙 < 1, with 𝜙𝜙 quantifying the 
deduction rate on the standard curtate life expectancy 𝑒𝑒𝑥𝑥 for an individual aged 𝑥𝑥, whereas 𝜙𝜙 · 𝑒𝑒𝑥𝑥 is the 
number of the expected years of life lost due to the personal circumstances that originate 𝜙𝜙. Recall that the 
standard curtate life expectancy is 𝑒𝑒𝑥𝑥 = ∑ 𝑝𝑝𝑥𝑥𝑡𝑡

𝜔𝜔−𝑥𝑥
𝑡𝑡=1 , where 𝑝𝑝𝑥𝑥𝑡𝑡  are the probabilities of surviving until 𝑡𝑡 

(for 1 ≤ 𝑡𝑡 ≤ 𝜔𝜔 − 𝑥𝑥, with 𝜔𝜔 being the maximum attainable age) and can be obtained from a standard 
mortality base table. If we write 𝑝𝑝′𝑥𝑥𝑡𝑡 = (1 − 𝜙𝜙) 𝑝𝑝𝑥𝑥𝑡𝑡 , then the substandard curtate life expectation is 

𝑒𝑒′𝑥𝑥 = ∑ 𝑝𝑝′𝑥𝑥𝑡𝑡
𝜔𝜔−𝑥𝑥
𝑡𝑡=1      (6) 

 
In the sequel, a non-deferred immediate annuity to be paid to an annuitant aged 𝑥𝑥 at the end of each living 
year is considered. The insured pays a fixed single premium, 𝛱𝛱, in exchange for the annuity. Further, it is 
assumed that the insurer uses a mortality base table that is modified with the parameter 𝑑𝑑 and an interest 
rate, 𝑖𝑖. So, the annual payment 𝐶𝐶  that the insured will receive can be obtained by using an standard annuity 
pricing formula (see e.g. Gerber (1997, p. 35-47)) 

𝐶𝐶 = 𝛱𝛱
∑ (1+𝑖𝑖)−𝑡𝑡 ∏ (1−𝑞𝑞′𝑥𝑥+𝑘𝑘)𝑡𝑡−1

𝑘𝑘=0
𝜔𝜔−𝑥𝑥
𝑡𝑡=1

     (7) 

where 𝑞𝑞′𝑥𝑥+𝑘𝑘  = min{1,𝑑𝑑 ∙ 𝑞𝑞𝑥𝑥} and 𝑑𝑑 is the mortality factor as in (2), with 𝑑𝑑 = 1 for a standard annuity and 
𝑑𝑑 > 1 for a substandard annuity. 
 
Alternatively, if a survival factor 𝑓𝑓 = 1 − 𝜙𝜙 (as in (5)) is considered, the annual substandard annuity 
payment, 𝐶𝐶, is given by 

𝐶𝐶 = 𝛱𝛱
∑ (1+𝑖𝑖)−𝑡𝑡𝑓𝑓· 𝑝𝑝𝑥𝑥𝑡𝑡
𝜔𝜔−𝑥𝑥
𝑡𝑡=1

= 𝛱𝛱
∑ (1+𝑖𝑖)−𝑡𝑡 𝑝𝑝′𝑥𝑥𝑡𝑡
𝜔𝜔−𝑥𝑥
𝑡𝑡=1

    (8) 
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The mortality factor 𝑑𝑑 (or the survival factor 𝑓𝑓) can be modelled stochastically, e.g. by means of a gamma 
distribution (Hoermann and Ruß (2008), Gatzert, Schmitt-Hoermann and Schmeiser (2012), Kling, Ritcher 
and Ruß (2014) and Olivieri and Pitacco (2016)). However, some information of the risk factors considered 
in the underwriting process of substantdard annuities is often ill defined. Indeed, as pointed out by Horgby, 
Lohse and Sittaro (1997) and Horgby (1998), judgements as “high blood pressure”, “overweight” or “very 
high level of cholesterol” could be considered as linguistic variables with unclear borders and could be 
well-modelled by fuzzy sets, instead of being represented by a single (crisp) value. Therefore, this paper 
proposes modelling the multiplier 𝑑𝑑 (or the survival factor 𝑓𝑓) by means of TFNs thus generating both fuzzy 
mortality and fuzzy survival probabilities. Notice that fuzzy mortality and survival probabilities were also 
used in Lemaire (1990), Koissi and Shapiro (2006), Shapiro (2013) and Andrés-Sánchez and González 
Vila (2019). 
 
We are now in a position to discuss how to extend the standard actuarial formulas (7) and (8) to the use of 
a fuzzy mortality factor �̃�𝑑, estimated as a TFN. In our model, instead of using a crisp mortality (survival) 
factor equal to 𝑑𝑑 (or 𝑓𝑓), we use “approximately equal to 𝑑𝑑 ( or 𝑓𝑓)”, and so working with fuzzy mortality 
(survival) probabilities is necessary. Therefore, if instead of using the crisp value 𝑑𝑑 for the mortality factor, 
it is substituted by the fuzzy mortality factor �̃�𝑑 = (𝑑𝑑𝑙𝑙  , 𝑑𝑑𝑐𝑐  , 𝑑𝑑𝑢𝑢), with 𝛼𝛼-cuts 𝑑𝑑𝛼𝛼 = �𝑑𝑑(𝛼𝛼),𝑑𝑑(𝛼𝛼)�, the 
guaranteed income 𝐶𝐶 in (7) is then replaced by an FN, �̃�𝐶, whose 𝛼𝛼-cuts, 𝐶𝐶𝛼𝛼 = �𝐶𝐶(𝛼𝛼),𝐶𝐶(𝛼𝛼)�, can be 
obtained by using (1) and considering that (7) is an increasing function with respect to 𝑑𝑑. 
 
Let us define the fuzzy modified probability of death by 

𝑞𝑞�′𝑥𝑥+𝑘𝑘 = �̃�𝑑 ∙ 𝑞𝑞𝑥𝑥+𝑘𝑘 
 
Noting that 𝑞𝑞�′𝑥𝑥+𝑘𝑘 cannot take values greater than 1 and that two positive numbers are multiplied, it can be 
got 

𝑞𝑞′𝑥𝑥+𝑘𝑘𝛼𝛼 = �𝑞𝑞′𝑥𝑥+𝑘𝑘(𝛼𝛼), 𝑞𝑞′𝑥𝑥+𝑘𝑘(𝛼𝛼)� = �min{1,𝑑𝑑(𝛼𝛼) · 𝑞𝑞𝑥𝑥+𝑘𝑘}, min{1,𝑑𝑑(𝛼𝛼) · 𝑞𝑞𝑥𝑥+𝑘𝑘 }� = 
        = [min{1, (𝑑𝑑𝑙𝑙 + (𝑑𝑑𝑐𝑐 − 𝑑𝑑𝑙𝑙)α) · 𝑞𝑞𝑥𝑥+𝑘𝑘}, min{1, ( 𝑑𝑑𝑢𝑢 − (𝑑𝑑𝑢𝑢 − 𝑑𝑑𝑐𝑐)α) · 𝑞𝑞𝑥𝑥+𝑘𝑘 }]  (9) 

 
And so 

𝑞𝑞�′𝑥𝑥+𝑘𝑘≈�𝑞𝑞′𝑥𝑥+𝑘𝑘  𝑙𝑙 , 𝑞𝑞′𝑥𝑥+𝑘𝑘  𝑐𝑐  , 𝑞𝑞′𝑥𝑥+𝑘𝑘  𝑢𝑢� = (min{1,𝑑𝑑𝑙𝑙 · 𝑞𝑞𝑥𝑥+𝑘𝑘} , min{1,𝑑𝑑𝑐𝑐 · 𝑞𝑞𝑥𝑥+𝑘𝑘} , min{1,𝑑𝑑𝑢𝑢 · 𝑞𝑞𝑥𝑥+𝑘𝑘})
 (10) 

 
Thus the 𝛼𝛼-cuts of the substandard annuity fuzzy payment �̃�𝐶 are given by 

𝐶𝐶𝛼𝛼 = �𝐶𝐶(𝛼𝛼),𝐶𝐶(𝛼𝛼)� = � 𝛱𝛱

∑ (1+𝑖𝑖)−𝑡𝑡 ∏ �1−𝑞𝑞′𝑥𝑥+𝑘𝑘(𝛼𝛼)�𝑡𝑡−1
𝑘𝑘=0

𝜔𝜔−𝑥𝑥
𝑡𝑡=1

, 𝛱𝛱
∑ (1+𝑖𝑖)−𝑡𝑡 ∏ �1−𝑞𝑞′𝑥𝑥+𝑘𝑘(𝛼𝛼)�𝑡𝑡−1

𝑘𝑘=0
𝜔𝜔−𝑥𝑥
𝑡𝑡=1

 �  (11) 

 
Expression in (11) is analogous to those in Zhang et al. (2011) that dealt with problems of project valuation 
and portfolio selection under fuzzy uncertainty. Note that in order to find the lower and upper bounds of 
(11), one only needs to apply (7) to two different scenarios: the lower and upper values of the the 𝛼𝛼-cuts 
of mortality probabilities, 𝑞𝑞′𝑥𝑥+𝑘𝑘(𝛼𝛼) and 𝑞𝑞′𝑥𝑥+𝑘𝑘(𝛼𝛼).  
 
The FN �̃�𝐶 is not a TFN but can be approximated by a TFN using the SA described in Section 2. It can be 
verified that �̃�𝐶 ≈ �̃�𝐶′ = (𝐶𝐶𝑙𝑙,𝐶𝐶𝑐𝑐 ,𝐶𝐶𝑢𝑢) with: 
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𝐶𝐶𝑙𝑙 = 𝛱𝛱
∑ (1+𝑖𝑖)−𝑡𝑡 ∏ �1−𝑞𝑞′𝑥𝑥+𝑘𝑘 𝑙𝑙 �

𝑡𝑡−1
𝑘𝑘=0

𝜔𝜔−𝑥𝑥
𝑡𝑡=1

,  𝐶𝐶𝑐𝑐 = 𝛱𝛱
∑ (1+𝑖𝑖)−𝑡𝑡 ∏ �1−𝑞𝑞′𝑥𝑥+𝑘𝑘 𝑐𝑐 �𝑡𝑡−1

𝑘𝑘=0
𝜔𝜔−𝑥𝑥
𝑡𝑡=1

,  𝐶𝐶𝑢𝑢 = 𝛱𝛱
∑ (1+𝑖𝑖)−𝑡𝑡 ∏ �1−𝑞𝑞′𝑥𝑥+𝑘𝑘 𝑢𝑢 �𝑡𝑡−1

𝑘𝑘=0
𝜔𝜔−𝑥𝑥
𝑡𝑡=1

 

 (12) 
So, the lower (upper) value of annuity payments 𝐶𝐶𝑙𝑙  (𝐶𝐶𝑢𝑢) is obtained by using the lower (upper) mortality 
probabilities 𝑞𝑞′𝑥𝑥+𝑘𝑘  𝑙𝑙 (𝑞𝑞′𝑥𝑥+𝑘𝑘  𝑢𝑢) in the annuity formula (7) whereas the most reliable payment, 𝐶𝐶𝑐𝑐, comes 
from the most reliable path of mortality probabilities 𝑞𝑞′𝑥𝑥+𝑘𝑘  𝑐𝑐, 𝑘𝑘 = 1,2, … ,𝜔𝜔 − 𝑥𝑥 . 
 
Numerical Application 1 
Let us consider an insured aged 𝑥𝑥 = 75, an interest rate 𝑖𝑖 = 2% and a single premium Π = 1,000 monetary 
units. To calculate some substandard annuity payments induced by different fuzzy mortality factors, we 
apply the TFN �̃�𝑑 to adjust the standard mortality probabilities obtained from Human Mortality Database 
http://www.mortality.org/ (see also Wilmoth et al. (2017)) for the Spanish female population2 in 2014. The 
fuzzy annuity payments are approximated by TFN �̃�𝐶′, represented by its 𝛼𝛼-cuts, 𝐶𝐶′𝛼𝛼. The results are 
summarized in Table 2. 

TABLE 2 
SUBSTANDARD ANNUITY PAYMENTS REPRESENTED BY THE 𝛼𝛼-CUTS, 𝐶𝐶′𝛼𝛼, OF ITS APPROXIMATION TFN �̃�𝐶′ 

 
 �̃�𝑑 = (2.5, 3, 3.5) �̃�𝑑 = (5, 6, 7) �̃�𝑑 = (8, 10, 12) 
𝛼𝛼 𝐶𝐶′(𝛼𝛼) 𝐶𝐶′(𝛼𝛼) 𝐶𝐶′(𝛼𝛼) 𝐶𝐶′(𝛼𝛼) 𝐶𝐶′(𝛼𝛼) 𝐶𝐶′(𝛼𝛼) 
1 140.11 140.11 210.37 210.37 305.58 305.58 

0.9 138.87 141.31 208.05 212.69 300.74 310.67 
0.8 137.64 142.52 205.74 215.02 295.90 315.75 
0.7 136.40 143.72 203.43 217.34 291.06 320.83 
0.6 135.16 144.92 201.11 219.67 286.21 325.91 
0.5 133.93 146.13 198.80 222.00 281.37 331.00 
0.4 132.69 147.33 196.48 224.32 276.53 336.08 
0.3 131.46 148.53 194.17 226.65 271.69 341.16 
0.2 130.22 149.73 191.86 228.97 266.85 346.24 
0.1 128.98 150.94 189.54 231.30 262.00 351.33 
0 127.75 152.14 187.23 233.62 257.16 356.41 

Note: In the case of using the standard mortality probabilities, the standard payment 𝐶𝐶 = 85.82. 
 
Alternatively, it is also possible to substitute the survival factor 𝑓𝑓 in (8) by a triangular fuzzy survival factor 
𝑓𝑓 = (𝑓𝑓𝑙𝑙 , 𝑓𝑓𝑐𝑐  , 𝑓𝑓𝑢𝑢), with  𝛼𝛼-cuts 𝑓𝑓𝛼𝛼 = �𝑓𝑓(𝛼𝛼),𝑓𝑓(𝛼𝛼)�. Then the resulting annuity payment to be made by the 

insurer is also an FN, �̃�𝐶. Now the fuzzy modified survival probability to price substandard annuities, 𝑝𝑝�′𝑥𝑥𝑡𝑡 , 
is defined as 𝑝𝑝�′𝑥𝑥𝑡𝑡 = 𝑓𝑓 ∙ 𝑝𝑝𝑥𝑥𝑡𝑡  . Under the assumption that 𝑓𝑓 is always less than 1 

𝑝𝑝′𝑥𝑥𝑡𝑡 𝛼𝛼 = � 𝑝𝑝′𝑥𝑥𝑡𝑡 (𝛼𝛼), 𝑝𝑝′𝑥𝑥𝑡𝑡 (𝛼𝛼)� = �𝑓𝑓(𝛼𝛼) · 𝑝𝑝𝑥𝑥𝑡𝑡 ,𝑓𝑓(𝛼𝛼) · 𝑝𝑝𝑥𝑥𝑡𝑡 � = 

= �(𝑓𝑓𝑙𝑙 + (𝑓𝑓𝑐𝑐 − 𝑓𝑓𝑙𝑙)α) · 𝑝𝑝𝑥𝑥𝑡𝑡 , ( 𝑓𝑓𝑢𝑢 − (𝑓𝑓𝑢𝑢 − 𝑓𝑓𝑐𝑐)α) · 𝑝𝑝𝑥𝑥𝑡𝑡 � (13) 
 
So 

𝐶𝐶𝛼𝛼 = � 𝛱𝛱
∑ (1+𝑖𝑖)−𝑡𝑡(𝑓𝑓𝑢𝑢−(𝑓𝑓𝑢𝑢−𝑓𝑓𝑐𝑐)α) 𝑝𝑝𝑥𝑥𝑡𝑡
𝜔𝜔−𝑥𝑥
𝑡𝑡=1

, 𝛱𝛱
∑ (1+𝑖𝑖)−𝑡𝑡(𝑓𝑓𝑙𝑙+(𝑓𝑓𝑐𝑐−𝑓𝑓𝑙𝑙)α) 𝑝𝑝𝑥𝑥𝑡𝑡
𝜔𝜔−𝑥𝑥
𝑡𝑡=1

 �  (14) 

                                                           
2 While we use Spanish data for illustration in all examples in this paper, the proposed fuzzy approach provides a 
general framework for other mortality data. 

http://www.mortality.org/
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Again �̃�𝐶 is not a TFN and its approximation through the SA is �̃�𝐶′ = (𝐶𝐶𝑙𝑙 ,𝐶𝐶𝑐𝑐 ,𝐶𝐶𝑢𝑢), with 

𝐶𝐶𝑙𝑙 = 𝛱𝛱
∑ (1+𝑖𝑖)−𝑡𝑡 𝑝𝑝′𝑥𝑥 𝑢𝑢𝑡𝑡
𝜔𝜔−𝑥𝑥
𝑡𝑡=1

,  𝐶𝐶𝑐𝑐 = 𝛱𝛱
∑ (1+𝑖𝑖)−𝑡𝑡 𝑝𝑝′𝑥𝑥 𝑐𝑐𝑡𝑡
𝜔𝜔−𝑥𝑥
𝑡𝑡=1

  and   𝐶𝐶𝑢𝑢 = 𝛱𝛱
∑ (1+𝑖𝑖)−𝑡𝑡 𝑝𝑝′𝑥𝑥 𝑙𝑙𝑡𝑡
𝜔𝜔−𝑥𝑥
𝑡𝑡=1

  (15) 

 
In either case, calculating the annuity payment by means of an FN allows the insurer to have a full range 
of values the payment can take depending on the considered variables (i.e. the mortality factor, survival 
factor, mortality probabilities or survival probabilities). This calculation also permits the ability to perform 
sensitivity analyses of the payment related to these variables. 
 
It is worth pointing out that, although the interest rate is taken as a fixed value (as it is implicitly assumed 
to be determinable by using the returns of bonds and/or other tradable fixed income securities), fuzzy 
uncertainty on the interest rate can also be considered. The consideration of fuzzy interest rates in the 
actuarial literature was first suggested, as an alternative to stochastic discount rates, by Lemaire (1990). 
Subsequently, several papers used fuzzy interest tates (see, e.g., Ostaszewski (1993), Betzuen, Jiménez 
and Rivas (1997), Andrés-Sánchez and Terceño (2003) and Andrés-Sánchez and González-Vila (2012, 
2017)). 
 
3.2. Estimating fuzzy mortality factors using confidence intervals 
 
To calculate the substandard annuity fuzzy payment �̃�𝐶 (or �̃�𝐶′), we need to fit the fuzzy mortality factor �̃�𝑑 
(or the value of credits and debits in (4)). In this Subsection, we will discuss three possible ways to 
obtain/estimate this fuzzy mortality factor. 
 
Firstly, a fuzzy mortality factor can be quantified based on experts’ opinions. For example, an expert may 
judge that disease 𝑋𝑋 increases someone’s probability of dying between age 𝑥𝑥 and 𝑥𝑥 + 1 by about 10 times 
(i.e., �̃�𝑑 = 10�) or that a certain bad habit decreases someone’s life expectancy by around 20% (i.e., 𝑓𝑓 = 0.8�  
or φ� = 0.2� ). Often imprecise or subjective quantitative predictions may come from a pool of experts, 
leading to a set of fuzzy quantifications. This set of fuzzy opinions can be aggregated simply by their 
arithmetic mean or other more sophisticated methods as it is done in Shapiro and Koissi (2015), that 
proposed using Fuzzy Analytic Hierarchy Process in a risk assessment process in an insurance context. For 
a wide review on this matter Mardani et al. (2018) can be consulted. 
 
Fuzzy Regression can also be used to fit mortality models, in which a multiplier that represents 
heterogeneity in a risk class is introduced. Koissi and Shapiro (2006) and Andrés-Sánchez and González-
Vila (2019) proposed different fuzzy versions of the Lee-Carter model. These works can be extended to 
obtain fuzzy estimates of mortality (or survival) factors. Likewise, fuzzy literature provides a great deal of 
instruments to obtain an estimation expressed as an FN from imprecise information. A complete survey on 
applications of Fuzzy Regression in Actuarial Science can be found in Andrés-Sánchez (2016). 
 
Below we propose and develop a third way of estimating the fuzzy mortality factor. It is based on 
interpreting statistical confidence intervals estimates as FNs and on the use of the bootstrapping 
methodology. Following Sfiris and Papadopoulos (2014), we consider a standard (1 − α)100% statistical 
confidence interval as the observed α-cut of the FN, for some increasing values of 𝜀𝜀 ≤ α < 1, where 𝜀𝜀 is 
an arbitrary probability near 0 (it is often chosen to be 0.001, 0.005 or 0.01). These confidence intervals 
are then placed on the top of each other to produce an FN �̃�𝑑. Some practical applications of this procedure 
can be found in Ellina, Papaschinopoulos and Papadopoulos (2019). 
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The fuzzy interpretation of probabilistic confidence intervals combined with the bootstrapping 
methodology allows insurers to use their information to fit the fuzzy multiplier �̃�𝑑. According to Pitacco 
(2019), a heterogeneous population can be considered as a (finite) set of (more or less) homogeneous 
groups. Let us denote by 𝑁𝑁𝑥𝑥 the number of people alive at age 𝑥𝑥 and by 𝐷𝐷𝑥𝑥 the number of people dying 
during the interval (𝑥𝑥, 𝑥𝑥 + 1) in a given homogeneous group. To obtain the confidence interval estimate 
for the modified mortality probability 𝑞𝑞𝑥𝑥′  in this group (due to a disease or other risk factors) and the TFN 
estimate for the mortality factor 𝑑𝑑, the following procedure can be performed: 

Step 1. Calculate the point estimate of the modified mortality probability by 𝑞𝑞�𝑥𝑥′ = 𝐷𝐷𝑥𝑥
𝑁𝑁𝑥𝑥

. 

Step 2. Resample 𝐵𝐵 times of 𝐷𝐷𝑥𝑥 with the bth sample 𝐷𝐷𝑥𝑥
(𝑏𝑏)∼ Binomial(𝑁𝑁𝑥𝑥 ,𝑞𝑞�𝑥𝑥′ ), 𝑏𝑏 = 1,2, …𝐵𝐵. 

Step 3. Obtain the estimate of 𝑞𝑞𝑥𝑥′  by 𝑞𝑞�𝑥𝑥
′(𝑏𝑏)= 𝐷𝐷𝑥𝑥

(𝑏𝑏)

𝑁𝑁𝑥𝑥
, for 𝑏𝑏 = 1,2, …𝐵𝐵. 

Step 4. The estimate of the mortality factor associated with people aged 𝑥𝑥 for the bth sample is given 

by �̂�𝑑𝑥𝑥
(𝑏𝑏) = 𝑞𝑞�𝑥𝑥

′(𝑏𝑏)

𝑞𝑞𝑥𝑥
. Then the mortality factor estimate for all ages in this bth sample is obtained by the weighted 

average �̂�𝑑(𝑏𝑏) = ∑ 𝑁𝑁𝑥𝑥𝑑𝑑�𝑥𝑥
(𝑏𝑏)

𝑥𝑥
∑ 𝑁𝑁𝑥𝑥𝑥𝑥

, for 𝑏𝑏 = 1,2, …𝐵𝐵. 

Step 5. Let 𝐹𝐹�𝑑𝑑�  be the empirical cumulative distribution function of �̂�𝑑. Obtain the (1 − α)100% 

bootstrap confidence interval for �̂�𝑑 by �𝐹𝐹�𝑑𝑑�
−1 �𝛼𝛼

2
� ,𝐹𝐹�𝑑𝑑�

−1 �1 − 𝛼𝛼
2
��. As pointed out by Sfiris and Papadopoulos 

(2014), this confidence interval is assimilated to the α-cut, 𝑑𝑑𝛼𝛼, such that 𝑑𝑑(𝛼𝛼) = 𝐹𝐹�𝑑𝑑�
−1 �𝛼𝛼

2
� and 𝑑𝑑(𝛼𝛼) =

𝐹𝐹�𝑑𝑑�
−1 �1 − 𝛼𝛼

2
�.  

Step 6. Following Sfiris and Papadopoulos (2014), the TFN approximation, �̃�𝑑 = (𝑑𝑑𝑙𝑙  , 𝑑𝑑𝑐𝑐  , 𝑑𝑑𝑢𝑢), of �̂�𝑑 is 
then obtained by setting 𝑑𝑑𝑙𝑙 = 𝐹𝐹�𝑑𝑑�

−1 �ε
2
� where ε is close enough to 0 (e.g. 0.01), 𝑑𝑑𝑐𝑐 = 𝐹𝐹�𝑑𝑑�

−1(0.5) and 𝑑𝑑𝑢𝑢 =

𝐹𝐹�𝑑𝑑�
−1 �1 − ε

2
�.  

 
Numerical Application 2 
Let us consider a sample of people, aged between 60 to 89, who are affected by a well-known disease that 
implys a great increase in mortality. It is assumed that this increase in mortality is roughly �̃�𝑑 (here �̃�𝑑 = 15�) 
times of a standard mortality base table (without the disease). To estimate �̃�𝑑 for a prospective policyholder 
aged 𝑥𝑥 = 60 affected by this disease we use the standard mortality probabilities for ages 60 to 89 of 
Spanish female population in 2014 obtained from the Human Mortality Database 
(http://www.mortality.org/, Wilmoth et al. (2017)). We perform steps 1 to 6 with 𝐵𝐵 = 5,000. The results 
are given in Table 3 and Table 4. 
 
In Table 3, the second column represents the number of people, aged 𝑥𝑥, subject to the disease. Column 3 
shows the standard expected number of deaths between 𝑥𝑥 and 𝑥𝑥 + 1 . The increased number of deaths, 𝐷𝐷𝑥𝑥, 
in the last column are generated by considering that 𝐷𝐷𝑥𝑥 ∼ Binomial(𝑁𝑁𝑥𝑥 , 15𝑞𝑞𝑥𝑥). So the effect of increasing 
15 times of the standard mortality probabilities can be seen by comparing 𝑁𝑁𝑥𝑥𝑞𝑞𝑥𝑥 and 𝐷𝐷𝑥𝑥. 
 
Table 4 contains the α-cuts of �̃�𝑑 From Step 6, the TFN approximation �̃�𝑑 = (12.25, 14.96, 17.93) is 
obtained. 

http://www.mortality.org/
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TABLE 3 
SUMMARY OF THE SAMPLING DATA 

 
𝑥𝑥 𝑁𝑁𝑥𝑥 𝑁𝑁𝑥𝑥𝑞𝑞𝑥𝑥 𝐷𝐷𝑥𝑥  𝑥𝑥 𝑁𝑁𝑥𝑥 𝑁𝑁𝑥𝑥𝑞𝑞𝑥𝑥 𝐷𝐷𝑥𝑥 
60 60 0 3  75 45 1 10 
61 60 0 4  76 45 1 12 
62 60 0 8  77 45 1 12 
63 60 0 1  78 45 1 19 
64 60 0 4  79 45 1 15 
65 55 0 3  80 40 1 25 
66 55 0 3  81 40 1 17 
67 55 0 5  82 40 2 26 
68 55 0 5  83 40 2 25 
69 55 0 6  84 40 2 34 
70 50 0 6  85 35 2 34 
71 50 0 6  86 35 2 35 
72 50 0 9  87 35 3 35 
73 50 1 11  88 35 3 35 
74 50 1 6  89 35 4 35 

Notes: 
The product 𝑁𝑁𝑥𝑥𝑞𝑞𝑥𝑥  is rounded to the closest integer number. 
Only ages 𝑥𝑥 = 60, 61, … , 85 are taken. Considering greater ages will lead us to miscalculate 𝑑𝑑. This is because 
only those ages should be taken into account and once 𝑑𝑑𝑞𝑞𝑥𝑥 = 1, greater ages should be disregarded. 

 
TABLE 4 

α-CUTS OF FUZZY ESTIMATE OF 𝑑𝑑 
 

α 𝑑𝑑(𝛼𝛼) 𝑑𝑑(𝛼𝛼) 
1 14.96 14.96 

0.9 14.81 15.11 
0.8 14.67 15.26 
0.7 14.52 15.40 
0.6 14.37 15.56 
0.5 14.21 15.73 
0.4 14.03 15.92 
0.3 13.82 16.17 
0.2 13.57 16.47 
0.1 13.15 16.89 
0 12.25 17.93 

Note: To fit the 0-cut, the (1-0.01)% confidence interval is used. 
 
The estimation of the fuzzy mortality factor by considering different risk factors and their possible 
interaction may result in obtaining a set of 𝑛𝑛 mortality factors �̃�𝑑𝑘𝑘, 𝑘𝑘 = 1,2, … ,𝑛𝑛, for each age 𝑥𝑥. In order 
to decide what mortality factor(s) correspond(s) to a prospective policyholder aged 𝑥𝑥 and, from it (them), 
what substandard annuity payment should be paid to the policyholder, an FIS will be used. In the next 
Section, it is discussed how to use an FIS to determine substandard annuity payments. 
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4. FUZZY INFERENCE SYSTEMS TO DETERMINE SUBSTANDARD ANNUITY PAYMENTS 
 
Although several authors proposed applying FISs to underwrite or price life insurance contracts, in the 
existing literature, FISs have never been used to price substandard annuity payments. De Wit (1982) 
appeared to be the first research suggesting that FISs could be applied to insurance decision-making 
problems. He argued that a life insurance contract is not only based on its risk premium, estimated as close 
to its actual risk as possible, but also on a practical experience expressed by the company underwriting 
practice. However, De Wit (1982) only used a basic FIS to analyse the underwriting process of a life 
insurance contract. Lemaire (1990) extended the paper of De Wit (1982) and used an FIS in order to define 
the concept of “preferred policyholder” in life insurance contracts. While De Wit (1982) focused on 
technical and behavioural features of the underwriting process, Lemaire (1990) focused on some indicators 
of the policyholder’s health. Horgby, Lohse and Sittaro (1997) applied an FIS for medical underwriting of 
life insurance prospective policyholders in the presence of diabetes mellitus. Also in a life insurance 
context, Horgby (1998) defined risk factors as fuzzy sets and showed that an insurer could use multiple 
prognostic factors that are imprecise and vague. He considered pricing life insurances according to both 
sharp criteria (such as gender and age) and a risk loading obtained by using fuzzy inference. In a general 
context related to a new product pricing, Haji and Assadi (2009) used an FIS for the representation and 
treatment of the uncertain knowledge and data. Shapiro and Koissi (2015) designed an FIS for the insurer’s 
risk assessment. Finally, Torbati and Sayadi (2018) and Subartini et al. (2018) proposed using FISs to 
evaluate insurer’s financial performance and insurance premiums for flood disaster policies, respectively. 
 
In the following, we will show how to determine the payments for a substandard annuity with a fixed single 
premium by using an FIS. Pricing substandard annuities requires collecting policyholders’ health and 
lifestyle information. Collection of these data is usually made through questionnaires (example of such 
questionnaire is the Retirement Health and Lifestyle Form that can be found from the website 
https://www.retirementhealthform.co.uk/) and/or interviews with the insured parties’ doctors (or general 
practitioners if in the UK). A questionnaire may include age, gender, nationality, marital status, postcode, 
height, weight, waist measurement, intake of alcoholic drinks, blood pressure, level of cholesterol, past or 
current diseases such as diabetes, cancer, stroke, etc. As stated in Gatzert, Schmitt-Hoermann and 
Schmeiser (2012) and Ridsdale (2012), many pricing structures of substandard annuities use rule-based 
expert systems that determine the mortality factor by using such underwriting data. These systems are 
based on statistical data and ordinary sets, which provide information about the excess of mortality 
associated with several diseases and lifestyles. However, as argued by Woo (2013) and Charrington (2013), 
these pricing structures are still narrow on mortality risk, algorithms to price substandard annuities should 
be refined and other potential risk factors (such as gym membership, food shopping trends, cognitive and 
social functioning, well-being and online computer gaming hours) should also be taken into consideration 
when pricing. 
 
Thus, more complete expert inference systems can be designed by incorporating vague information, 
described by linguistic variables such as “high level of cholesterol”, “normal cognitive functioning”, “very 
high blood pressure”, “small number of computer gaming hours”, etc. Such imprecise but important 
information can be incorporated, when pricing substandard annuities, using an FIS. So we will design such 
an FIS to determine payments for a substandard annuity based on some vague information relevant to the 

https://www.retirementhealthform.co.uk/


13 

annuity contract3. A Mamdani FIS (Mamdani (1974)) to model the fuzzy outputs by means of linguistic 
variables is adopted, but a Takagi-Sugeno FIS (Takagi and Sugeno (1985)) can also be applied in a similar 
way with a set of crisp functions of input linguistic variables that can be fitted by using conventional or 
neural regression techniques.  
 
An FIS can be developed with a set of 𝑛𝑛 (𝑛𝑛 ≥ 1) linguistic variables {𝑉𝑉1, , … ,𝑉𝑉𝑛𝑛} as inputs. These inputs 
may embed some risk factors of heterogeneous nature (such as health status, socio-economic and marital 
status, habits etc.). For each of the linguistic variables 𝑉𝑉𝑘𝑘,𝑘𝑘 = 1,2, … ,𝑛𝑛, we define a reference set as 
�𝑉𝑉𝑘𝑘min ,𝑉𝑉𝑘𝑘max�. We then divide the reference set into 𝐽𝐽 levels (i.e. 𝐽𝐽 fuzzy sets) 𝑉𝑉�𝑘𝑘𝑗𝑗, 𝑗𝑗 = 1,2, … , 𝐽𝐽, which are 

assumed to be TFNs4, as 𝑉𝑉𝑘𝑘min = 𝑉𝑉𝑘𝑘1 < 𝑉𝑉𝑘𝑘2 < 𝑉𝑉𝑘𝑘3 < ⋯ < 𝑉𝑉𝑘𝑘𝐽𝐽−1 < 𝑉𝑉𝑘𝑘𝐽𝐽 = 𝑉𝑉𝑘𝑘max and �𝑉𝑉�𝑘𝑘1 =

�𝑉𝑉𝑘𝑘1 ,𝑉𝑉𝑘𝑘1 ,𝑉𝑉𝑘𝑘2�; 𝑉𝑉�𝑘𝑘𝑗𝑗 = �𝑉𝑉𝑘𝑘𝑗𝑗−1 ,𝑉𝑉𝑘𝑘𝑗𝑗 ,𝑉𝑉𝑘𝑘𝑗𝑗+1� , 𝑗𝑗 = 2,3, … , 𝐽𝐽 − 1; 𝑉𝑉�𝑘𝑘𝐽𝐽 = �𝑉𝑉𝑘𝑘𝐽𝐽−1 ,𝑉𝑉𝑘𝑘𝐽𝐽 ,𝑉𝑉𝑘𝑘𝐽𝐽�� such that 
∑ 𝜇𝜇𝑉𝑉�𝑘𝑘𝑗𝑗(𝑣𝑣𝑘𝑘) = 1𝑗𝑗 , for a given crisp value 𝑣𝑣𝑘𝑘 of 𝑉𝑉𝑘𝑘. 

 
In our Madamni FIS, the mortality factor5 𝑑𝑑 is also modelled as a linguistic variable. The reference set of 
𝑑𝑑 is denoted by [𝑑𝑑min,𝑑𝑑max] with 𝑑𝑑min = 1 implying no payment enhancement and 𝑑𝑑max ≤

1
𝑞𝑞𝑥𝑥

. Now 𝑑𝑑 is 

divided into 𝑃𝑃 TFNs, �̃�𝑑𝑝𝑝, 𝑝𝑝 = 1,2, … ,𝑃𝑃, as6 𝑑𝑑min = 𝑑𝑑1 = 1 < 𝑑𝑑2 = 1 + 𝛿𝛿 < 𝑑𝑑3 < ⋯ < 𝑑𝑑𝑝𝑝 < ⋯ <
𝑑𝑑𝑃𝑃−1 < 𝑑𝑑𝑃𝑃 = 𝑑𝑑max and ��̃�𝑑1 = (1,1,𝑑𝑑2); �̃�𝑑𝑝𝑝 = �𝑑𝑑𝑝𝑝−1,𝑑𝑑𝑝𝑝,𝑑𝑑𝑝𝑝+1�,  𝑝𝑝 = 2,3, … ,𝑃𝑃 − 1; �̃�𝑑𝑃𝑃 =
(𝑑𝑑𝑃𝑃−1,𝑑𝑑𝑃𝑃 ,𝑑𝑑𝑃𝑃)�, such that, ∑ 𝜇𝜇𝑑𝑑�𝑝𝑝(𝑑𝑑)𝑝𝑝 = 1,  for a given crisp value of 𝑑𝑑. 
 
Inputs are linked with the outputs via some fuzzy rules that may be given by experts or may be generated 
empirically as it is done in Tan et al. (2019). For example, we can apply the following fuzzy rules to 
determine the output variable “mortality factor”: 

If “𝑉𝑉1” is 𝑉𝑉�1𝑗𝑗   AND “𝑉𝑉2” is 𝑉𝑉�2𝑗𝑗 AND … “𝑉𝑉𝑛𝑛” is 𝑉𝑉�𝑛𝑛𝑗𝑗 THEN the “mortality factor ” is �̃�𝑑𝑝𝑝. 
 
As seen in Subsection 3.1., a fuzzy mortality factor induces a fuzzy substandard annuity payment. So, the 
above fuzzy rules are equivalent to the following ones: 

If “𝑉𝑉1” is 𝑉𝑉�1𝑗𝑗   AND “𝑉𝑉2” is 𝑉𝑉�2𝑗𝑗 AND … “𝑉𝑉𝑛𝑛” is 𝑉𝑉�𝑛𝑛𝑗𝑗 THEN the “substandard annuity payment” is �̃�𝐶𝑝𝑝, 

where �̃�𝐶𝑝𝑝 is obtained from �̃�𝑑𝑝𝑝 by using (9) and (11). 
 
According to Telford et al. (2011), there are three main types of substandard annuities: Lifestyle annuities, 
Impaired life annuities and Immediate needs annuities. Lifestyle annuities take into account  policyholders’ 
habits and minor medical problems that involve a small enhancement of the payment. Typical risk factors 
to be considered are policyholders’ postal code of residence, whether they smoke or not, body mass index, 
etc. Impaired life annuities, which represent a more substantial payment improvement, are designed for 
people with significant health problems such as cancer, diabetes or chronic asthma. Immediate needs 

                                                           
3 While the development here can be used as a general FIS framework for pricing substandard annuities, companies 
or practitioners may wish to design an FIS that best suits their specific practice and environment. 
4 They can also be trapezoidal, Gaussian or semi-exponential FN. Further, as done by Dalkilic, Tank and Kula (2009), 
input membership functions may be built up by applying fuzzy clustering techniques to insurer’s database. 
5 An FIS with the survival factor 𝑓𝑓, if life expectancy is considered instead of mortality, can be developed in a similar 
way. 
6 Note that 𝑑𝑑1 corresponds to the mortality probability of the base table while 𝑑𝑑2 refers to the mortality factor allowing 
for the minimum enhancement (i.e. 𝛿𝛿 →0). 



 

14 

annuities are typically designed for elderly people, in a severe dependence situation, who need immediate 
attention. This type of substandard annuities generates the greatest payment improvement. Based on these 
three types of substandard annuities, we can divide the factors considered for pricing such annuities into 
two generic variables: lifestyle and health variables. 
 

We now develop an FIS to price substandard annuities that, by considering the input variables “Lifestyle” 
and “Health”, can be used to obtain the payments of any substandard annuity type described in Telford et 
al. (2011). The first variable embeds habits such as, regular exercise, practice of risky sports, alcohol 
intake, smoking, marital status, etc. The second variable may take into account, among other variables: 
blood pressure, level of cholesterol or past and present severe diseases (e.g. cancer, heart attack, stroke, 
etc.). We assume that “Health” (𝐻𝐻) and “Lifestyle” (𝑆𝑆) of a prospective policyholder can be measured as 
a numerical value in a given reference set [0,100]. Some widely-used questionnaires (e.g. Behavioral Risk 
Factor Surveillance System, 2018 and  the Health Promoting Lifestyle Profile II, 2018) can convert a set 
of questions related to the respondent’s health status and/or lifestyle into numerical values7. Thus, after the 
completion of some questionnaires and with the knowledge from experts, numerical values can be obtained 
corresponding to each policyholder’s health and lifestyle. 
 
Suppose now that  𝐻𝐻 is granulated in 5 levels 𝐻𝐻�𝑖𝑖, 𝑖𝑖 = 1,2, … ,5, by dividing the reference set [0,100] (from 
the worst to the best health status) as 0 = ℎ1 < ℎ2 < ℎ3 < ℎ4 < ℎ5 = 100 and �𝐻𝐻�1 = (ℎ1,ℎ1,ℎ2); 𝐻𝐻�𝑖𝑖 =
(ℎ𝑖𝑖−1,ℎ𝑖𝑖 ,ℎ𝑖𝑖+1), 𝑖𝑖 = 2,3,4; 𝐻𝐻�5 = (ℎ4,ℎ5,ℎ5)�. Figure 1 shows a five-level linguistic variable for “Health” 
with {𝐻𝐻�1: Very bad health, 𝐻𝐻�2: Bad health, 𝐻𝐻�3: Normal health, 𝐻𝐻�4: Good health and 𝐻𝐻�5: Very good health}. 

 

 
FIGURE 1. LINGUISTIC VARIABLE “HEALTH” ON A FIVE-LEVEL SCALE 

 
Similarly, 𝑆𝑆 is divided into 3 linguistic labels, �̃�𝑆𝑗𝑗, 𝑗𝑗 = 1,2,3. Figure 2 shows a three-level linguistic variable 
for “Lifestyle” with ��̃�𝑆1: Bad lifestyle, �̃�𝑆2: Normal lifestyle and �̃�𝑆3:  Good lifestyle�. 

 

                                                           
7 The Behavioral Risk Factor Surveillance System, available at https://www.cdc.gov/brfss/, collects data about US 
residents regarding their health-related risk behaviours, chronic health conditions and use of preventive services. The 
Health Promoting Lifestyle Profile II, available at https://www.unmc.edu/nursing/faculty/health-promoting-lifestyle-
profile-II.html,focuses on lifestyle and habits questions. 

https://www.cdc.gov/brfss/
https://www.unmc.edu/nursing/faculty/health-promoting-lifestyle-profile-II.html
https://www.unmc.edu/nursing/faculty/health-promoting-lifestyle-profile-II.html
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FIGURE 2. LINGUISTIC VARIABLE “LIFESTYLE” ON A THREE-LEVEL SCALE 

 
And for any value ℎ and 𝑠𝑠 in the interval [0, 100], it is satisfied that 

∑ 𝜇𝜇𝐻𝐻�𝑖𝑖(ℎ)𝑖𝑖 = ∑ 𝜇𝜇�̃�𝑆𝑗𝑗(𝑠𝑠)𝑗𝑗 = 1. 
 
The output of the FIS is the “Substandard Annuity Payment” (𝐶𝐶) also defined as a linguistic variable. The 
FIS links the inputs and output via a set of fuzzy rules as: 

If “Health” is 𝐻𝐻�𝑖𝑖   AND “Lifestyle” is �̃�𝑆𝑗𝑗, then the “Substandard Annuity Payment” is �̃�𝐶𝑝𝑝. 
 
To illustrate how the FIS works, we consider 15 fuzzy rules as shown in Table 58.  

 
TABLE 5 

FUZZY RULES FOR DETERMINING “SUBSTANDARD ANNUITY PAYMENT” BASED ON 𝐻𝐻 AND 𝑆𝑆 
 

 
 
 
 
 
 
 
 
 
Numerical Application 3 
Consider an individual aged 𝑥𝑥 = 75, a mortality multiplier 𝑑𝑑 with five possible linguistic values: {Very 
Low mortality, Low mortality, Medium mortality, High mortality, Extremely High mortality}. 
 
We thus divide the mortality factor 𝑑𝑑 into 5 TFNs, �̃�𝑑𝑝𝑝, = 1,2, … ,5, with the reference set [1, 25] being 
divided into 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑑𝑑1 = 1 < 𝑑𝑑2 = 1.0001 < 𝑑𝑑3 = 2.5 < 𝑑𝑑4 = 7 < 𝑑𝑑5 = 25. So, the linguistic variable 
“Mortality Factor” is labelled as 

��̃�𝑑1 = (1,1,1.0001); �̃�𝑑2 = (1, 1.0001, 2.5); �̃�𝑑3 = (1.0001, 2.5, 7); 
�̃�𝑑4 = (2.5, 7, 25); �̃�𝑑5 = (7, 25, 25)}. 

 
We can now obtain the linguistic variable "Substandard Annuity Payment" associated to the variable 
“Mortality factor”. We use standard mortality rates of Spanish female population in 2014 obtained from 

                                                           
8 Different number of fuzzy rules can also be considered depending on the actual problem. 

 Lifestyle  𝑆𝑆 
Health  𝐻𝐻 �̃�𝑆1 �̃�𝑆2 �̃�𝑆3 

𝐻𝐻�1 �̃�𝐶5 �̃�𝐶5 �̃�𝐶4 
𝐻𝐻�2 �̃�𝐶4 �̃�𝐶4 �̃�𝐶3 
𝐻𝐻�3 �̃�𝐶3 �̃�𝐶3 �̃�𝐶2 
𝐻𝐻�4 �̃�𝐶2 �̃�𝐶2 �̃�𝐶1 
𝐻𝐻�5 �̃�𝐶2 �̃�𝐶1 �̃�𝐶1 
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the Human Mortality Database (http://www.mortality.org/, Wilmoth et al. (2017)). Further, a net single 
premium Π = 1,000 monetary units and the interest rate 𝑖𝑖 = 0.02 are assumed. 
 
Each of the 5 linguistic labels �̃�𝐶𝑝𝑝, 𝑝𝑝 = 1, … , 5, of the "Substandard Annuity Payment", as in Table 5, 
corresponds to each �̃�𝑑𝑝𝑝,𝑝𝑝 = 1, … , 5, through equations (9) and (11). We then obtain the approximations 
�̃�𝐶′𝑝𝑝, 𝑝𝑝 = 1,2, … ,5 as depicted in Figure 3. 
 
Further, fuzzy rules in Table 5 for this numerical application are presented in Figure 4. 
 
Finally, in order to determine the substandard annuity payment for a given value of “Health” and 
“Lifestyle”, a defuzzification method has to be applied. Table 6 shows the crisp output of the FIS (i.e. the 
crisp value of the substandard annuity payment), obtained by using the minimum and the probabilistic t-
norm for the connector AND in the fuzzy rules, the maximum and the probabilistic t-conorm for the 
connector OR and the centre of gravity defuzzifying method. 
 

 
FIGURE 3. “SUBSTANDARD ANNUITY PAYMENT" INDUCED BY “MORTALITY FACTOR” 

http://www.mortality.org/
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FIGURE 4. FUZZY RULES OF THE FIS 

 
 

TABLE 6 
CRISP OUTPUTS FOR THE SUBSTANDARD ANNUITY PAYMENTS 

 

 
AND and OR connectives: 

min-max 
AND and OR connectives: 

probabilistic t-norm and t-conorm 
Health 

punctuation Lifestyle punctuation Lifestyle punctuation 

ℎ 𝑠𝑠 = 10 𝑠𝑠 = 50 𝑠𝑠 = 90 𝑠𝑠 = 10 𝑠𝑠 = 50 𝑠𝑠 = 90 
0 650.28 650.28 406.89 650.28 650.28 406.89 
5 606.82 498.16 317.25 498.16 498.16 295.54 

10 589.43 346.04 184.20 346.04 346.04 184.20 
20 413.85 278.60 161.34 278.60 278.60 158.06 
30 293.24 211.17 150.05 211.17 211.17 131.93 
40 143.74 143.74 105.79 143.74 143.74 105.79 
50 136.96 130.18 100.94 130.18 130.18 100.69 
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60 136.96 116.63 98.80 116.63 116.63 95.58 
70 136.36 103.08 95.05 103.08 103.08 90.47 
80 121.91 94.21 87.32 95.89 94.21 87.50 
90 108.36 90.02 87.32 95.05 90.02 86.66 
100 94.21 85.82 85.82 94.21 85.82 85.82 

 
 
5. CONCLUSIONS AND FURTHER EXTENSIONS 
 
Pricing substandard annuities and determining their payments are complex processes that require the blend 
of both crisp and fuzzy information. Our paper demonstrates that actuarial valuation with fuzzy parameters 
and FISs are suitable tools to price substandard annuities and determine their payments. 
 
In this paper, we introduce fuzzy mortality factors to capture the imprecise or vague nature of prospective 
annuitants’ health status and lifestyle of substandard annuities. The fuzzy mortality factors modify 
mortality probabilities in the base table and lead us to determine substandard annuities’ payments with the 
mortality (or survival) probabilities given by FNs. We then discussed how to estimate the fuzzy mortality 
factors with special attention to the fuzzy interpretation of statistical confidence intervals as it is proposed 
in Sfiris and Papadopoulos (2014). Using other fuzzy set tools to fit mortality factors (e.g. fuzzy multiple 
criteria decision making methods or fuzzy regression) can be considered for further research. 
 
Section 4 studies how to apply an FIS to obtain substandard annuity payments based on imprecise or vague 
annuitant’s information such as health status and lifestyle. The use of such a fuzzy expert system allows 
introducing linguistic variables, fuzzy information and fuzzy rules, with the additional advantage that the 
determination of the crisp annuity payment will always be performed in a consistent manner. FIS methods 
are flexible enough to allow introducing data from a wide database to build up input membership functions 
that infer outputs. The use of FIS to price substandard annuities may still be subject to further 
developments. Other types of membership functions instead of triangular shapes or other FIS architectures, 
such as the one developed by Takagi-Sugeno (1985), can also be considered. Likewise, assessing 
alternative methods to build up the linguistic labels of input and output variables, such as fuzzy clustering 
or genetic algorithms, are also interesting topics for further developments. 
 
Even if certain risk factors cannot be used when pricing standard annuities due to country legislations (e.g. 
race, ethnicity, religion or sex), they may be considered when setting reserves, forecasting life 
expectancies, or establishing valuation processes for a more efficient mortality and longevity risks 
management. In our opinion, the application of FISs in such circumstances is a promising field for further 
extensions.  
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