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THE DISTRIBUTION OF GALOIS ORBITS OF POINTS OF SMALL
HEIGHT IN TORIC VARIETIES

By JOSÉ IGNACIO BURGOS GIL, PATRICE PHILIPPON,
JUAN RIVERA-LETELIER, and MARTÍN SOMBRA

Abstract. We study the distribution of Galois orbits of points of small height on proper toric varieties,
and its application to the Bogomolov problem.

We introduce the notion of monocritical toric metrized divisor. We prove that a toric metrized
divisor D on a proper toric variety X over a global field K is monocritical if and only if for every
generic D-small sequence of algebraic points of X and every place v of K, the sequence of their
Galois orbits on the analytic space Xan

v converges to a measure. When this is the case, the limit
measure is a translate of the natural measure on the compact torus sitting in the principal orbit of X .

The key ingredient is the study of the v-adic modulus distribution of Galois orbits of generic
D-small sequences of algebraic points. In particular, we characterize all their cluster measures.

We generalize the Bogomolov problem by asking when a closed subvariety of the principal orbit
of a proper toric variety that has the same essential minimum than the ambient variety, must be a
translate of a subtorus. We prove that the generalized Bogomolov problem has a positive answer for
monocritical toric metrized divisors, and we give several examples of toric metrized divisors for which
the Bogomolov problem has a negative answer.
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1. Introduction. The study of the limit distribution of Galois orbits of
points of small height was initiated by Szpiro, Ullmo, and Zhang in their semi-
nal paper [SUZ97]. For an Abelian variety defined over a number field and over
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an Archimedean place, they proved the equidistribution of the Galois orbits of se-
quences of points whose Néron-Tate height converges to zero. This equidistribu-
tion result was motivated by the Bogomolov conjecture on Abelian varieties, and
eventually led to an affirmative solution by Ullmo [Ull98] and Zhang [Zha98], see
also [Cin11, Ghi09, Gub07, Yam13, Yam16] for similar results in the function field
case.

This equidistribution result has been widely generalized. In particular, it has
been extended to more general varieties and height functions and, with the intro-
duction of Berkovich spaces, to non-Archimedean places [Bil97, Cha00, FR06,
Cha06, BR06, Yua08, BB10, Che11]. However, all these generalizations are re-
stricted to height functions that satisfy a special condition, namely, that the es-
sential minimum of the heights of points is equal to the normalized height of the
ambient variety, see below for precisions. In this paper, a height function satisfying
this extremal condition is called “quasi-canonical”. All the available methods to
prove equidistribution for points of small height break down for height functions
that are not quasi-canonical.

There are important classes of quasi-canonical height functions, such as Néron-
Tate heights on Abelian varieties, canonical heights on toric varieties, and more
generally those coming from algebraic dynamical systems. But there are also many
height functions of interest that are not quasi-canonical, like (twisted) Fubini-Study
heights on projective spaces and the Faltings height on modular varieties.

For toric varieties and height functions the situation is startling: the only ones
that are quasi-canonical are essentially the canonical one, and those derived from
it by scaling and translations. So all the previous equidistribution results apply to a
very restricted class of toric height functions. In this paper, we give a complete de-
scription of the equidistribution phenomenon for general toric heights. Our results
reveal that a very mild positivity assumption is enough to guarantee equidistri-
bution, see Corollary 1.2 and Theorem 6.4 for restricted applications. This pro-
vides a wealth of new height functions for which the equidistribution property
holds. Moreover, we give a complete classification of those toric heights for which
equidistribution holds (Theorem 1.1), and use it to prove that the equidistribution
property implies the Bogomolov property in the toric context (Theorem 1.4). As a
by-product, we give a characterization of those toric heights whose essential mini-
mum is attained (Corollary 4.9). We also provide examples of toric height functions
that fail the Bogomolov property and for which the equidistribution property fails
in a myriad of ways (Section 6 and Section 7).

Our methods build on the results and techniques developed in [BPS14,
BMPS16, BPS15] to study toric heights. In particular, convex analysis and the
Legendre-Fenchel duality play an important role. We introduce new techniques to
deal with the spaces of adelic measures that appear naturally in the equidistribution
problem. Most of the technical difficulties arise from the fact that these spaces are
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not compact. In dealing with these difficulties we are naturally led to consider the
interplay between several topologies on these spaces.

To describe our results more precisely, we start with a brief review of the state
of the art in the general setting. Let K be a global field, that is, a field that is either
a number field or the function field of a regular projective curve over an arbitrary
field, and MK its set of places. We denote | · |v and nv the absolute value on K

associated to a place v and its weight. Let X be a proper algebraic variety over
K of dimension n, and D = (D,(‖ · ‖v)v∈MK

) a semipositive metrized (Cartier)
divisor with D big. Let

hD : X(K)−→ R

be the associated height function on the set of algebraic points of X, see Section 2
for details. It is a generalization of the notion of height of algebraic points consid-
ered by Weil, Northcott and others.

The essential minimum of X with respect to D, denoted by µess
D
(X), is the

smallest possible limit value of the height of a generic net of algebraic points of X.
Consequently, we say that a net (pl)l∈I is D-small if

lim
l

hD
(
pl
)
= µess

D
(X).

A fundamental inequality by Zhang [Zha95] shows that the essential minimum
can be bounded below in terms of the height and the degree of D:

µess
D
(X)≥ hD(X)

(n+1)degD(X)
.(1.1)

We say that D is quasi-canonical if this lower bound for the essential minimum is
an equality (Definition 2.7).

For a place v ∈MK, we denote by Xan
v the v-adic analytification of X. If v is

Archimedean, it is a complex analytic space whereas, if v is non-Archimedean, it
is a Berkovich space over Cv, the completion of the algebraic closure of the local
field Kv. We endow the space of probability measures on Xan

v with the weak-∗
topology with respect to the space of continuous functions on Xan

v .
For an algebraic point p of X, we denote by Gal(p)v its v-adic Galois orbit,

that is, the orbit of p in Xan
v under the action of the absolute Galois group of K. We

set

μp,v =
1

#Gal(p)v

∑

q∈Gal(p)v

δq(1.2)

for the uniform probability measure on Gal(p)v . We also denote by c1(D,‖ ·‖v)∧n
the v-adic Monge-Ampère measure of D, see for instance [BPS14, Section 1.4]. It
is a measure on Xan

v of total mass degD(X).
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The following statement is representative of several equidistribution theorems
for Galois orbits of small points in the literature. In this form, it is due to Yuan
[Yua08, Theorem 3.1] for number fields and to Gubler [Gub08, Theorem 1.1] for
function fields, see also [Fab09] for this latter case.

THEOREM 1. (Equidistribution for quasi-canonical metrics) LetX be a projec-
tive variety over K of dimension n, and D a quasi-canonical semipositive metrized
divisor onX withD ample. Let (pl)l∈I be a genericD-small net of algebraic points
of X. Then, for every v ∈MK, the net of probability measures (μpl,v)l∈I converges
to 1

degD(X) c1(D,‖ · ‖v)∧n, the normalized v-adic Monge-Ampère measure of D.

A common feature of this result and its variants and generalizations, is the
assumption that the lower bound (1.1) is an equality or, in other words, that the
metrized divisor D is quasi-canonical. This severely restricts their range of appli-
cation. Nonetheless, these results do apply to the important case of metrics arising
from algebraic dynamical systems and, moreover, they have a very strong conclu-
sion: not only the Galois orbits of points of small height do converge, but the limit
measure is given by the normalized v-adic Monge-Ampère measure.

The motivation of this paper is to start the study of what happens when we
remove the hypothesis that D is quasi-canonical. Some of our typical questions
are: is there always an equidistribution phenomenon for Galois orbits of D-small
points? If not, can we give conditions on D, beyond being quasi-canonical, under
which such a phenomenon occurs? When equidistribution occurs, can we describe
the limit measure?

We address these questions and some of its continuations in the toric setting.
As mentioned previously, our approach is based on the techniques developed in the
series of papers [BPS14, BMPS16, BPS15]. We briefly recall the setting of these
papers.

Let X be a proper toric variety over K of dimension n, given by a complete
fan Σ on a vector space NR 	 R

n, and a nef and big toric divisor D on X, given
by a concave support function ΨD : NR → R. This toric divisor also defines an
n-dimensional polytope ΔD in the dual space MR :=N∨

R
.

Let D = (D,(‖ · ‖v)v∈MK
) be a semipositive toric metrized divisor on X with

underlying divisor D. To it we associate an adelic family of concave functions
ψD,v : NR → R, v ∈ MK, called the metric functions of D. They satisfy that
|ψD,v−ΨD| is bounded on NR for all v, and that ψD,v = ΨD for all v except for

a finite number. We also associate to D an adelic family of continuous concave
functions on the polytope ϑD,v : ΔD→ R, v ∈MK, called the local roof functions

of D. They verify that ϑD,v is the zero function for all v except for a finite number.
The global roof function is a concave function ϑD : ΔD → R defined as the
weighted sum of the local roof functions.

Let T	G
n
m,K be the torus of X, which can be identified with X0, the principal

open subset of X. There is a valuation map valv : Tan
v →NR, defined, in any given
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splitting of T, by

valv
(
x1, . . . ,xn

)
=
(− log |x1|v, . . . ,− log |xn|v

)
,(1.3)

see also [BPS14, Formula (4.1.2)]. There is a canonical toric section s of O(D)

with div(s) =D. The metric function ψD,v is characterized by the property

ψD,v
(

valv(p)
)
= log
∥∥s(p)
∥∥
v

for p ∈Xan
0 , while the local roof function ϑD,v is defined as the Legendre-Fenchel

dual of ψD,v. We use the extension of these constructions to the case of R-divisors,
see Section 2 and [BMPS16, Section 4] for precisions.

The metric functions and the roof functions convey a lot of information about
the pair (X,D). For instance, the essential minimum of X with respect to D can
be computed as the maximum of the global roof function [BPS15, Theorem A]:

µess
D
(X) = max

x∈ΔD

ϑD(x).(1.4)

In the toric setting, the condition that the metrized divisor D is quasi-canonical
is very restrictive, since it is equivalent to the condition that its global roof function
is constant (Proposition 5.3). Thus, the only toric metrics to which Theorem 1
applies are those whose global roof function is constant.

To identify the toric metrics having good equidistribution properties, we in-
troduce the notion of monocritical toric metrized divisor. To define this concept,
first consider the map from X0(K) to the space of measures on the adelic space⊕

v∈MK
NR given by

p �−→ νp =
((

valv
)
∗μp,v
)
v∈MK

,

where (valv)∗μp,v denotes the direct image under the v-adic valuation map in (1.3)
of the uniform probability measure on Gal(p)v in (1.2). For a certain metric space
HK of measures defined on

⊕
v∈MK

NR we show that there is a (Lipschitz) con-
tinuous function ηD : HK→ R extending the height function hD in the sense that
for every p in X0(K) we have hD(p) = ηD(νp), see Section 4 for precisions. We
show that this function always attains its minimum value and we give a charac-
terization of the set of measures at which this function is minimized (Lemma 4.8
and Corollary 4.10). The semipositive toric metrized divisor D is monocritical if
the function ηD attains its minimum at a unique measure (Definition 4.14, see also
Proposition 4.16 for equivalent formulations). For such a toric metrized divisor D,
the uniquely minimizing measure is supported on a single point

u= (uv)v∈MK
∈
⊕

v∈MK

NR
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that satisfies
∑

v nvuv = 0, where nv denotes the weight associated to a place v ∈
MK as in Section 2. This point u is called the critical point of D (Corollary 4.10).

The condition for D of being monocritical can be characterized in terms of its
global roof function: given a point xmax ∈ΔD maximizing ϑD, the sup-differential
∂ϑD(xmax) is a convex subset ofNR containing the point 0. ThenD is monocritical
if and only if 0 is a vertex of this convex subset and, when this is the case, the
critical point of D can be computed from the sup-differential of the local roof
functions at xmax (Proposition 4.16).

For each v ∈MK, we denote by Sv the compact subtorus of Tan
v . To a mono-

critical toric metrized divisor D with critical point u ∈⊕v∈MK
NR, we associate

a probability measure λSv,uv on Xan
v (Definition 5.1). When v is Archimedean,

it is the uniform measure on a translate of Sv 	 (S1)n whereas, when v is non-
Archimedean, it is the Dirac measure at a translate of the Gauss point of Tan

v .
The following is the main result of this paper (Theorem 5.2).

THEOREM 1.1. (Equidistribution for general toric metrics) Let X be a proper
toric variety over K and D a semipositive toric metrized divisor on X with D big.
Then D is monocritical if and only if for every place v ∈MK and every generic
D-small net (pl)l∈I of algebraic points of X0, the net of probability measures
(μpl,v)l∈I on Xan

v converges.
When this is the case, the limit measure agrees with λSv,uv , where uv ∈NR is

the v-adic component of the critical point of D.

Quasi-canonical toric metrized divisors are monocritical, and Theorem 1.1 re-
duces to Theorem 1 in this case. However, quasi-canonical metrized divisors are
rare even among monocritical metrized divisors, so Theorem 1.1 produces a wealth
of new examples of metrized divisors satisfying the equidistribution property that
were not covered by the previous results. A concrete class of such metrized divi-
sors are those defined over a number field K with positive smooth metrics at the
Archimedean places and canonical metrics at the non-Archimedean ones (Theo-
rem 6.4). Here we state a simplified version for the case when K=Q.

COROLLARY 1.2. LetX be a proper toric variety over Q andD a semipositive
toric metrized R-divisor withD big. We assume that the v-adic metric ofD is, when
v is the Archimedean place, smooth and positive and, when v is non-Archimedean,
equal to the v-adic canonical metric of D. Then D is monocritical, and for every
generic D-small sequence (pl)l≥1 of algebraic points of X0 and every place v ∈
MQ, the sequence (μpl,v)l≥1 on Xan

v converges to the probability measure λSv,0.

This corollary covers many typical examples of metrics on toric varieties such
as weighted projective spaces and toric bundles, see Section 6.2. For instance,
let X = P

1
Q

and let D be the divisor of the point at infinity equipped with the
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Fubini-Study metric at the Archimedean place and the canonical metric at the non-
Archimedean places. Its essential minimum is

µess
D
(X) =

log(2)
2

,

and for every generic sequence of algebraic points of P1
Q

with height converging
to this quantity, its ∞-adic Galois orbits converge to the Haar probability measure
on S1, the unit circle of the Riemann sphere (Example 6.5). This is an example
where equidistribution does occur, but the limit measure is not given by the v-adic
Monge-Ampère measure as in Theorem 1.

In the other extreme, classical examples of translates of subtori with the canon-
ical metric can behave badly with respect to equidistribution. For instance, let X
be the line of P2

Q
of equation 2z1− z2 = 0 and D the metrized divisor on X given

by the restriction of the canonical metrized divisor at infinity of P2
Q

. As explained

in Example 6.1, Theorem 1.1 implies that D does not satisfy the equidistribution
property in the sense of Definition 2.9.

The key new ingredient in the proof of Theorem 1.1 is the study of the modulus
distribution of the v-adic Galois orbits of D-small nets of algebraic points.

For an algebraic point p ∈X0(K) = T(K), the direct image measure

νp,v := (valv)∗μp,v

is a probability measure on NR that gives the modulus distribution of its v-adic
Galois orbit.

To each semipositive toric metrized divisor D with D big, we associate an
adelic family of nonempty subsets of NR

(
Bv,Fv

)
v∈MK

,(1.5)

with Bv ⊂ Fv (Notation 4.2). We endow the space of probability measures on NR

with the weak-∗ topology with respect to the space of bounded continuous func-
tions on NR. For a probability measure ν on NR, we denote by supp(ν) ⊂NR its
support and, if ν has finite first moment, we denote by E[ν] its expected value.

The next result characterizes the limit behavior of the modulus distribution for
D-small nets (Theorem 4.3 and Corollary 4.12).

THEOREM 1.3. Let X be a proper toric variety over K,D a semipositive toric
metrized divisor on X with D big, and v ∈MK. For every D-small net (pl)l∈I of
algebraic points in X0, the net of probability measures (νpl,v)l∈I has at least one
cluster point. Every such cluster point is a measure νv with finite first moment that
satisfies

supp(νv)⊂ Fv and E[νv] ∈Bv.(1.6)
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Conversely, for every probability measure νv on NR that has finite first moment
and satisfies (1.6), there is a D-small net (pl)l∈I of algebraic points of X0 such
that νv is the limit of the net (νpl,v)l∈I .

In the situation of Theorem 1.3, when Fv consist of only one point uv, the
net (νpl,v)l∈I , representing the modulus distribution of the Galois orbits of the net
of small points (pl)l∈I , converges to the measure δuv . In this case, we say that D
satisfies the modulus concentration property at the place v.

One of the main ingredients in the proof of the toric equidistribution Theo-
rem 1.1 is the characterization of monocritical metrized divisors as those for which,
for every place v, the set Fv is reduced to a single point (Proposition 4.16). Equiv-
alently, a metrized divisor is monocritical if and only if it satisfies modulus con-
centration at every place. This fact allows us to attach, to each monocritical divisor
D, a new metric on D that is quasi-canonical and such that the D-small points are
also small with respect to this new metric. In this way, we obtain Theorem 1.1 as a
consequence of Theorem 1.3 and Theorem 1.

In the proofs of Theorem 1.3 and Proposition 4.16, a central role is played by a
family of auxiliary concave functions (Φv)v∈MK

defined on the space of measures
on NR with finite first moment. For each place v, the function Φv is nonpositive
and it is defined in terms of the metric at the place v, and in terms of a certain
average of the metrics at all the other places. The crucial fact is that the function
ηD extending hD vanishes at an adelic measure (νv)v∈MK

if and only if, for each
place v, the function Φv vanishes at νv. In this way we reduce the equidistribution
problem to independent maximization problems at each place (Proposition 3.9 and
Theorem 4.3). The maximization problem at a given place is solved in Section 3.
To do this, we use that for each place v the function Φv is upper-semicontinuous
with respect to the weak-∗ topology defined above.

In the absence of modulus concentration, there is a wealth of limit measures of
v-adic Galois orbits of D-small nets of algebraic points. For instance, consider the
projective line over a number field K and any adelic set E = (Ev)v∈MK

of global
capacity 1, whose associated equilibrium measures are compatible with the collec-
tion of sets in (1.5) (see Theorem 7.2 for the precise condition). Using Rumely’s
Fekete-Szegő theorem [Rum02], we show that, for all v, the equilibrium measure
of Ev can be realized as the limit measure of a sequence of v-adic Galois orbits of
D-small points (Theorem 7.2).

As we already mentioned, the original motivation in [SUZ97] to search for
equidistribution results of Galois orbits of small points was to prove the Bogomolov
conjecture. The Bogomolov conjecture for toric varieties can be stated as follows:
let X be a toric variety over K and D

can
an ample toric divisor on X equipped with

the canonical metric. Let V ⊂ X0,K be a closed subvariety that is not a translate
of a subtorus by a torsion point. Then there exists ε > 0 such that the subset of
algebraic points of V of canonical height bounded above by ε, is not dense in V .
Equivalently, if V ⊂ X0,K is a closed subvariety with µess

D
can(V ) = 0, then V is a
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translate of a subtorus by a torsion point. This statement is the toric counterpart of
the Bogomolov conjecture for Abelian varieties proved by Ullmo and Zhang.

This conjecture was proved by Zhang [Zha95] for number fields, and later Bilu
gave a different proof using his own equidistribution theorem [Bil97]. Here we ex-
tend Bilu’s equidistribution theorem (Theorem 5.7) and use it to prove the follow-
ing generalization of the Bogomolov conjecture for toric varieties (Theorem 5.12).

THEOREM 1.4. Let X be a proper toric variety over a number field K and D
a monocritical toric metrized divisor on X with critical point u = (uv)v∈MK

. Let
V be a closed subvariety of X0,K with

µess
D
(V ) = µess

D
(X).

Then V is a translate of a subtorus. Furthermore, if uv ∈ valv(T(K))⊗Q for all
v, then V is the translate of a subtorus by an algebraic point p of X0 with hD(p) =
µess
D
(X).

A closed subvariety of X0,K with

µess
D
(V ) = µess

D
(X)

is called a D-special subvariety. We say that a given toric metrized divisor D sat-
isfies the Bogomolov property if every D-special subvariety is a translate of a
subtorus (Definition 5.11). This is not to be confused with the property (B) in-
troduced by Bombieri and Zannier, and studied by Amoroso, David and other au-
thors. This property is intimately related with the equidistribution property. Indeed,
we give an example of a metrized divisor D on P

2
Q

such that the line of equation

z0+z1+z2 = 0 isD-special (Example 6.6). This line is certainly not a translate of a
subtorus, and so D does not satisfy the Bogomolov property. This metrized divisor
is a variant of the one in Example 6.1, and does not verify modulus concentration
nor equidistribution for any place of Q.

These results arise several interesting questions. For instance: is it possible that
a given semipositive toric metrized divisor D satisfies the equidistribution property
at one place and not at another? We study this for the projective line showing
that, under a natural rationality hypothesis, the equidistribution property holds at a
given place if and only if it holds at every place (Proposition 7.5). However, this
conclusion is not true without this rationality hypothesis (Remark 7.7) and we have
neither settled this question for the projective line in full generality, nor treated toric
varieties of higher dimension.

It would also be interesting to see if the converse of Theorem 1.4 holds: Let
X be a proper toric variety with dimX ≥ 2. Given a semipositive toric metrized
divisor D on X, with D big satisfying the Bogomolov property, is D necessarily
monocritical? In Proposition 6.7 we show that this is true in a very particular case.
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Extending this to the general case would reinforce the link between the equidistri-
bution and the Bogomolov properties.

The results of this paper also inspire questions for general varieties and
metrized divisors. For instance, from Corollary 1.2, it is plausible to conjecture
that a toric divisor equipped with a positive smooth, but not necessarily toric,
Archimedean metric and canonical non-Archimedean metrics, does satisfy the
equidistribution property. A puzzling question is that of computing the essen-
tial minimum, with a formula generalizing (1.4) to the general, non-toric, case.
Even more challenging seems the problem of generalizing the crucial notion of
monocritical metrized divisor.

Several of the results presented in this introduction hold in greater general-
ity and their conclusions are stronger. We refer to the body of the paper for these
versions. The structure of the paper is as follows. In Section 2 we give the prelim-
inaries on Galois orbits and heights of points. In Section 3 we introduce the upper
semi-continuous concave functional Φv and study its properties. In Section 4 we
study the modulus distribution of v-adic Galois orbits of D-small nets of points
in toric varieties. In Section 5 we prove the toric equidistribution theorem (Theo-
rem 1.1) and its variants, together with the Bogomolov property for monocritical
toric metrized divisors. In Section 6 we give examples illustrating a number of
phenomena, including a non-monocritical toric metrized divisor not verifying the
Bogomolov property. Finally, in Section 7 we use potential theory to study the limit
measures that appear in the absence of modulus concentration.
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2. Galois orbits, heights of points and essential minimum. By a global
field K we mean a finite extension of either Q or the function field of a regular pro-
jective curve over an arbitrary field, equipped with a certain set of places, denoted
by MK. Each place v ∈MK is a pair consisting of an absolute value | · |v on K and
a positive weight nv ∈Q>0, defined as follows.

The places of the field of rational numbers Q consist of the Archimedean and
the p-adic absolutes values, normalized in the standard way, and with all weights
equal to 1. For the function field K(C) of a regular projective curve C over a field
k, the set of places is indexed by the closed points of C . For each closed point
v0 ∈ C , we consider the absolute value and weight given, for α ∈K(C)×, by
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|α|v0 = c
−ordv0 (α)

k and nv0 =
[
k
(
v0
)

: k
]
,

with ck = #k if the base field k is finite and ck = e otherwise, and where ordv0(α)

denotes the order of α in the discrete valuation ring OC,v0 .
Let K0 denote either Q or K(C). In the general case when K is a finite exten-

sion of K0, the set of places of K is formed by the pairs v = (| · |v ,nv) where | · |v
is an absolute value on K extending an absolute value | · |v0 with v0 ∈MK0 and

nv =

[
Kv : K0,v0

]
[
K : K0

] nv0 ,(2.1)

where Kv denotes the completion of K with respect to | · |v, and similarly for K0,v0 .
This set of places satisfies the following basic properties.

PROPOSITION 2.1. Let K0 denote either Q or K(C), the function field of a
regular projective curve C over a field k. Let K be a finite extension of K0 and MK

the associated set of places as above. Then
(1) for every v0 ∈MK0 , we have

∑
v|v0

nv = nv0 ;
(2) for every α ∈K

×, we have
∑

v∈MK
nv log |α|v = 0 (product formula).

Proof. These properties are classical, see for instance [AW45, Theorems 2
and 3].

In the function field case there is a subtlety, due to the fact that a given field
may have different structures of global field depending on the choice of base curve.

Let C be a regular projective curve over k and K(C) ↪→ K a finite exten-
sion of fields. Then there is a regular projective curve B over k and a finite mor-
phism π : B → C such that K 	 K(B) and the previous extension can be iden-
tified with π∗ : K(C) ↪→ K(B), see for instance [Liu02, Proposition 7.3.13 and
Lemma 7.3.10].

We could give to K the structure of global field defined directly by the curve
B, but the obtained absolute values of K would not be extensions of those of K0.
To remedy this, we renormalize these absolute values of K and, to preserve the
product formula, we also change the weights.

From the valuative criterion of properness, for each closed point v0 ∈ C , the
absolute values of K extending | · |v0 are in bijection with the closed points of
the fiber above v0. Moreover, since the map π is finite, for each closed point v ∈
π−1(v0), the ring OB,v is a finite module over OC,v0 . It follows from [Bou64,
Chapitre 6, Proposition 2 in Section 8.2 and Théorème 2 in Section 8.5] that the
absolute value and weight corresponding to v are given, for α ∈K(B)×, by

|α|v = c
− ordv (α)

ev/v0
k , nv =

ev/v0
[k(v) : k]

[K(B) : K(C)]
,(2.2)
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with ev/v0
the ramification index of v over v0. The same results in loc. cit. give the

formula in (1).
For the product formula in (2), we obtain from (2.2) that

∑

v

nv log |α|v =− log(ck)
∑

v

[k(v) : k]ordv(α)
[K(B) : K(C)]

=
− log(ck)

[K(B) : K(C)]
deg(div(α)) = 0,

because the degree of a principal divisor on B is zero, which concludes the proof.
�

For v ∈MK, we choose an algebraic closure Kv ⊂ Kv of Kv. The absolute
value | · |v on Kv has a unique extension to Kv. We denote by Cv the completion
of Kv with respect to this extended absolute value. We also choose an algebraic
closure K of K and an embedding jv : K→ Cv.

Let X be a variety over K, that is, a reduced and irreducible separated scheme
of finite type over K. The elements of X(K) are called the algebraic points of X.
For p∈X(K), its Galois orbit is Gal(p) := Gal(K/K) ·p⊂X(K), that is, the orbit
of p under the action of the absolute Galois group of K.

For v ∈MK, we denote by Xan
Kv

the v-adic analytifications of X over Kv and
by Xan

v the v-adic analytifications of X over Cv. If v is Archimedean, they both
coincide with a complex space (XKv is equipped with an anti-linear involution if
Kv 	 R). If v is non-Archimedean, they are Berkovich spaces over Kv and Cv,
respectively. These spaces are related by [Ber90, Corollary 1.3.6]

Xan
Kv

=Xan
v /Gal

(
Kv/Kv

)
.

We denote by

πv : Xan
v −→Xan

Kv
(2.3)

the projection.
There is a map

X
(
Cv

)
↪−→Xan

v .

Using the chosen inclusion jv : K ↪→ Cv, we obtain a map X(K) ↪→ X(Cv) and,
by composition the previous map, an inclusion

ιv : X(K) ↪−→Xan
v .

The v-adic Galois orbit of an algebraic point p ∈X(K), denoted by Gal(p)v ,
is defined as the image of Gal(K/K) · p under ιv. It is a finite subset that does
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not depend on the choice of the inclusion jv. We also denote by μp,v the uniform
discrete probability measure on Xan

v supported on Gal(p)v, that is,

μp,v =
1

#Gal(p)v

∑

q∈Gal(p)v

δq,(2.4)

where δq is the Dirac measure at the point q ∈Xan
v . Hence, for a continuous func-

tion f : Xan
v → R,

∫
f dμp,v =

1
#Gal(p)v

∑

q∈Gal(p)v

f(q).

An R-divisor on X is a linear combination of Cartier divisors on X with real
coefficients. A metrized R-divisor D on X is an R-divisor D on X equipped with
a quasi-algebraic family of v-adic metrics (‖ · ‖v)v∈MK

, see [BMPS16, Section 3]
for details. In loc. cit., for each v ∈MK the metric ‖·‖v is defined over the analytic
space Xan

Kv
. Note that this space was denoted “Xan

v ” in loc. cit. but since we will
study equidistribution problems of Galois orbits of points that are defined over
varying extensions of K of arbitrary large degree it is more convenient to work on
the space Xan

v instead that in the space Xan
Kv

. Hence we have changed the notation
accordingly. With this point of view, every object on Xan

Kv
will be seen as an object

on Xan
v by taking its inverse image under the projection πv. For instance let D be a

metrized R-divisor on X and s a rational R-section of D [BMPS16, Section 3]. In
loc. cit., the v-adic metric ‖ · ‖v is described by a continuous function

‖s‖v : Xan
Kv
\ ∣∣div(s)

∣
∣−→ R>0.

In the current paper we denote by ‖s‖v the function on Xan
v \ |div(s)| given by the

composition

∥∥s(p)
∥∥
v
=
∥∥s
(
πv(p)
)∥∥
v
.

Clearly this function is invariant under the action of Gal(Kv/Kv).
To a metrized R-divisor D on X we can associate a height function

hD : X(K)−→ R

as follows.
Given p ∈ X(K), choose a rational R-section s of D such that p �∈ |div(s)|.

Choose a finite extension F of K such that p ∈ X(F). For each w ∈MF over a
place v ∈MK, we can choose an embedding σw : F ↪→Cv such that the restriction
of the absolute value | · |v of Cv agrees with | · |w. We denote also by σw the induced
map X(F)→Xan

v .
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Definition 2.2. Let X be a variety over K, D a metrized R-divisor on X, and
p ∈X(K). With the above notation, the height of p with respect to D is defined as

hD(p) =−
∑

w∈MF

nw log‖s◦σw(p)‖v.

The height is independent of the choice of the rational R-section s, the exten-
sion F and the embeddings σw.

Instead of choosing a finite extension where the point p is defined, it is possible
to express the height of an algebraic point in terms of its Galois orbit.

PROPOSITION 2.3. With the previous hypothesis and notation, the height of p
with respect to D is given by

hD(p) =−
∑

v∈MK

nv
#Gal(p)v

∑

q∈Gal(p)v

log‖s(q)‖v .

Proof. Choose a finite normal extension F ⊂ K of K such that p ∈X(F). For
each v ∈MK we denote MF,v the set of places of F above v.

Write G = Gal(F,K) and let FG be the fixed field. Then F/FG is a Galois
extension with Galois group G and F

G/K is purely inseparable. Hence, for v ∈
MK,

[Fw : Kv]

[F : K]
=

[Fw : (FG)v]
[F : FG]

=
1

#MF,v
.

Then, from the definition of the height of p in Definition 2.2 and Proposi-
tion 2.1(1), it follows that

hD(p) =−
∑

v∈MK

nv
∑

w|v

[Fw : Kv]

[F : K]
log‖s◦σw(p)‖v

=−
∑

v∈MK

nv
#MF,v

∑

w|v
log‖s◦σw(p)‖v .

(2.5)

The group G acts on MF,v and, since p is defined over F, also on Gal(p)v . Both
actions are transitive. Therefore, choosing w0 ∈MF,v,

1
#MF,v

∑

w|v
log‖s◦σw(p)‖v = 1

#G

∑

g∈G
log‖s◦σw0(g(p))‖v

=
1

#Gal(p)v

∑

q∈Gal(p)v

log‖s(q)‖v.

The statement follows from this together with (2.5). �
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The essential minimum of X with respect to D is defined as

µess
D
(X) = sup

Y �X
Y closed

inf
p∈(X\Y )(K)

hD(p).(2.6)

Roughly speaking, the essential minimum is the generic infimum of the height
function.

Definition 2.4. Let X be a variety over K and D a metrized R-divisor on X. A
net (pl)l∈I of algebraic points of X is D-small if

lim
l

hD(pl) = µess
D
(X).

The net (pl)l∈I is generic if, for every closed subset Y � X, there is l0 ∈ I such
that pl �∈ Y (K) for l ≥ l0.

PROPOSITION 2.5. Given a variety X over K and D a metrized R-divisor on
X, there exists a generic D-small net of algebraic points of X. Moreover, every
generic net (pl)l≥1 of algebraic points of X satisfies

liminf
l

hD(pl)≥ µess
D
(X).

Proof. The second statement is clear from the definition of the essential mini-
mum.

For the first statement, let I be the set of closed subvarieties of X of pure
codimension 1, ordered by inclusion. This is a directed set. For each Y ∈ I , denote
by c(Y ) its number of irreducible components and choose a point pY ∈ (X \Y )(K)

with

hD
(
pY
)≤ µess

D
(X)+

1
c(Y )

.

Clearly, the net (pY )Y ∈I is generic and D-small. �

Remark 2.6. When K is a number field, the collection of subvarieties of X is
countable. This fact implies that a generic D-small net contains generic D-small
sequences (although these sequences need not be subnets). Thus, Proposition 2.5
implies the existence of generic D-small sequences of algebraic points in this case.

Suppose now that the variety X is proper over K and of dimension n. A
metrized R-divisor D on X is semipositive if it can be written as

D =
r∑

i=1

αiDi
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with Di a semipositive metrized divisor and αi ∈ R≥0, i= 1, . . . ,r. Recall that Di

is semipositive if each of its v-adic metrics is a uniform limit of a sequence of semi-
positive smooth (respectively, algebraic) metrics in the Archimedean (respectively,
non-Archimedean) case.

Given a semipositive metrized R-divisor D, we can extend the notion of height
of points to subvarieties of higher dimension. In particular, the height ofX, denoted
by hD(X), is defined. Moreover, for each v ∈MK we can consider the associated
v-adic Monge-Ampère measure, denoted by c1(D,‖·‖v)∧n. It is a measure on Xan

v

of total mass degD(X), see for instance [BPS14, Section 1.4] for the case when D
is a divisor. The v-adic Monge-Ampère measure of an R-divisor is defined from
that of divisors by polarization and multilinearity.

A theorem of Zhang shows that, when K is a number field, D is an ample
divisor and D is semipositive, the essential minimum can be bounded below in
terms of the height of X and the degree of D [Zha95, Theorem 5.2]:

µess
D
(X) ≥ hD(X)

(n+1)degD(X)
.(2.7)

This inequality can be generalized to global fields and semiample big divisors, see
for instance [Gub08, Proposition 5.10].

In some cases, the inequality (2.7) is an equality. For instance, this happens for
the canonical metric on divisors of toric and Abelian varieties, and for the canonical
metrics coming from dynamical systems. This motivates the following definition.

Definition 2.7. Let X be a proper variety over K of dimension n, and D a
semipositive metrized R-divisor on X with D big. Then D is quasi-canonical if

µess
D
(X) =

hD(X)

(n+1)degD(X)
.

In other words, quasi-canonical metrized R-divisors are those for which Zhang’s
lower bound for the essential minimum is attained.

As we will see in Section 5, the condition for a toric metric of being quasi-
canonical is very restrictive. The following observation is a direct consequence of
Proposition 2.5 and of the inequality (2.7).

PROPOSITION 2.8. Let X be a proper variety over K of dimension n and D a
semipositive metrized divisor on X with D big and semiample. Then there exists a
generic net (pl)l∈I of algebraic points of X with

lim
l

hD(pl) =
hD(X)

(n+1)degD(X)
(2.8)

if and only if D is quasi-canonical.
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We discuss now the equidistribution of Galois orbits of points of small height.
Let X be a proper variety over K and v ∈MK. We endow the space of prob-

ability measures on Xan
v with the weak-∗ topology with respect to the space of

continuous functions on Xan
v . In particular, a net of probability measures (μl)l∈I

converges to a probability measure μ if, for every continuous function f : Xan
v →R,

lim
l

∫
f dμl =

∫
f dμ.

Definition 2.9. Let D be a metrized R-divisor on X. A probability measure μ
on Xan

v is a v-adic limit measure for D if there exists a generic D-small net (pl)l∈I
of algebraic points of X such that the net of probability measures (μpl,v)l∈I con-
verges to μ. We say thatD satisfies the v-adic equidistribution property if, for every
generic D-small net (pl)l∈I as above, the net of measures (μpl,v)l∈I converges.

Clearly, when the v-adic equidistribution property holds, there exists a unique
limit measure.

Remark 2.10. When K is a number field, the analytic space Xan
v is homeo-

morphic to a compact subspace of an Euclidean space [HLP14, Theorem 1.1]. In
particular, Xan

v is a compact Polish space, and so the space of probability mea-
sures on it is metrizable [Vil09, pages 94–95]. In particular, this space of proba-
bility measures has a nested countable basis of neighborhoods at each point. If all
the generic D-small sequences contained in a generic D-small net converge, they
must converge to the same limit. Then, using the above fact, we may strengthen
Remark 2.6 showing that a generic D-small net not converging to a given point
contains a generic D-small sequences not converging to that point. This implies
that one can reduce to sequences, instead of nets, in Definition 2.9 over number
fields.

In the literature there are many equidistribution theorems of Galois orbits of
points of small height. All these equidistribution results deal with generic nets
(or sequences when K is a number field) of algebraic points satisfying the equal-
ity (2.8). In view of Proposition 2.8, the existence of such a net implies that the
metric is quasi-canonical. Moreover, the condition (2.8) for this net is equivalent
of being D-small. Thus we can reformulate a general equidistribution result in the
following form.

THEOREM 2.11. Let K be a global field and X a projective variety over K of
dimension n. Let D be a semipositive metrized divisor on X such that D is ample.
If D is quasi-canonical then, for every place v ∈MK,

(1) D satisfies the v-adic equidistribution property;
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(2) the limit measure is the normalized Monge-Ampère measure

1
degD(X)

c1
(
D,‖ · ‖v

)∧n
.

This result is due to Yuan [Yua08, Theorem 3.1] in the number field case and,
with more general hypotheses, to Gubler [Gub08, Theorem 1.1] in the function
field case.

This equidistribution theorem imposes a very restrictive hypothesis, namely,
that the metrized divisor D is quasi-canonical. But it also has a very strong conclu-
sion: not only the Galois orbits of points of small height converge to a measure, but
this limit measure can be identified with the normalized Monge-Ampère measure
of the metrized divisor.

The main objective of this paper is to start the study of what happens when
the hypothesis of D being quasi-canonical is removed. We will work with toric
varieties and toric metrics because, in this case, the tools developed previously
allow us to work very explicitly. In this setting, we will see that the first statement
in Theorem 2.11 holds in much great generality, but, if the metric is not quasi-
canonical, the limit measure does not need to agree with the normalized Monge-
Ampère measure.

3. Auxiliary results on convex analysis. In this section we gather several
definitions and results on convex analysis that we will use in our study of toric
height functions. For a background in convex analysis, see for instance [BPS14,
Section 2].

LetNR 	R
n be a real vector space of dimension n and MR = Hom(NR,R) =

N∨
R

its dual. The pairing between x ∈MR and u ∈ NR will be denoted either by
〈x,u〉 or 〈u,x〉.

Following [BPS14, Section 2], a convex subset C is nonempty. The relative
interior of C , denoted by ri(C), is the interior of C relative to the minimal affine
subspace containing it.

Let C ⊂MR be a convex subset and g : C → R a concave function. The sup-
differential of g at a point x ∈C is

∂g(x) =
{
u ∈NR | 〈u,z−x〉 ≥ g(z)− g(x) for all z ∈ C}.

It is a closed, convex subset of NR, see [BPS14, Section 2.2]. The stability set of g
is the convex subset of NR defined by

stab(g) =
{
u ∈NR | u− g is bounded below

}
.
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The Legendre-Fenchel dual of g is the concave function g∨ : stab(g)→ R defined
by

g∨(u) = inf
x∈C
〈u,x〉− g(x),(3.1)

see ibidem.
Let E ⊂ NR be a convex subset. A nonempty subset F ⊂ E is a face of E

if every closed segment S ⊂ E whose relative interior has nonempty intersection
with F , is contained in F .

LEMMA 3.1. Let C ⊂MR be a compact convex subset and g1,g2 : C → R

two continuous concave functions. Denote by Cmax the convex subset of C of the
points where g1 +g2 attains its maximum value and choose x ∈Cmax. For i= 1,2,
consider the concave function φ̂i : NR→ R defined by

φ̂i(u) = g∨i (u)−〈x,u〉+ gi(x).(3.2)

Then
(1) if x′ ∈ ri(Cmax), then ∂gi(x′) is a face of ∂gi(x), i= 1,2;
(2) ∂g1(x)∩ (−∂g2(x)) is nonempty and does not depend on the choice of

x ∈ Cmax;
(3) the minimal face of ∂g1(x) containing ∂g1(x)∩ (−∂g2(x)) does not de-

pend on the choice of x ∈ Cmax;
(4) the function φ̂i is nonpositive and vanishes precisely on ∂gi(x).

Proof. The restriction toCmax of the sum g1+g2 is constant, and so the restric-
tions to this set of g1 and g2 are affine and with opposite slopes. In other words,
there is u0 ∈NR such that, for all x1,x2 ∈ Cmax,

g1(x2)− g1(x1)=〈u0,x2−x1〉 and g2(x2)− g2(x1)=−〈u0,x2−x1〉.(3.3)

For the statement (1), let i ∈ {1,2}, x′ ∈ ri(Cmax) and u ∈ ∂gi(x′). By the
definition of the sup-differential, for all z ∈ C ,

〈u,z−x′〉 ≥ gi(z)− gi(x′).(3.4)

Since x′ is in the relative interior of Cmax, there exists ε > 0 such that

x′ − ε(x−x′) ∈ Cmax.

By (3.4) and (3.3),

− ε〈u,x−x′〉= 〈u,x′ − ε(x−x′)−x′〉
≥ gi(x′ − ε(x−x′))− gi(x′)

= (−1)i−1〈u0,−ε(x−x′)〉=−ε(gi(x)− gi(x′)).



328 J. I. BURGOS GIL, P. PHILIPPON, J. RIVERA-LETELIER, AND M. SOMBRA

Hence 〈u,x− x′〉 ≤ gi(x)− gi(x′). By (3.4) applied to z = x, we have also the
reverse inequality. Thus 〈u,x−x′〉= gi(x)−gi(x′), and it follows from (3.4) that,
for all z ∈ C ,

〈u,z−x〉 ≥ gi(z)− gi(x).
Hence u ∈ ∂gi(x) and so ∂gi(x′) ⊂ ∂gi(x). Applying [BPS14, Proposition 2.2.8]
to the closed concave function g∨i and observing that g∨∨i = gi, we deduce that
∂gi(x

′) is a face of ∂gi(x).
To prove the statement (2) note that, since g1 + g2 attains its maximum value

at x, by [BPS14, Proposition 2.3.6(2)]

0 ∈ ∂(g1 + g2)(x) = ∂g1(x)+∂g2(x).

Hence ∂g1(x)∩ (−∂g2(x)) �= /0, as stated. Now let u be a point in this intersection.
Then

〈u,z−x〉 ≥ g1(z)− g1(x) and 〈−u,z−x〉 ≥ g2(z)− g2(x).(3.5)

Choose x′′ ∈ Cmax. Subtracting, from the inequalities (3.5) applied to z = x′′, the
identities (3.3) applied to x1 = x and x2 = x′′, we deduce that

〈u−u0,x
′′ −x〉= 0.

Using this together with (3.4) and (3.5), we obtain

〈u,z−x′′〉 ≥ g1(z)− g1(x
′′) and 〈−u,z−x′′〉 ≥ g2(z)− g2(x

′′).

Hence u ∈ ∂g1(x
′′)∩ (−∂g2(x

′′)), as stated.
For the next statement, consider the convex set B = ∂g1(x)∩ (−∂g2(x)) that,

thanks to (2), does not depend on the choice of x∈Cmax. Denote by Fx the minimal
face of ∂g1(x) containing it. By (1), it is enough to consider the case when x ∈
ri(Cmax). By the same statement, the set ∂g2(x) does not depend on the choice of
x ∈ ri(Cmax), proving (3).

The statement (4) follows readily from [BPS14, Lemma 2.2.6]. �

Definition 3.2. Let C ⊂MR be a compact convex subset and g1,g2 : C → R

two continuous concave functions. Choose a point x in C at which g1 + g2 attains
its maximum value. We define the closed convex subset of NR

B(g1,g2) = ∂g1(x)∩
(−∂g2(x)

)

and the convex subset

F (g1,g2)⊂ ∂g1(x)

as the minimal face of ∂g1(x) that contains B(g1,g2). By Lemma 3.1(2),(3), these
convex subsets do not depend on the choice of x.
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LEMMA 3.3. Let C ⊂MR be a compact convex subset with nonempty interior
and g1,g2 : C→R two concave functions. ThenB(g1,g2) is bounded andF (g1,g2)

contains no lines.

Proof. The closed convex set B(g1,g2) is not bounded if and only if it contains
a ray, that is, a subset of the form R≥0u1 +u2 with ui ∈NR, i= 1,2, and u1 �= 0.
Suppose that this is the case. This implies that, for x ∈Cmax and all t≥ 0,

tu1 +u2 ∈ ∂g1(x) and − tu1−u2 ∈ ∂g2(x).

Hence, for all z ∈ C and t≥ 0,

−〈u2,z−x〉+ g1(z)− g1(x)≤ t〈u1,z−x〉 ≤ −〈u2,z−x〉− g2(z)+ g2(x).

Letting t→ ∞, this implies C ⊂ {z | 〈u1,z−x〉= 0}, contradicting the hypothesis
that C has nonempty interior. Hence B(g1,g2) is bounded.

Similarly, if F (g1,g2) contains a line Ru1 +u2, then, for x ∈ Cmax and t ∈ R,

tu1 +u2 ∈ ∂g1(x).

This also implies that C is contained in the affine hyperplane {z | 〈u1,z−x〉 =
0} and contradicts the hypothesis that C has nonempty interior. Hence F (g1,g2)

contains no lines. �

Let Cb(NR) be the space of bounded continuous functions on NR, let ‖ · ‖ be
an auxiliary norm on NR that we fix, and for x in NR and r > 0 denote by B(x,r)
the open ball in NR centered at x and of radius r.

Definition 3.4. We denote by P the space of Borel probability measures on NR

endowed with the weak-∗ topology with respect to Cb(NR). This is the coarsest
topology on P such that, for all ϕ ∈ Cb(NR), the function μ �→ ∫ ϕdμ is continu-
ous.

We denote by E ⊂ P the topological subspace of probability measures with
finite first moment, that is, the probability measures on NR satisfying

∫
‖u‖dμ(u) < ∞.

For μ ∈ E , the expected value is

E[μ] =
∫
udμ(u) ∈NR.

The weak-∗ topology of P with respect to Cb(NR) is called the “topologie
étroite” in [Bou69, Section 5]. By Proposition 5.4.10 in loc. cit., the topologi-
cal space P is complete, metrizable and separable. Later we will consider other
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topologies on the underlying spaces of P and E . When this is the case, we will
state explicitly the used topology.

For μ ∈ P, its support, denoted by supp(μ), is the set of all points in NR such
that all its neighborhoods have positive measure. Clearly, every measure in P with
bounded support lies in E .

PROPOSITION 3.5. The space E verifies the following properties.
(1) For every μ in E we have E[μ] ∈ conv(supp(μ)).
(2) The set of probability measures on NR with finite support is dense in E .

Proof. To prove the first statement, let μ ∈ E and suppose that E[μ] does not
lie in conv(supp(μ)). Restricting to an affine subspace if necessary, we can assume
that conv(supp(μ))∪{E[μ]} is not contained in a hyperplane. The hyperplane sep-
aration theorem applied to the convex sets {E[μ]} and conv(supp(μ)), implies that
there is a nonconstant affine function f such that f(E[μ])≤ 0 and f |supp(μ)≥ 0, see
for example [Roc70, Theorem 11.3]. So

0≥ f(E[μ]) =
∫
f(u)dμ ≥ 0,

and therefore E[μ] and supp(μ) are both contained in the hyperplane {u ∈ NR |
f(u) = 0}. This contradiction completes the proof of the first statement.

To prove the second statement, we show that every measure in E is the limit
of measures with bounded support. For r > 0 put B(0,r) = {x ∈ NR | ‖x‖ ≤ r}.
Given a measure μ∈ E , the sequence of probability measures with compact support
defined for l ≥ 1 by

μ|B(0,l) +μ
(
NR \B(0, l)

)
δ0,

converges to μ as l→ ∞.
Using a straightforward discretization argument, one can show that every mea-

sure in E with bounded support is the limit of probability measures with finite
support. Combined with the previous observation, this completes the proof of the
second statement. �

For the rest of this section, we fix a compact convex subset C ⊂ MR with
nonempty interior and two continuous concave functions g1,g2 : C → R. Since C
is compact, the stability set of gi is NR. Thus the Legendre-Fenchel dual g∨i is a
concave function on NR with stability set C .

We introduce the function Φ : E → R given, for μ ∈ E , by

Φ(μ) =

∫
g∨1 dμ+ g∨2

(−E[μ]
)
+max

x∈C
(
g1(x)+ g2(x)

)
.(3.6)

This function will play a central role in the proof of the main results in the next
section.
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It follows easily from its definition that Φ is concave. In general, this function
is not continuous, as the following example shows.

Example 3.6. Let NR =R, so that MR =R. Set C = [0,1] and gi = 0, i= 1,2.
Then g∨i (u) = min(0,u) for u ∈R. Consider the sequence of measures

μl =
l−1
l
δ0 +

1
l
δ−l, l ≥ 1,

where δ0 and δ−l are the Dirac measures at the points 0 and −l, respectively. This
sequence converges to δ0. However, Φ(μl) =−1 for all l and Φ(δ0) = 0.

Nevertheless, we have the following result.

PROPOSITION 3.7. The function Φ is upper semicontinuous.

To prove this proposition, we need the following lemma.

LEMMA 3.8. Let φ : NR→R be a continuous function. If φ is bounded above
(respectively below), then the map P → R∪ {−∞} (respectively P → R∪ {∞})
given by

μ �−→
∫
φdμ

is upper semicontinuous (respectively lower semicontinuous).

Proof. We prove the case of a function bounded above, the other case being
analogous. Let μ ∈ P and ε > 0 be given and, for l ≥ 1, put

φl(u) = max(φ(u),−l).
The sequence of functions (φl)l≥1 is monotone and converges pointwise to φ. So
Lebesgue’s monotone convergence theorem implies that there is l0 ≥ 1 such that

∫
φl0 dμ≤

∫
φdμ+ ε.

Let (μl)l≥1 be a sequence in P converging to μ. Since φl0 ∈ Cb(NR), there
exists l1 ≥ 1 such that, for l ≥ l1,

∫
φdμl ≤

∫
φl0 dμl ≤

∫
φl0 dμ+ ε≤

∫
φdμ+2ε.

Since ε is arbitrary, limsupl→∞
∫
φdμl ≤

∫
φdμ, proving the lemma. �

Proof of Proposition 3.7. Set φi = g∨i , i = 1,2 for short. Fix μ0 ∈ E and set
u0 =−E[μ0] ∈NR. Take x ∈ ∂φ2(u0)⊂MR. Then, for all u ∈NR,

〈x,u−u0〉 ≥ φ2(u)−φ2(u0).
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Let μ ∈ E . It follows from this inequality that

Φ(μ)−Φ(μ0) =

∫
φ1 dμ+φ2(−E[μ])−

∫
φ1 dμ0−φ2(−E[μ0])

≤
∫
φ1 d(μ−μ0)−〈E[μ]−E[μ0],x〉

≤
∫
φ1 d(μ−μ0)−

∫
〈u,x〉d(μ−μ0)

≤
∫
φd(μ−μ0)

with φ= φ1−x. Hence

Φ(μ)≤ Φ(μ0)−
∫
φdμ0 +

∫
φdμ.(3.7)

Since x belongs to ∂φ2(u0) and ∂φ2(u0) ⊂ stab(φ2) = stab(φ1) = C , the func-
tion φ is bounded above. By Lemma 3.8, the right-hand side of (3.7) is upper
semicontinuous. The inequality (3.7) is an equality for μ = μ0. Hence Φ is upper
semicontinuous at μ0, as stated. �

PROPOSITION 3.9. The function Φ is nonpositive, and vanishes for μ ∈ E if
and only if

supp(μ)⊂ F (g1,g2) and E[μ] ∈B(g1,g2),(3.8)

with B(g1,g2) and F (g1,g2) as in Definition 3.2.

Proof. Let notation be as in Lemma 3.1 and fix a point x ∈ ri(Cmax). For short
put

Ai = ∂gi(x), i= 1,2, B =B(g1,g2), F = F (g1,g2).

By Lemma 3.1(1), the sets A1 and A2 do not depend on the choice of the point
x ∈ ri(Cmax). Let φ̂i be as in (3.2). For every μ ∈ E we can write Φ(μ) in terms of
the functions φ̂i as

Φ(μ) =

∫
φ̂1 dμ+ φ̂2(−E[μ]).(3.9)

By Lemma 3.1(4), the functions φ̂i are nonpositive and vanish precisely on the
sets Ai. It follows from (3.9) that Φ is nonpositive and vanishes for every μ ∈ E
satisfying (3.8).

Conversely, let μ∈ E such that Φ(μ)= 0. Since both φ̂1 and φ̂2 are nonpositive,
the equality (3.9) also implies that

∫
φ̂1 dμ= 0 and φ̂2(−E[μ]) = 0.
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Therefore supp(μ) ⊂ A1 and −E[μ] ∈ A2. By Proposition 3.5(1), E[μ] belongs to
conv(supp(μ)). Since A1 is a convex set that contains supp(μ), we deduce E[μ] ∈
A1 and so

E[μ] ∈A1∩ (−A2) =B,

which gives the second condition in (3.8).
We next prove that the first condition in (3.8) is satisfied. Write θ = μ(F ), so

that 0≤ θ ≤ 1 and μ(A1 \F ) = 1−θ. We want to show θ = 1, thus we assume the
contrary, namely θ < 1. This implies that F is a proper face of A1. We put

u2 =
1

1− θ
∫

A1\F
udμ ∈A1 \F.

If θ = 0, then E[μ] = u2 and so E[μ] ∈ A1 \F , contradicting the fact that E[μ] ∈
B ⊂ F . Suppose that 0< θ < 1 and set

u1 =
1
θ

∫

F
udμ ∈ F.

Therefore

E[μ] = θu1 +(1− θ)u2 ∈ ri
(
u1u2
)
,

the relative interior of the segment u1u2. Since E[μ] is in B and hence in F , we
have ri(u1u2)∩F �= /0. Moreover, the whole segment is contained in A1, and F
is a face of A1. We deduce that this segment is contained in F . Therefore u2 ∈ F ,
contradicting the fact that u2 ∈A1 \F . We conclude that θ= 1 and so supp(μ)⊂F
since F is closed. This proves the first condition and completes the proof. �

The function Φ satisfies also the following property.

LEMMA 3.10. There are constants c1 ≥ 0 and c2 > 0 such that, for all μ ∈ E ,

Φ(μ)≤ c1− c2

∫
‖u‖dμ.

Proof. Let Ψ be the support function of C , which is the function on NR given
by

Ψ(u) = min
y∈C
〈u,y〉.

Put c1 = 4maxy∈C(|g1(y)|, |g2(y)|). It follows from their definition that the func-
tions φi = g∨i verify, for u ∈NR,

max(φ1(u),φ2(u))≤Ψ(u)+
c1

4
.(3.10)
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Let x be a point in the interior of C . On MR, we consider the norm induced by
the chosen norm ‖ · ‖ in NR. Since x is in the interior of C , we can find a constant
c2 > 0 such that B(x,c2), the closed ball of center x and radius c2, is contained in
C . Then

Ψ(u)≤ min
y∈B(x,c2)

〈u,y〉= 〈u,x〉− c2‖u‖.(3.11)

Since x ∈ C = stab(Ψ), we have (Ψ−x)(u)≤ 0. By (3.10) and (3.11),

Φ(μ) =

∫
φ1(u)dμ+φ2(−E[μ])+max

y∈C
(g1(y)+ g2(y))

≤ c1 +

∫
Ψ(u)dμ+Ψ(−E[μ])

≤ c1 +

∫
(Ψ−x)(u)dμ+(Ψ−x)(−E[μ])

≤ c1− c2

∫
‖u‖dμ,

as stated. �

PROPOSITION 3.11. Let (μl)l∈I be a net of measures in E such that

lim
l
Φ(μl) = 0.

Then (μl)l∈I has at least one cluster point in P, and every such cluster point μ lies
in E and satisfies

supp(μ)⊂ F (g1,g2) and E[μ] ∈B(g1,g2).

Proof. Replacing (μl)l∈I by a subnet if necessary, we assume that Φ(μl)≥−1
for all l ∈ I . Let c1, c2 be the constants of Lemma 3.10 and setK = (c1+1)/c2 > 0.
This lemma implies that each μl is in the subset of E given by

{
μ ∈ E |

∫
‖u‖dμ(u) ≤K

}
.

This subset is compact thanks to Prokhorov’s theorem [Bou69, Théorème 5.5.1],
and it is metrizable because P is. Hence, the net (μl)l∈I has at least one cluster
point, and every such cluster point μ lies in E , proving the first statement.

To prove the last statement, let (μk)k∈I ′ be a subnet converging to μ. By Propo-
sition 3.7, the function Φ is upper-semicontinuous and so

Φ(μ)≥ limsup
k

Φ(μk) = 0.

Hence Φ(μ) = 0, and the statement follows from Proposition 3.9. �
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As we have seen in Example 3.6, the function Φ is not continuous. We now
consider another topology on E with respect to which the function Φ is continuous.

Given μ,μ′ ∈ P, denote by Γ(μ,μ′) the set of probability measures on NR×
NR with marginals μ and μ′. That is, a probability measure ν on NR×NR belongs
to Γ(μ,μ′) if and only if

(p1)∗ν = μ, (p2)∗ν = μ′,

where pi is the projection ofNR×NR onto its i-th factor, and (pi)∗ the direct image
of measures.

Definition 3.12. The Kantorovich-Rubinstein distance (or Wasserstein distance
of order 1) on E is defined, for μ,μ′ ∈ E , by

W (μ,μ′) = inf
ν∈Γ(μ,μ′)

∫
‖u−u′‖dν(u,u′).

The quantity W (μ,μ′) satisfies the axioms of a distance and is finite when μ,μ′ ∈ E
[Vil09, pages 94–95]. The Kantorovich-Rubinstein topology (or KR-topology for
short) of E is the topology induced by this distance.

The finiteness of W (μ,μ′) for μ and μ′ in E , can be argued as follows. The
product measure μ×μ′ is in Γ(μ,μ′), and we have

W (μ,μ′)≤
∫
‖u−u′‖d(μ×μ′)(u,u′)≤

∫
‖u‖dμ(u)+

∫
‖u′‖dμ′(u′)< ∞.

For a Lipschitz continuous function ψ : NR → R, denote by Lip(ψ) its Lips-
chitz constant, given by

Lip(ψ) = sup
u �=u′
|ψ(u)−ψ(u′)|
‖u−u′‖ .

Lipschitz constants and the Kantorovich-Rubinstein distance are related by the du-
ality formula: for μ,μ′ ∈ E and a Lipschitz continuous function ψ : NR→ R, we
have

∣
∣∣
∣

∫
ψdμ−

∫
ψdμ′
∣
∣∣
∣≤ Lip(ψ)W (μ,μ′),(3.12)

see for instance [Vil09, Remark 6.5].

Remark 3.13. By [Vil09, Theorem 6.9], the KR-topology agrees with
the weak-∗ topology on E with respect to the space of continuous functions
ϕ : NR→ R such that

|ϕ(u)| ≤ c(1+‖u‖)
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for a c ∈ R and all u ∈ NR. In particular, the KR-topology is stronger than the
topology of E induced by that of P as in Definition 3.4.

PROPOSITION 3.14. The function Φ is continuous with respect to the
KR-topology. In particular, if (μl)l∈I is a net of measures in E that converges
to a measure μ ∈ E with respect to the KR-topology and

supp(μ)⊂ F (g1,g2) and E[μ] ∈B(g1,g2),

then limlΦ(μl) = 0.

Proof. Let (μl)l∈I be a net on E that converges to a measure μ∈ E with respect
to the KR-topology. By Remark 3.13,

lim
l

∫
g∨1 dμl =

∫
g∨1 dμ and lim

l
g∨2 (−E[μl]) = g∨2 (−E[μ]).

Therefore limlΦ(μl) = Φ(μ) and so Φ is continuous, proving the first statement.
The second statement follows from the first one and Proposition 3.9. �

We also need the following easy result. We include it here for the lack of a
suitable reference.

LEMMA 3.15. Let Ei ⊂ NR, i = 1, . . . ,r, be convex subsets and E = E1 +

· · ·+Er their Minkowski sum. For a point u0 ∈ E, the following conditions are
equivalent:

(1) the point u0 is a vertex of E;
(2) the equation u0 =

∑
i zi with zi ∈ Ei has a unique solution and, for i =

1, . . . ,r, the point zi in this solution is a vertex of Ei.

Proof. First assume that u0 is a vertex of E. Suppose that the equation u0 =∑
i zi, zi ∈Ei, has two different solutions, namely u0 =

∑
i z
′
i and u0 =

∑
i z
′′
i with

z′i0 �= z′′i0 for some i0 ∈ {1, . . . ,r}. Then both points

u1 =
∑

i�=i0
z′i+ z

′′
i0 and u2 =

∑

i�=i0
z′′i + z

′
i0

belong to E, they are different and satisfy u0 =
1
2 (u1 +u2), contradicting the fact

that u0 is a vertex of E. Hence the equation u0 =
∑

i zi has a unique solution with
zi ∈ Ei.

Now suppose that zi0 is not a vertex of Ei0 for some i0 ∈ {1, . . . ,r}. Then we
can write zi0 =

1
2(z
′
i0
+ z′′i0) with z′i0 �= z′′i0 both in Ei0 . Hence the points

u1 =
∑

i�=i0
zi+ z

′
i0 and u2 =

∑

i�=i0
zi+ z

′′
i0
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are different, belong to E and u0 =
1
2 (u1 +u2), contradicting the assumption that

u0 is a vertex of E. Thus we have proved that (1) implies (2).
Assume now that the statement (2) is true but u0 is not a vertex of E. Then

there are two different points u1,u2 ∈ E with u0 = 1
2(u1 + u2). Since E is the

Minkowski sum of the sets Ei, we can write

u0 =
∑

i

zi, u1 =
∑

i

z′i and u2 =
∑

i

z′′i .

The equation u0 =
∑

i zi has a unique solution and so zi = 1
2 (z
′
i+ z′′i ) for all i.

Since zi is a vertex of Ei, this implies z′i = z′′i . Therefore u1 = u2, contradicting
the assumptions and thus proving that (2) implies (1). �

4. Modulus distribution. In this section, we study the asymptotic modu-
lus distribution of the Galois orbits of nets of points of small height in toric vari-
eties. Our approach is based on the techniques developed in the series of papers
[BPS14, BMPS16, BPS15]. These techniques are well-suited for the study of toric
metrics and their associated height functions. In the sequel, we recall the basic
constructions and results.

Let K be a global field and T	G
n
m,K a split torus of dimension n over K. Let

N = Hom(Gm,K,T) and M = Hom(T,Gm,K) =N∨

be the lattices of cocharacters and of characters of T, respectively, and write NR =

N ⊗R and MR =M ⊗R. We also fix an auxiliary norm ‖ · ‖ on NR.
Let v ∈MK. We denote by T

an
v the v-adic analytification of T and by Sv its

compact subtorus. In the Archimedean case, Sv is isomorphic to (S1)n whereas, in
the non-Archimedean case, it is a compact analytic group, see [BPS14, Section 4.2]
for a description. Moreover, there is a map valv : Tan

v → NR, defined, in a given
splitting, by

valv(x1, . . . ,xn) = (− log |x1|v, . . . ,− log |xn|v).(4.1)

This map does not depend on the choice of the splitting, and the compact torus Sv
coincides with its fiber over the point 0 ∈NR.

Let X be a proper toric variety over K with torus T, described by a complete
fan Σ on NR. To each cone σ ∈ Σ corresponds an affine toric variety Xσ , which
is an open subset of X, and an orbit O(σ) of the action of T on X. The affine
toric variety corresponding to the cone σ = {0} is the principal open subset X0. It
coincides with the orbit O(0) and is canonically isomorphic to the torus T.

An R-divisor D on X is toric if it is invariant under the action of T. Such an
R-divisor defines a virtual support function on Σ, that is, a function

ΨD : NR −→ R
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whose restriction to each cone of the fan Σ is linear. We also associate to D the
subset of MR given by

ΔD = stab(ΨD) = {x ∈MR | x≥ΨD}.

If D is pseudo-effective, then ΔD is a polytope and, otherwise, it is the empty set.
Properties of the R-divisor D can be read off from its associated virtual support
function and polytope. In particular, D is nef if and only if ΨD is concave, and D
is big if and only if ΔD has nonempty interior.

A quasi-algebraic metrized divisor D = (D,(‖ · ‖v)v∈MK
) on X is toric if and

only if the v-adic metric ‖ · ‖v is invariant with respect to the action of Sv, for all
v. Such a toric metrized R-divisor on X defines a family of continuous functions
ψD,v : NR → R indexed by the places of K. For each v ∈MK, this function is
given, for p ∈ T

an
v , by

ψD,v(valv(p)) = log‖sD(p)‖v,(4.2)

where sD is the canonical rational R-section of D as in [BMPS16, Section 3]. This
adelic family of functions satisfies that |ψD,v−ΨD| is bounded for all v, and that
ψD,v = ΨD for all v except for a finite number. In particular, the stability set of
each ψD,v coincides with ΔD.

For each v ∈MK, we also consider the v-adic roof function ϑD,v : ΔD → R,
which is given by

ϑD,v(x) = ψ∨
D,v

(x) = inf
u∈NR

(〈u,x〉−ψD,v(u)
)
.

This is an adelic family of continuous concave functions on ΔD that are zero ex-
cept for a finite number of places. The global roof function ϑD : ΔD → R is the
weighted sum

ϑD =
∑

v∈MK

nvϑD,v.

The essential minimum of X with respect to D defined in (2.6) can be com-
puted as the maximum of its roof function [BPS15, Theorem A], that is

µess
D
(X) = max

x∈ΔD

ϑD(x).(4.3)

Example 4.1. Let X be a proper toric variety over K and D a toric R-divisor
on X. The canonical metric on D is the metric characterized by the fact that, for
each v ∈MK and p ∈ T

an
v ,

log‖sD(p)‖can,v =ΨD(valv(p)),
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see [BPS14, Proposition-Definition 4.3.15]. We denote this toric metrized
R-divisor by D

can
. For all v ∈MK,

ψDcan
,v =ΨD and ϑDcan

,v = 0.

In particular, ϑDcan = 0 and µess
D

can(X) = 0.

Given a semipositive toric metrized R-divisor D over D, its associated met-
ric functions are concave. Conversely, every adelic family of concave continuous
functions ψv : NR→ R, v ∈MK , with |ψv−ΨD| bounded for all v and such that
ψD,v =ΨD for all v except for a finite number, corresponds to a semipositive toric
metrized R-divisor over D [BMPS16, Proposition 4.19(1)]. For instance, a canon-
ical toric metrized R-divisor D

can
is semipositive if and only if ΨD is concave,

which is equivalent to the condition that D is nef.
For the rest of this section, we suppose that X is a proper toric variety over the

global field K with torus T, and that D is a semipositive toric metrized R-divisor
with D big.

We also fix the notation below. Recall from Section 3 that P denotes the space
of probability measures on NR endowed with the weak-∗ topology with respect to
the space Cb(NR), and that E denotes the subspace of probability measures with
finite first moment.

Notation 4.2. Let v ∈MK. We denote by gi,v, i = 1,2, the concave functions
on ΔD given by

g1,v = ϑD,v and g2,v =
∑

w∈MK\{v}

nw
nv
ϑD,w.

Thus ϑD = nv(g1,v+ g2,v). We consider the convex subsets of NR given by Defi-
nition 3.2

Bv =B(g1,v,g2,v), Fv = F (g1,v ,g2,v)(4.4)

and we write

Av = ∂g1,v(x)

for any x in the relative interior of the set ΔD,max where ϑD attains its maximum.
By Lemma 3.1(1) Av does not depend on the choice of x ∈ ri(ΔD,max). Thus Fv
is the minimal face of Av containing Bv. We also denote Φv the function on E
defined in (3.6) applied to the set C =ΔD and the functions gi,v, i= 1,2.

Given v ∈MK and a point p ∈ X0(K), we consider the discrete probability
measure on NR defined by

νp,v = (valv)∗μp,v,
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where μp,v is the uniform discrete probability measure on Xan
v supported on the

v-adic Galois orbit of p as in (2.4). This probability measure on NR gives the
modulus distribution of the v-adic Galois orbit of the point p. The next result char-
acterizes the limit behavior of this modulus distribution for nets of points of small
height.

THEOREM 4.3. Let notation and hypotheses be as above. For each v ∈MK

and every D-small net (pl)l∈I of algebraic points in the principal open subset X0,
the net (νpl,v)l∈I of measures in P has at least one cluster point. Every such cluster
point νv lies in E and satisfies

supp(νv)⊂ Fv and E[νv] ∈Bv.(4.5)

The proof of Theorem 4.3 is given below, after a definition and an auxiliary
result.

Definition 4.4. A centered adelic measure ν on NR is a collection of measures
νv ∈ E , v ∈MK, such that νv = δ0, the Dirac measure at the point 0 ∈NR, for all
but a finite number of places v, and such that

∑

v∈MK

nvE[νv] = 0.(4.6)

We denote by HK the set of all centered adelic measures on NR.

We introduce the function ηD : HK→ R defined by

ηD(ν) =−
∑

v∈MK

nv

∫
ψD,v dνv.(4.7)

This function extends the notion of heights of points to the space HK. Indeed, for
p ∈X0(K), the collection

νp = (νp,v)v∈MK
(4.8)

is a centered adelic measure on NR, because of the product formula in Proposi-
tion 2.1(2). Moreover, the canonical R-section sD does not vanish at p and, by
Proposition 2.3 and (4.2),

hD(p) =−
∑

v

nv
#Gal(p)v

∑

q∈Gal(p)v

ψD,v(valv(q))

=−
∑

v

nv

∫
ψD,v dνp,v

= ηD(νp).

(4.9)
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LEMMA 4.5. For every centered adelic measure ν = (νv)v∈MK
,

max
v∈MK

−nvΦv(νv)≤ ηD(ν)−µess
D
(X)≤

∑

v∈MK

−nvΦv(νv).(4.10)

In particular, for p ∈X0(K),

max
v∈MK

−nvΦv(νp,v)≤ hD(p)−µess
D
(X)≤

∑

v∈MK

−nvΦv(νp,v).(4.11)

Proof. Let ΔD,max be the set of points maximizing the roof function ϑD and

choose x ∈ΔD,max. For each v ∈MK, let φ̂i,v : NR→ R, i= 1,2, be the function
defined by

φ̂i,v(u) = g∨i,v(u)−〈x,u〉+ gi,v(x),

where gi,v denotes the concave function on ΔD in Notation 4.2 and g∨i,v its Le-
gendre dual as in (3.1).

Note that ψD,v = g∨1,v. Using (4.6) and (4.3), we deduce that

−
∑

v

nv

∫
ψD,v dνv = ϑD(x)−

∑

v

nv

∫
φ̂1,v dνv

= µess
D
(X)−

∑

v

nv

∫
φ̂1,v dνv.

Thus

ηD(ν)−µess
D
(X) =−

∑

v

nv

∫
φ̂1,v dνv .(4.12)

For each v ∈MK, we get from the definition of Φv that

Φv(νv) =

∫
φ̂1,v dνv+ φ̂2,v(−E[νv]).

By Lemma 3.1(4), the functions φ̂i,v are nonpositive and so

Φv(νv)≤
∫
φ̂1,v dνv.(4.13)

The second inequality in (4.10) then follows from (4.12) and (4.13).
To prove the first inequality in (4.10), fix v ∈ MK. By [BPS14, Proposi-

tions 2.3.1(1) and 2.3.3(3)],

φ̂2,v =�w �=v
(
φ̂1,w

nw
nv

)
,(4.14)
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where w runs over the places of K different from v, the symbol � denotes the sup-
convolution and, for a concave function ψ and a nonzero constant λ, the expression
ψλ denotes the right multiplication as in [BPS14, Section 2.3].

By the equality (4.14), the definitions of the sup-convolution and the right mul-
tiplication, and condition (4.6), we deduce

φ̂2,v(−E[νv])≥
∑

w �=v

nw
nv
φ̂1,w(E[νw]).(4.15)

By the concavity of φ̂1,w and Jensen’s inequality,
∫
φ̂1,w dνw ≤ φ̂1,w(E(νw)) for all

w ∈MK. Therefore, by (4.12) and (4.15),

ηD(ν)−µess
D
(X) ≥−nv

⎛

⎝
∫
φ̂1,v dνv+

∑

w �=v

nw
nv
φ̂1,w
(

E
(
νw
))
⎞

⎠

≥−nv
(∫

φ̂1,v dνv+ φ̂2,v
(−E[νv]

)
)
=−nvΦv

(
νv
)
,

which proves the first inequality and completes the proof of (4.10). The inequalities
in (4.11) follow directly from (4.10) and (4.9). �

Proof of Theorem 4.3. Let v ∈MK and let Φv : E →R be the function defined
by (3.6) with g1,v and g2,v as in Notation 4.2. Since the net of points (pl)l∈I is
D-small,

lim
l

hD(pl) = µess
D
(X).

By Proposition 3.9, Φv is nonpositive, and so we deduce from Lemma 4.5 that

lim
l
Φv(νpl,v) = 0.

The theorem is then a direct consequence of Proposition 3.11. �

To state a partial converse of Theorem 4.3, we need a further definition.

Definition 4.6. The adelic Kantorovich-Rubinstein distance WK on HK is de-
fined, for ν = (νv)v ,ν

′ = (ν ′v)v ∈HK, by

WK(ν,ν
′) =
∑

v

nvW (νv,ν
′
v),

whereW denotes the Kantorovich-Rubinstein distance inNR as in Definition 3.12.
By the definition ofHK, there are only a finite number of nonzero terms in this sum.

The topology onHK induced by this distance is called the adelic KR-topology.

THEOREM 4.7. With notation and hypotheses as before, let ν = (νv)v∈MK
∈

HK be a centered adelic measure such that
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supp(νv)⊂ Fv and E[νv] ∈Bv

for all v. Then there is a generic D-small net (pl)l∈I of algebraic points of X0

such that the net of measures (νpl)l∈I converges to ν with respect to the adelic
Kantorovich-Rubinstein distance.

The proof of Theorem 4.7 is given below, after some preliminary results. The
first result gives the main properties of the function ηD.

LEMMA 4.8. The function ηD is Lipschitz continuous with respect to WK.
Moreover, for all ν = (νv)v∈MK

∈HK,

ηD(ν)≥ µess
D
(X),(4.16)

with equality if and only if supp(νv)⊂ Fv and E[νv] ∈Bv for all v.

Proof. Let S ⊂MK be a finite subset such that ψD,v = ΨD for all v /∈ S. For
ν = (νv)v,ν

′ = (ν ′v)v ∈HK,

∣∣ηD(ν)−ηD(ν ′)
∣∣≤
∑

v

nv

∣
∣∣
∣

∫
ψD,v dνv−

∫
ψD,v dν ′v

∣
∣∣
∣

≤
∑

v

Lip
(
ψD,v
)
nvW
(
νv,ν

′
v

)

≤
(

max
x∈ΔD

‖x‖
)
WK(ν,ν

′),

where the second inequality is given by the duality formula (3.12) and the last by
the observation that Lip(ψD,v) = maxx∈ΔD

‖x‖ for all v. This proves that ηD is
Lipschitz continuous with respect to WK.

As already remarked, the functions Φv are nonpositive. By Lemma 4.5, this
implies the inequality (4.16). From the same result, it follows that the equality
holds if and only if Φv(νv) = 0 for all v. By Proposition 3.9, this holds if and only
if supp(νv)⊂ Fv and E[νv] ∈Bv, completing the proof of the lemma. �

From this lemma, we deduce as a direct consequence the next characterization
of algebraic points in toric varieties realizing the essential minimum.

COROLLARY 4.9. Let p be an algebraic point of X0. Then hD(p) = µess
D
(X) if

and only if supp(νp,v)⊂ Fv and E[νp,v] ∈Bv for all v ∈MK.

Let HK ⊂
⊕

v∈MK
NR be the subspace defined by the equation

∑
v nvuv = 0.

By sending the point (uv)v ∈HK to the adelic centered measure (δuv )v ∈HK, we
identify HK with a subspace ofHK.

COROLLARY 4.10. The minimum of the function ηD is equal to µess
D
(X) and

it is attained at a point of the subspace HK ⊂HK.
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Proof. Let x be a point where ϑD attains its maximum. Since 0 ∈ ∂ϑD(x) and
∂ϑD(x) =

∑
v nv∂ϑD,v(x), we can find u= (uv)v ∈HK such that for every v,

uv ∈ ∂ϑD,v(x)∩
⎛

⎝−∂
⎛

⎝
∑

w∈MK\{v}

nw
nv
ϑD,w

⎞

⎠(x)

⎞

⎠ =Bv.

The adelic centered measure δ = (δuv)v ∈ HK corresponding to u ∈HK satisfies
supp(δuv ) = {uv} ⊂ Fv and E[δuv ] = uv ∈Bv. Thus, by Lemma 4.8,

µess
D
(X) = ηD(u) = min

ν∈HK

ηD(ν),

as stated. �

We next show that the set of measures coming from algebraic points is dense
inHK.

PROPOSITION 4.11. For every ν ∈ HK there is a generic net (pl)l∈I of alge-
braic points of X0 such that the net of associated measures (νpl)l∈I as in (4.8)
converges to ν with respect to the adelic KR-topology.

Proof. Put ν = (νv)v and let ε > 0 be given. Let S be a finite nonempty subset
of MK such that νv = δ0 for all v /∈ S, and put

ε′ =
ε

6
∑

v∈S nv
and d′ =

2
ε′

max
v∈S

∫
‖u‖dνv .

By [Vil09, Theorem 6.18], for each v ∈ S we can approach νv with respect to
the KR-distance, by a probability measure with finite support. Therefore we can
find d≥max{2,d′} and for each v ∈ S a sequence of points uv,1, . . . ,uv,d−1 ∈NR

such that the probability measure ν ′′v =
1
d−1

∑d−1
i=1 δuv,i satisfiesW (νv,ν

′′
v )<ε

′. We
deduce from [Vil09, Formula (6.3)] the inequalities

∣∣
∣
∣

∫
‖u‖dνv−

∫
‖u‖dν ′′v

∣∣
∣
∣≤ ε′ and ‖E[νv]−E[ν ′′v ]‖ ≤ ε′.

Defining uv,d := dE[νv]− (d− 1)E[ν ′′v ], we verify ‖uv,d‖ ≤ ‖E[νv]‖+(d− 1)ε′.
Thus, setting ν ′v = 1

d

∑d
i=1 δuv,i and using Jensen’s inequality and [Vil09, For-

mula (6.3)] again, we get

W (ν ′′v ,ν
′
v)≤

1
d(d−1)

d−1∑

i=1

‖uv,i‖+ 1
d
‖uv,d‖

≤ 1
d

(∫
‖u‖dν ′′v +

∫
‖u‖dνv+(d−1)ε′

)

≤ 2
d

∫
‖u‖dνv+ ε

′ ≤ 2ε′.
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We then easily check E[ν ′v] = E[νv] and

W (νv,ν
′
v)≤W (νv,ν

′′
v )+W (ν ′′v ,ν

′
v)< 3ε′.

Set also ν ′v = δ0 for v /∈ S. Then ν ′ = (ν ′v)v ∈HK and WK(ν,ν
′)< ε

2 .
Let F/K be a finite extension of degree d such that all places in S split com-

pletely, as given by [BPS15, Lemma 2.2]. For each v ∈ S and w ∈MF such that
w | v, we have nw = nv/d. We enumerate the places above a given place v ∈ S as
w(v,j), j = 1, . . . ,d.

Let HF ⊂
⊕

w∈MF
NR be the subspace defined by the equation

∑
w nwuw = 0.

For each v ∈MK consider the element u ∈HF given, for w ∈MF, by

uw =

{
uv,j for v ∈ S and w = w(v,j) with 1≤ j ≤ d,
0 for v /∈ S and w | v.

Consider the map valF : T(F)→⊕w∈MF
NR defined by valF = (valw)w∈MF

. This
is a group homomorphism and so it can be extended to a map

valF : T(F)⊗Q−→
⊕

w∈MF

NR.

By the product formula, the image of this map lies in the hyperplane HF and,
by [BPS15, Lemma 2.3], it is dense with respect to the L1-topology on HF. For
α ∈ T(F) and r ∈Q, we have

‖u−valF(α
r)‖L1 =

∑

v∈S

nv
d

d∑

j=1

‖uv,j −valw(v,j)(α
r)‖+
∑

v/∈S
‖valv(α

r)‖

=
∑

v

nv

∫
‖u−u′‖dλv(u,u

′)

(4.17)

for the probability measure λv on NR×NR given by

λv =

⎧
⎪⎪⎨

⎪⎪⎩

1
d

d∑

j=1

δ(uv,j ,valw(v,j)(α
r)) if v ∈ S,

δ(0,valv(αr)) if v /∈ S.

This measure has marginals ν ′v and νp,v for any p = ω ·αr with ω a torsion point
in T(K), thus W (ν ′v,νp,v)≤

∫ ‖u−u′‖dλv(u,u′) for every v, and the quantity in
(4.17) is an upper bound for the adelic KR-distance WK(ν

′,νp). It follows that we
can choose α and r such that WK(ν

′,νp)< ε/2 and thus WK(ν,νp)< ε.
Since the orbit of αr under the action of the group of torsion points of T(K)

is Zariski dense, we have shown that, given ε > 0 and a nonempty open subset
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U ⊂X, we can choose p ∈ U(K) satisfying

WK(ν,νp)< ε.

As in the proof of Proposition 2.5, let I be the set of closed subvarieties of
pure codimension 1 in X ordered by inclusion. For each Y ∈ I choose a point
pY ∈ (X \Y )(K) such that

WK(ν,νpY )<
1

c(Y )

with c(Y ) the number of components of Y . Thus, the net of algebraic points
(pY )Y ∈I is generic and the net of probability measures (νpY )Y ∈I converges to
ν in the KR-topology, proving the result. �

Proof of Theorem 4.7. Let ν = (νv)v be a centered adelic measure on NR such
that each measure νv satisfies the condition (4.5). By Lemma 4.8, it satisfies

ηD(ν) = µess
D
(X).

Proposition 4.11 implies that there is a generic net (pl)l∈I of points in T(K) =

X0(K) such that (νpl)l∈I converges to ν with respect to the distance WK. On the
other hand, by Lemma 4.8 we also have

lim
l

hD(pl) = lim
l
ηD(νpl) = ηD(ν) = µess

D
(X),

and so the net (pl)l∈I is D-small. �

COROLLARY 4.12. Let v ∈MK. For every measure νv ∈ E with supp(νv) ⊂
Fv and E[νv] ∈ Bv, there is a generic D-small net (pl)l∈I of algebraic points of
X0 such that the net of measures (νpl,v)l∈I converges to νv with respect to the
Kantorovich-Rubinstein distance. In particular, (νpl,v)l∈I also converges to νv in
the weak-∗ topology with respect to Cb(NR).

Proof. Let x be a point where ϑD attains its maximum. Since

E[νv] ∈Bv ⊂−∂
⎛

⎝
∑

w∈MK\{v}

nw
nv
ϑD,w

⎞

⎠(x) =−
∑

w∈MK\{v}

nw
nv
∂ϑD,w(x),

we can find uw ∈ ∂ϑD,w for each w �= v such that

uv := E[νv] =−
∑

w∈MK\{v}

nw
nv
uw.
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In particular, for all w ∈MK one has

uw =−
∑

w′∈MK\{w}

nw′

nw
uw′ ∈ ∂ϑD,w(x)∩

⎛

⎝−∂
⎛

⎝
∑

w′∈MK\{w}

nw′

nw
ϑD,w′

⎞

⎠(x)

⎞

⎠

=Bw.

Furthermore, we have uw = 0 for all but a finite number of places w in MK. Put
νw = δuw for each w �= v. The statement then follows from Theorem 4.7 applied to
the centered adelic measure ν = (νw)w∈MK

. �

Combining Theorems 4.3 and 4.7, we can obtain a criterion for when the direct
image under the valuation map of the Galois orbits of a small net converges in the
sense of measures. We show that in this case, the limit measure is concentrated in
a single point.

COROLLARY 4.13. Let v ∈MK. The following conditions are equivalent:
(1) for every D-small net (pl)l∈I of algebraic points ofX0, the net of measures

(νpl,v)l∈I converges in the weak-∗ topology with respect to Cb(NR);
(2) for every generic D-small net (pl)l∈I of algebraic points of X0, the net of

measures (νpl,v)l∈I converges in the weak-∗ topology with respect to Cc(NR), the
space of continuous functions on NR with compact support;

(3) the face Fv contains only one point.
When these equivalent conditions hold, the limit measures in (1) and (2) coincide
with the Dirac measure at the unique point of Fv.

Proof. It is clear that (1) implies (2), and Theorem 4.3 shows that (3) implies
(1). Now suppose that the face Fv has more than one point. Since Fv is the minimal
face containing Bv, we can find distinct points u0,u1,u2 ∈ Fv such that

u0 =
u1 +u2

2
∈Bv.

The probability measures δu0 and 1
2δu1 +

1
2δu2 satisfy the conditions (4.5). By

Corollary 4.12, we can find generic D-small nets (pl)l∈I and (ql)l∈I such that the
nets of measures (νpl,v)l∈I and (νql,v)l∈I respectively converge to

δu0 and
1
2
δu1 +

1
2
δu2

in the KR-topology, and hence in the weak-∗ topology with respect to Cc(NR).
Combining these nets, we can obtain a net that does not converge in this weak-∗
topology. Hence the condition (2) implies the condition (3).

The last statement follows from Theorem 4.3. �

When any of the equivalent conditions of Corollary 4.13 holds we say that
the metrized divisor D satisfies the modulus concentration property at the place
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v. Thus Corollary 4.13 gives us a criterion for the modulus concentration property
at a place. We next give a criterion for the modulus concentration property at all
places simultaneously, which can be directly read from the roof function. Before
giving it, we need some preliminary results and a definition.

Definition 4.14. A semipositive toric metrized R-divisorD withD big is called
monocritical if the minimum of ηD in HK is attained at a unique point. If this is
the case, by Corollary 4.10, the minimum is attained at a point of HK. This point
is called the critical point of D.

Example 4.15. Let D
can

be a nef and big toric R-divisor equipped with the
canonical metric as in Example 4.1. Then all its local roof functions are zero. Tak-
ing a point x in the interior of the polytope, we have ∂ϑD,v(x) = {0} for every v.

Hence Fv = {0} for every v and D is monocritical with critical point 0 ∈HK.

Recall that ΔD,max denotes the convex set of points of ΔD where ϑD attains
its maximum.

PROPOSITION 4.16. The following conditions are equivalent:
(1) the metrized R-divisor D is monocritical;
(2) for every point x ∈ΔD,max, the set

HK∩
∏

v∈MK

∂ϑD,v(x)(4.18)

contains a unique element u = (uv)v ∈ HK and, for v ∈MK, the point uv is a
vertex of ∂ϑD,v(x);

(3) for every point x ∈ΔD,max, the point 0 is a vertex of ∂ϑD(x);
(4) there exists a point x ∈ΔD,max such that 0 is a vertex of ∂ϑD(x);
(5) for all v ∈MK, the set Fv contains only one point.

When these equivalent conditions hold, Fv = {uv} for every v and u is the critical
point of D.

Proof. We prove first that (1) implies (2). Assume that D is monocritical. Let
u= (uv)v belong to the set (4.18). Then for every v ∈MK we have

uv ∈ ∂ϑD,v(x)∩
⎛

⎝−∂
⎛

⎝
∑

w∈MK,w �=v

nw
nv
ϑD,w

⎞

⎠(x)

⎞

⎠ .

So the measure ν = (δuv)v belongs to HK and satisfies supp(δuv ) ⊂ Bv for each
v. In particular, supp(δuv)⊂ Fv and E[δuv ] ∈Bv. Thus by Lemma 4.8

ηD(u) = min
ν ′∈HK

ηD(ν
′).
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Since D is monocritical, this shows that the set (4.18) is reduced to the unique
critical point of D.

Assume now that the set (4.18) contains a single point u = (uv)v ∈ HK and
there is a place v0 ∈MK such that uv0 is not a vertex of ∂ϑD,v0

(x). Then we can
find two points uv0,1,uv0,2 ∈ ∂ϑD,v0

(x) such that

uv0 =
uv0,1 +uv0,2

2
.

We consider the measure ν1 = (δuv)v and the measure ν2 = (νv)v defined by

νv =

⎧
⎨

⎩

δuv if v �= v0,

δuv0,1
+ δuv0,2

2
if v = v0.

Then ν2 is in (4.18) and, again by Lemma 4.8, we have that

ηD(ν1) = ηD(ν2) = min
ν∈HK

ηD(ν)

contradicting the hypothesis that D is monocritical, and completing the proof of
(2).

Assume that (2) is true and fix x ∈ ΔD,max. Let S ⊂MK be the finite set of
places where uv �= 0 or ϑD,v is not identically zero. We have that

∂ϑD(x) =
∑

v∈S
nv∂ϑD,v(x).

Moreover, (2) implies that the equation

0 =
∑

v∈S
nvav with av ∈ ∂ϑD,v(x)

has a unique solution av = uv and this solution satisfies that av is a vertex of
∂ϑD,v(x). Therefore, by Lemma 3.15 we deduce that 0 is a vertex of ∂ϑD(x).
Hence (2) implies (3).

Since ΔD,max is nonempty, (3) implies (4).
Assume now that (4) is true. For each v, let g1,v and g2,v be the continuous

concave functions on ΔD in Notation 4.2. Since ϑD = nvg1,v+nvg2,v ,

∂ϑD(x) = nv∂g1,v(x)+nv∂g2,v(x).

Lemma 3.15 and the definition of the set Bv imply that this set contains one single
point uv, and that this point is a vertex of both ∂g1,v(x) and of −∂g2,v(x). Hence
Bv is already a face of ∂g1,v(x). Thus Fv =Bv = {uv} and so (4) implies (5).

By Lemma 4.8 it is clear that (5) implies (1) finishing the proof of the equiva-
lence.
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Assume now that D is monocritical. Since by Lemma 4.8 the point u in (2)
satisfies that ηD(u) = minν∈HK

ηD(ν), it is the critical point. Following the proof
of the equivalence we deduce that Fv = {uv} proving the last statement. �

For a given toric metrized R-divisor, the condition of being monocritical and
its critical point behave well with respect to scalar extensions. The following result
follows from the compatibility of toric metrics with scalar extensions in [BPS14,
Proposition 4.3.8].

PROPOSITION 4.17. Let X and D as before. Let F ⊂ K be a finite exten-
sion of K and write DF for the toric metrized R-divisor on XF obtained by scalar
extension. If D is monocritical with critical point (uv)v∈MK

, then DF is also mon-
ocritical and its critical point (uw)w∈MF

is given by uw = uv for all v ∈MK and
w over v.

We now give the criterion for modulus concentration at every place.

THEOREM 4.18. Let X and D be as before. The following conditions are
equivalent:

(1) for every D-small net (pl)l∈I of algebraic points of X0 and every place
v ∈MK, the net of measures (νpl,v)l∈I converges;

(2) the metrized R-divisor D is monocritical.
When these equivalent conditions hold,

lim
l∈I

νpl,v = δuv ,

where (uv)v is the critical point of D.

Proof. The theorem follows directly from Corollary 4.13 and Proposition 4.16.
�

When there is modulus concentration for every place, we can show that the
convergence holds not only in the weak-∗ topology with respect to Cb(NR) but
even in the stronger adelic KR-topology.

THEOREM 4.19. Let X and D be as before. Assume that D is monocritical.
Let u= (uv)v be the critical point of D and set δu = (δuv )v ∈HK. Then, for every
D-small net (pl)l∈I of algebraic points of X0, the net of centered adelic measures
(νpl)l∈I converges to δu in the adelic KR-topology. In particular, for every v ∈MK,
the net of measures (νpl,v)l∈I converges to δuv in the KR-topology.

Proof. For each v ∈MK, let fv : NR→ R be the function given by

fv(u) = ψD,v(u)−ΨD(u−uv).
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This is an adelic family of bounded continuous functions on NR with fv = 0 for all
but a finite number of v. Consider then the function η′ : HK→ R given by

η′(ν) = ηD(ν)+
∑

v

nv

∫
fv dνv =−

∑

v

nv

∫
ΨD(u−uv)dνv .

Since the net (pl)l∈I is D-small,

lim
l
ηD(νpl) = lim

l
hD(pl) = µess

D
(X).

By Theorem 4.18, for every place v ∈MK the net of measures (νpl,v)l∈I converges
to δuv , so that liml

∫
fv dνpl,v =

∫
fv dδuv = ψD,v(uv). Since u = (uv)v is the

critical point of D, using Corollary 4.10 we get

lim
l
η′(νpl) = µess

D
(X)+

∑

v

nvψD,v(uv) = 0.(4.19)

Choose a point x in the interior of ΔD. Then there is a constant c > 0 such
that, for all u ∈NR,

‖u‖ ≤ −c(ΨD−x)(u).

It follows from the definition of the Kantorovich-Rubinstein distance that, for each
v ∈MK,

W (νpl,v,δuv )≤
∫
‖u−uv‖dνpl,v(u).

Hence

WK

(
νpl ,δu

)≤
∑

v

nv

∫ ∥
∥u−uv

∥
∥dνpl,v(u)

≤−c
∑

v

nv

∫ (
ΨD−x

)(
u−uv

)
dνpl,v(u) = cη′

(
νpl
)
,

where the last equality follows from the facts that u belongs to HK and that νpl
is a centered adelic measure on NR, thanks to the product formula in Proposi-
tion 2.1(2). By (4.19), this distance converges to 0, completing the proof. �

5. Equidistribution of Galois orbits and the Bogomolov property. We
turn to the study of the limit measures of Galois orbits ofD-small nets of algebraic
points in toric varieties. In this section, we denote by X a proper toric variety over
a global field K and D a toric metrized R-divisor on X with D big. For v ∈MK,
recall that valv : Tan

v →NR denotes the valuation map, defined in (4.1).
We first describe the limit measures in the monocritical case.



352 J. I. BURGOS GIL, P. PHILIPPON, J. RIVERA-LETELIER, AND M. SOMBRA

Definition 5.1. Given v ∈MK and u ∈ NR, the probability measure λSv,u on
Xan
v is defined as follows.

(1) When v is Archimedean, note that val−1
v (u) = Sv · p for any point p ∈

val−1
v (u) and where Sv = val−1

v (0) 	 (S1)n is the compact torus of T
an
v . In this

case, λSv,u is the direct image under the translation by p of the Haar probability
measure of Sv.

(2) When v is non-Archimedean, consider the multiplicative seminorm on
the group algebra Cv[M ] 	 Cv[x

±1
1 , . . . ,x±1

n ] that, to a Laurent polynomial∑
m∈M αmχ

m, assigns the value maxm(|αm|ve−〈m,u〉). This seminorm gives a
point, denoted by θ(u), in the Berkovich space Xan

v . The point θ(u) lies in the
preimage val−1

v (u). We then set λSv,u = δθ(u), the Dirac measure at this point.

The following result corresponds to Theorem 1.1 in the introduction, and
shows that modulus concentration at every place implies the equidistribution prop-
erty at every place. Due to the existing equidistribution theorems in the literature,
we restrict its statement to divisors (rather than R-divisors).

THEOREM 5.2. Let X be a proper toric variety over K and D a semipositive
toric metrized divisor on X with D big. The following conditions are equivalent:

(1) for every generic D-small net (pl)l∈I of algebraic points of X0 and every
place v ∈MK, the net of probability measures (μpl,v)l∈I on Xan

v converges;
(2) the metrized divisor D is monocritical.
When these equivalent conditions hold, the limit measure in (1) is λSv,uv , with

uv ∈NR the v-adic component of the critical point of D.

The proof of Theorem 5.2 is done by reduction to the quasi-canonical case.
The following is the characterization of quasi-canonical toric metrized R-divisors
in [BPS15].

PROPOSITION 5.3. Let X be a proper toric variety over K and D a semi-
positive toric metrized R-divisor on X with D big. The following conditions are
equivalent:

(1) D is quasi-canonical (Definition 2.7);
(2) ϑD is constant;
(3) there are u= (uv)v ∈HK and (γv)v ∈

⊕
v∈MK

R such that

ψD,v(u) = ΨD(u−uv)−γv

for all v ∈MK and u ∈NR.

Proof. The equivalence of (1) and (3) is given by [BPS15, Corollary 4.7]. The
equivalence of (1) and (2) is given in the course of the proof of [BPS15, Proposi-
tion 4.6], recalling that vol(D) = degD(X) and noting that, since by assumption
D is semipositive, v̂olχ(D) = hD(X). �
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The following result gives the key step in the proof of Theorem 5.2.

PROPOSITION 5.4. Let X be a proper toric variety over K and D a mono-
critical metrized R-divisor on X with critical point u = (uv)v∈MK

. Let D
′

be the
toric metrized R-divisor over D corresponding to the family of concave functions
ψ
D
′
,v

: NR→ R, v ∈MK, given by

ψ
D
′
,v
(u) = ΨD(u−uv).(5.1)

Then D
′
is quasi-canonical and every D-small net of algebraic points ofX0 is also

D
′
-small.

Proof. The fact that D
′
is quasi-canonical is given by Proposition 5.3.

Let (pl)l∈I be a D-small net of algebraic points of X0. By Theorem 4.19, the
net of centered adelic measures (νpl)l∈I converges to δu = (δuv )v with respect to
the adelic KR-distance. By Lemma 4.8, the function η

D
′ is continuous with respect

to this distance. Using (4.9), we deduce that

lim
l

h
D
′(pl) = lim

l
η
D
′(νpl) = η

D
′(δu) = 0.

On the other hand, ϑ
D
′
,v
= uv for each v. Since the critical point u lies in the

subspace HK, we have that ϑ
D
′ =
∑

v nvuv = 0. Hence,

µess
D
′ (X) = max

x∈ΔD

ϑ
D
′(x) = 0.

Thus (pl)l∈I is D
′
-small, as stated. �

Proof of Theorem 5.2. Suppose that the condition (1) holds. Given a generic
D-small net (pl)l∈I of algebraic points of X0 and v ∈MK, the net of measures
(μpl,v)l∈I converges weakly with respect to the space C(Xan

v ). Hence, the net of
direct images (νpl,v)l∈I converges weakly with respect to the space Cc(NR). By
Corollary 4.13, for each v, the face Fv contains only one point. Proposition 4.16
then implies that D is monocritical, giving the condition (2).

Now suppose that the condition (2) holds. Since D is monocritical, the poly-
tope ΔD has nonempty interior. Let Y be the toric variety associated to the normal
fan of ΔD and E the divisor on Y associated to the virtual support function ΨD,
see for example [BPS14, Theorem 3.3.3]. By construction E is ample and (Y,E) is
the polarized toric variety associated to the polytope ΔD, see for example [BPS14,
Theorem 3.4.6 and Remark 3.4.7]. By the characterization of semipositive toric
metrics in [BPS14, Theorem 4.8.1], the metric in D induces a semipositive toric
metric onE, and we denote byE the corresponding toric metrized divisor. We have
that ψE,v =ψD,v for all v, and soE is also monocritical with the same critical point

as D.
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Let

E
′
= (E,‖ · ‖′v)v∈MK

be the ample divisor E on Y equipped with the quasi-canonical toric metric given
by Proposition 5.4, with D replaced by E. Let (pl)l∈I be a generic D-small net
of algebraic points of X0 = T = Y0. It is also a generic E-small net of algebraic
points of Y0. By Proposition 5.4 with D replaced by E, it is also E

′
-small.

By Theorem 2.11, for each place v the net (μpl,v)l∈I converges to the normal-
ized Monge-Ampère measure μv = 1

degE(Y )c1(E,‖ · ‖′v)∧n on Y an
v . Consider the

real Monge-Ampère measure M(ψ
E
′
,v
) associated to the v-adic metric in E

′
as

in [BPS14, Definition 2.7.1]. By the explicit formula (5.1) and [BPS14, Exam-
ple 2.7.5],

M(ψ
E
′
,v
) = volM (ΔD)δuv =

degE(Y )

n!
δuv .

Then [BPS14, Theorem 4.8.11] implies that μv = λSv,uv . Therefore, the net of
measures (μpl,v)l∈I on Xan

v converges to λSv,uv , giving the condition (1) and the
last statement in the theorem. �

Example 5.5. Let D
can

be a big and nef toric divisor on X equipped with the
canonical metric. Following Example 4.15, this toric metrized divisor is mono-
critical with critical point 0 ∈ HK. Hence, it satisfies the v-adic equidistribution
property with limit measure λSv,0, for every v ∈MK.

In [Bil97], Bilu gave an equidistribution theorem for Galois orbits of sequences
of points of small canonical height. This result is restricted to number fields and
Archimedean places. However, and in contrast to the previous example, this result
holds not just for generic, but for strict sequences of points, that is, sequences
that eventually avoid any given proper torsion subvariety. This stronger version of
the equidistribution property was used in a crucial way in loc. cit. to prove the
Bogomolov property for the canonical height.

Here we extend this version of the equidistribution property to monocritical
metrized R-divisors on toric varieties (Theorem 5.7) and deduce from it the Bo-
gomolov property (Theorem 1.4 in the introduction, or Theorem 5.12 below). Our
proofs are similar to Bilu’s and use Fourier analysis. Hence, for the rest of the sec-
tion we restrict to the case when K is a number field and we only study the equidis-
tribution over the Archimedean places, see Remark 5.9. Following Remark 2.10,
we restrict without loss of generality to sequences, instead of nets.

To formulate this extension, we have to modify slightly the notion of strict
sequences, see Remark 5.8. First we recall some standard terminology: a subtorus
of T is an algebraic subgroup of T that is geometrically irreducible, a translate of
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a subtorus is a subvariety of T
K

that is the orbit of a point p ∈ T(K) by a subtorus,
and a torsion subvariety is a translate of a subtorus by a torsion point of the group
T(K)	 (K

×
)n.

Definition 5.6. A sequence (pl)l≥1 of algebraic points of T is strict if, for every
translate of a subtorus U � T

K
, there is l0 ≥ 1 such that pl /∈ U(K) for all l ≥ l0.

Equivalently, (pl)l≥1 is strict if, for every m ∈M \{0} and every point q ∈X0(K),
there is l0 ≥ 1 such that χm(pl) �= χm(q) for all l ≥ l0.

THEOREM 5.7. Let X be a proper toric variety over a number field K and D
a monocritical metrized R-divisor on X. Then, for every strict D-small sequence
(pl)l≥1 of algebraic points of X0 and every Archimedean place v ∈MK, the se-
quence (μpl,v)l≥1 converges to the probability measure λSv,uv , with uv ∈ NR the
v-adic component of the critical point of D.

Proof. Let (pl)l≥1 be a strict D-small sequence of algebraic points of X0. For
each m ∈M \{0} consider the character

χm : T−→Gm,K.

Since (pl)l≥1 is strict, the sequence (χm(pl))l≥1 is generic.
We embed Gm,K ↪→ P

1
K

as the principal open subset. Let D0 = div(x0) be the
divisor at infinity on P

1
K

, equipped with the toric metric corresponding to the adelic
family of functions ψDm

0 ,v
: R→ R given by

ψDm
0 ,v

(u) = min(0,u−〈m,uv〉).

By Proposition 5.3, this metric is quasi-canonical. For each v ∈MK, there is a
commutative diagram

T
an
v

χm

��

valv
��

G
an
m,v

valv
��

NR m
�� R.

The commutativity of this diagram implies that νχm(pl),v = m∗νpl,v. By Theo-
rem 4.19, the sequence (νpl)l≥1 converges in the adelic KR-topology to the cen-
tered adelic measure (δuv )v on NR. Hence, the sequence (νχm(pl))l≥1 converges
in the adelic KR-topology to the centered adelic measure (δ〈m,uv〉)v on R. By
Lemma 4.8,

lim
l
ηDm

0
(νχm(pl)) = ηDm

0
((δ〈m,uv〉)v) = µess

D
m
0
(P1

K
).

By the identity in (4.9), ηDm
0
(νχm(pl)) = hDm

0
(χm(pl)). Thus the sequence of

points (χm(pl))l≥1 is D
m
0 -small.
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Summarizing, the sequence (χm(pl))l≥1 of algebraic points of P1
0 is generic

and small with respect to the quasi-canonical toric metrized divisor D
m
0 . Theo-

rem 2.11 then implies that the sequence of measures (μχm(pl),v)l≥1 on the analyti-

fication P
1,an
v 	 P

1(C) converges to λSv,〈m,uv〉.
Assume now that v is Archimedean. Since the space of probability measures

on X(C) is sequentially compact, by restricting to a subsequence we can sup-
pose without loss of generality that (μpl,v)l≥1 converges to a measure μ. Since the
sequence of direct images ((valv)∗μpl,v)l≥1 converges in the KR-topology to the
Dirac measure on the point uv ∈NR, we deduce that

supp(μ)⊂ val−1
v (uv) = Sv · e−uv .

Let z be the standard affine coordinate of P
1(C). For each m ∈ M \ {0}, let

zm be a continuous function on P
1(C) that agrees with z on a neighborhood of

S1 ·χm(e−uv). Hence (χm)∗(zm) agrees with the character χm on a neighborhood
of Sv · e−uv . Then

∫
χmdμ =

∫
(χm)∗(zm)dμ = lim

l

∫
(χm)∗(zm)dμpl,v

= lim
l

∫
zm d(χm)∗μpl,v = lim

l

∫
zm dμχm(pl),v

=

∫
zm dλS1,〈m,uv〉 =

∫
z dλS1,〈m,uv〉 = 0,

where the last equality comes from Cauchy’s formula. Hence
∫
χm dμ = 0 for

all m ∈ M \ {0}. By Fourier analysis, the only probability measure supported
on Sv · e−uv satisfying this condition is λSv,uv . Thus μ = λSv,uv , concluding the
proof. �

Remark 5.8. Our notion of strict sequence is stronger than the one in [Bil97].
Nevertheless, for the canonical height on a projective space, a small sequence of
points is strict in our sense if and only if it eventually avoids any fixed translate
of a subtorus with essential minimum equal to 0. Such a translate of a subtorus
is necessarily a torsion subvariety, see for instance Example 5.16. Hence, a small
sequence of points that is strict in the sense of Bilu [Bil97] is also strict in the sense
of Definition 5.6. Thus Theorem 5.7 applied to the canonically metrized divisor at
infinity on a projective space specializes to [Bil97, Theorem 1.1].

Remark 5.9. To the best of our knowledge, even for the canonical metric it
is still not know if the equidistribution property for strict sequences holds for the
non-Archimedean places of a global field.

The toric Bogomolov conjecture can be stated as follows: let X be a toric
variety and D an ample toric divisor on X. Let V ⊂X0,K be a closed subvariety
that is not torsion. Then there exists ε > 0 such that the subset of algebraic points
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of V of canonical height bounded above by ε, is not dense in V . Equivalently,
if V ⊂ X0,K is a closed subvariety such that µess

D
can(V ) = 0, then V is a torsion

subvariety.
This conjecture was proved by Zhang in the number field case [Zha95]. Bilu

obtained a proof of Zhang’s theorem based on his equidistribution theorem. In what
follows, we extend his approach to the general monocritical case over a number
field.

Recall that X denotes a proper toric variety over a number field K and D a
toric metrized R-divisor on X. For a subvariety V ⊂X

K
, we set

µabs
D

(V ) = inf
{
hD(x) | x ∈ V (K)

}

for the absolute minimum of the height function. The fact that D is toric implies

µess
D
(X) = µabs

D
(X0),(5.2)

see [BPS15, Lemma 3.9(2)]. Therefore, for any subvariety V ⊂X0,K,

µess
D
(V )≥ µabs

D
(V )≥ µabs

D
(X0) = µess

D
(X).(5.3)

This motivates the following definition.

Definition 5.10. A closed subvariety V ⊂X0,K is D-special if

µess
D
(V ) = µess

D
(X).

In particular, an algebraic point p of X0 is D-special if and only if hD(p) =
µess
D
(X).

We also propose the following terminology.

Definition 5.11. The toric metrized R-divisor D satisfies the Bogomolov prop-
erty if every D-special subvariety of X0,K is a translate of a subtorus.

Note that if X is of dimension 1, then the Bogomolov property is trivially
satisfied for every metrized divisor.

We consider the problem of deciding if a given toric metrized R-divisor satis-
fies the Bogomolov property. The following result corresponds to Theorem 1.4 in
the introduction, and shows that the answer is affirmative for monocritical metrics.

THEOREM 5.12. Let X be a proper toric variety over a number field K and D
a monocritical metrized R-divisor on X with critical point u = (uv)v∈MK

. Let V
be a D-special subvariety of X0,K. Then V is a translate of a subtorus.

Furthermore, if uv ∈ valv(T(K))⊗Q for all v, then V is the translate of a
subtorus by a D-special point.
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Before giving the proof of this theorem, we study special points and, more
generally, special translates of subtori in the monocritical case. We first give a
criterion for the existence of such points.

PROPOSITION 5.13. Let X be a proper toric variety over K and D a mon-
ocritical metrized R-divisor on X with critical point u = (uv)v∈MK

. Then there
exists a D-special point if and only if

uv ∈ valv(T(K))⊗Q for all v ∈MK.(5.4)

If this is the case, then every D-special point is of the form q1/� with q ∈X0(K)

and �≥ 1.

Proof. Suppose that there is a D-special point p ∈ X0(K). Choose a finite
normal extension F ⊂ K of K where p is defined. Consider the norm of p relative
to this extension, given by

NF

K
(p) =

∏

τ∈Gal(F/K)

τ
(
p[F:K]i
)
,

where Gal(F/K) and [F : K]i are the Galois group and the inseparable degree of
the extension, respectively.

Let v ∈MK. For every τ ∈ Gal(F/K), there is a place w ∈MF over v such
that valv(τ(p)) = valw(p). By Corollary 4.9 and Proposition 4.17, we have that
valw(p) = uv for any such place. It follows that valv(τ(p)) = uv for all τ . Using
that #Gal(F/K) · [F : K]i = [F : K], we deduce that

valv(N
F

K
(p)) =

∑

τ

valv
(
τ
(
p
)[F:K]i)= [F : K]uv.

Since NF

K
(p) ∈ T(K), we get that [F : K]uv ∈ valv(T(K)), proving the implication.

Conversely, assume that the condition (5.4) holds. Let S ⊂MK be a finite set
containing the Archimedean places and those places v where uv �= 0. Set

T(K)S =
{
p ∈ T(K) | valv(p) = 0 for all v /∈ S}

and letHK,S be the subspace of
⊕

v∈SNR defined by the equation
∑

v∈S nvzv = 0.
Moreover, consider the lattice

Γ =HK,S ∩
⊕

v∈S
valv(T(K))

and the map valS : T(K)S → Γ given by valS(p) = (valv(p))v∈S . By Dirichlet’s
unit theorem [Wei74, Chapter IV, Section 4, Corollary to Theorem 9], the image
Λ of this map is a sublattice that is commensurable to Γ. Thus Λ⊗Q = Γ⊗Q.
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Condition (5.4) implies that (uv)v∈S ∈ Γ⊗Q = Λ⊗Q. Hence, there is an integer
�≥ 1 such that

(�uv)v∈S ∈ Λ.

In other terms, there is q ∈ T(K)S such that valv(q) = �uv for all v ∈ S. By Corol-
lary 4.9, the point p= q1/� ∈ T(K) is D-special, proving the reverse implication.

To prove the last statement, suppose that the condition (5.4) holds and consider
an arbitrary D-special point p′ ∈X0(K). Let p be the D-special point constructed
above and F⊂K a finite extension of K so that p,p′ ∈T(F). Then valw(p′p−1) = 0
for all w ∈MF. By Kronecker’s theorem, the point p′p−1 is torsion. We conclude
that some positive power of p′ lies in T(K), as stated. �

Next we characterize the translates of subtori that areD-special. Let U = T
K
·p

be the translate of a subtorus T ⊂ T by a point p ∈X0(K). The subtorus T corre-
sponds to a saturated sublattice Q ofN ; we denote by ι : Q ↪→N the corresponding
inclusion map. Let F ⊂ K be a finite extension of K where p is defined. For each
w ∈MF, we consider the affine subspace of NR given by

AU,w = valw(p)+QR.

Indeed AU,w = valw(U an
w ) and so this affine subspace depends only on U and not

on a particular choice for the translating point p.
As explained in [BPS14, Section 3.2], the normalization of the closure of U in

X
K

can be given a structure of toric variety. Let Σ be the fan on NR corresponding
to X and ΣQ the fan on QR obtained by restricting Σ to this latter linear space.
Then the inclusion ι : QR ↪→NR induces an equivariant map of toric varieties

ϕp,ι : XΣQ,K
→X

K

extending the inclusion U ↪→ TK.

PROPOSITION 5.14. Let X be a proper toric variety over a number field K

and D a monocritical metrized R-divisor on X with critical point u= (uv)v∈MK
.

Let U = T
K
·p ⊂X0,K be the translate of a subtorus T ⊂ T by a point p ∈X0(K)

defined over a finite extension F ⊂ K of K. For a place w in MF denote by v(w)
the place in MK below w. Then we have the following properties.

(1) The translate U is D-special if and only if uv(w) ∈AU,w for all w ∈MF.
(2) If the translate U is D-special, then the metrized R-divisor ϕ∗p,ιD is mon-

ocritical and its critical point is (uv(w)−valw(p))w∈MF
.

Proof. By passing to a suitable large finite extension of K and applying Propo-
sition 4.17, we can reduce to the case when U is the translate of a K-rational
point, that is, U = T

K
· p with p ∈ X0(K). With this assumption, F = K and we

set v := w = v(w).
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Since D is a semipositive toric metrized divisor withD big, the virtual support
function ΨD is concave and its associated polytope has dimension n. Hence, there
is m ∈MR such that 〈m,u〉>ΨD(u) for all u �= 0. Moreover, the metric functions
ψD,v are concave for all v ∈MK.

Consider the toric metrized R-divisor E :=ϕ∗ι,pD on the toric variety XΣQ
. By

[BPS14, Proposition 4.3.19], its virtual support function and metric functions are
given, for z ∈QR, by

ΨE(z) = ΨD(ι(z)), ψE,v(z) = ψD,v(valv(p)+ ι(z)).

Therefore ΨE is concave and satisfies 〈ι∨m,z〉 > ΨE(z) for all z ∈ QR \ {0}.
Hence, the R-divisor E is big. Moreover, the metric functions ψE,v are concave

and so E is semipositive.
Since U is identified with a dense open subset of XΣQ,K

, we have

µess
D
(U) = µess

E
(XΣQ

).

Consider the affine subspace AU =
⊕

vAU,v of
⊕

vNR. By Corollary 4.10,

µess
E
(XΣQ

) = min
u′∈HK∩AU

∑

v

−nvψD,v(u′v), µess
D
(X) = min

u′∈HK

∑

v

−nvψD,v(u′v).

Since D monocritical, the minimum in the right equality is attained only at the
point u′ = u. We conclude that µess

E
(U) = µess

D
(X) if and only if uv ∈AU,v for all

v ∈MK, proving both statements. �

COROLLARY 5.15. Let X be a proper toric variety over a number field K and
D a monocritical metrized R-divisor on X with critical point u= (uv)v∈MK

, and
suppose that uv ∈ valv(T(K))⊗Q for all v ∈MK. Then a translate of a subtorus
of X0 is D-special if and only if it is the translate of a subtorus by a D-special
point.

Proof. Clearly, the translate of a subtorus by a D-special point is D-special.
To prove the reverse implication, let U be a D-special translate of a subtorus and
write U = T

K
· p as in the statement of Proposition 5.14. By this result, the toric

metrized R-divisor E = ϕ∗p,ιD is monocritical and, for each v ∈MK and w ∈MF

over v,

uv ∈AU,w ∩valv(T(K))⊗Q⊂AU,w∩valw(T(F))⊗Q.

Since p ∈X0(F),

AU,w ∩valw(T(F))⊗Q= valw(p)+valw(T (F))⊗Q.

Hence uv−valw(p)∈ valw(T (F))⊗Q. Extending the base field to F and restricting
toXΣQ

, Proposition 5.13 implies that this toric variety contains anE-special point.
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Hence U contains a D-special point and it is the translate of T by this point, as
stated. �

Example 5.16. Let D
can

be a nef and big toric R-divisor on the proper toric
variety X, equipped with the canonical metric. By Example 4.15, it is monocrit-
ical with critical point 0 ∈ HK. Hence, p ∈ X0(K) is D

can
-special if and only if

valv(p) = 0 for every v ∈MK. By Kronecker’s theorem, this is also equivalent to
the fact that p is torsion. Hence, Corollary 5.15 shows that a translate of a subtorus
that is D

can
-special is necessarily the translate of a subtorus by a torsion point, that

is, a torsion subvariety.

Proof of Theorem 5.12. Let U ⊂ X0,K be the minimal translate of a subtorus
containing the subvariety V and let Q and ΣQ be as the ones defined before Propo-
sition 5.14. By (5.2) and (5.3), we have µabs

D
(U) = µess

D
(U) and

µess
D
(X) = µabs

D
(X0)≤ µabs

D
(U)≤ µabs

D
(V )≤ µess

D
(V ) = µess

D
(X).

Therefore, U is D-special. By Proposition 5.14(2), D pulls back to a monocritical
metrized R-divisor on XΣQ

, the normalization of the closure of U in X
K

. Replac-
ing X by this toric variety, we reduce to the case where U =X0,K.

Using Proposition 2.5, we choose a sequence (pl)l≥1 of algebraic points of V
that is generic in V and satisfies

lim
l

hD(pl) = µess
D
(V ).

Since V is not contained in any proper translate of a subtorus, this sequence is strict
and, since V is D-special, it is also D-small.

Applying Theorem 5.7 to an Archimedean place v ∈MK, we obtain that the
sequence of measures (μpl,v)l≥1 converges to a measure whose support is the trans-
late Sv · e−uv of the compact subtorus, with uv the v-adic coordinate of the critical
point of D.

Since V is D-special, it is a closed subvariety of X0,K. Therefore V an
v is closed

in Xan
0,v. The measures (μpl,v)l≥1 have support in V an

v , and the limit measure has
support Sv · e−uv . By the closedness of V an

v we deduce the inclusion Sv · e−uv ⊂
V an
v . Using that Sv · e−uv is dense in Xan

v with respect to the Zariski topology, it
follows that V =X0,K, proving the first statement of the theorem.

The last statement of the theorem follows from Corollary 5.15. �

By Theorem 5.12 and Example 5.16, the canonical toric metrized R-divisor
D

can
satisfies the Bogomolov property, and every D

can
-special subvariety is tor-

sion. Hence, Theorem 5.12 extends Zhang’s theorem to the general monocritical
case. On the other hand, in Section 6.3 we will give examples of non-monocritical
metrized divisors not satisfying the Bogomolov property.
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6. Examples. The obtained criteria can be applied in concrete situations
to decide if a given semipositive toric metrized R-divisor satisfies properties like
modulus concentration or equidistribution. In this section, we consider translates
of subtori with the canonical height, and toric metrized R-divisors equipped with
positive smooth metrics at the Archimedean places and canonical metrics at the
non-Archimedean ones. We also give a family of counterexamples to the Bogo-
molov property in the non-monocritical case.

6.1. Translates of subtori with the canonical height. Let X be a proper
toric variety of dimension n over a global field K and D a big and nef toric
R-divisor on X. Let ΨD be its virtual support function.

We denote by D
can

this R-divisor equipped with the canonical metric as in
Example 4.1. This toric metrized R-divisor satisfies that, for all v ∈MK,

ψDcan
,v =ΨD and ϑDcan

,v = 0.

SinceD is big, ΔD has dimension n. Every point x in the interior of ΔD maximizes
the global roof function and ∂ϑDcan

,v(x) = {0}. Therefore, for all v ∈MK,

Bv = {0} and Fv = {0}.

By Proposition 4.16, the canonical metric is monocritical and so, by Theorem 5.2,
D

can
satisfies the equidistribution property at every place (Example 5.5).

We next study the toric metrics on D that are obtained as the inverse image
by an equivariant map of a canonical metrized toric divisor on a projective space.
For r ≥ 0, let Pr

K
be the standard projective space over K of dimension r with

homogeneous coordinates (z0 : . . . : zr) andH the hyperplane at infinity, defined by
the equation z0 = 0. Denote by H

can
this toric divisor equipped with the canonical

metric.
Let v ∈ MK. If v is Archimedean, we set λv = 1 whereas, if v is non-

Archimedean, we set λv as the positive generator of the discrete subgroup
valv(K×) of R. A piecewise affine function is said to be λv-rational if all its
defining affine functions 〈x,u〉+ b satisfy x ∈MQ and b ∈ λvQ.

Let ψ : NR → R be a concave λv-rational piecewise affine function with
|ψ−ΨD| bounded. This determines a semipositive metric on OXan

v
(D). As seen

in [BPS14, Example 3.7.11], there is an integer r > 0 and a toric morphism
ι : X → P

r
K

such that

ψ = ψι∗Hcan
,v.

Hence, any such function ψ can be realized as the v-adic metric function of the
preimage of H

can
to X. This allows us to construct many examples, both mono-

critical and non-monocritical, of metrized toric divisors.
In the next examples, we fix K = Q and, as before, we denote by H

can
the

hyperplane at infinity with the canonical metric.
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log(2)

v = 2

− log(2)

v = ∞ v �= ∞,2

Figure 1. Local roof functions in Example 6.1.

Example 6.1. Let ι : Gm,Q→ P
2
Q

be the map given by

ι(t) = (1 : t/2 : t).

Let X be the normalization of the closure of ι(Gm,Q) and D = ι∗(Hcan
). Then

X = P
1
Q

and D is the divisor at infinity.
We have ΔD = [0,1]. As explained in [BPS14, Example 5.1.16], for each v ∈

MQ the graph of the local roof function associated to D is given by the upper
envelope of the extended polytope

conv
(
(0,0),
(
1, log |1/2|v

)
,
(
1, log |1|v

))⊂ R×R.

The graphs of these functions are represented in Figure 1. Thus, for x ∈ [0,1]
we have ϑ2(x) = x log(2) and ϑv(x) = 0 for v �= 2. The global roof function is
ϑ(x) = x log(2) and the only point that maximizes it is x= 1. Moreover, ∂ϑ2(1) =
(−∞, log(2)] and ∂ϑv(1) = (−∞,0] for v �= 2. With Notation 4.2, we have

B2 =
[
0, log(2)

]
, F2 =

[−∞, log(2)
]
,

Bv =
[− log(2),0

]
, Fv = [−∞,0] for v �= 2.

By Corollary 4.13, this metrized divisor does not satisfy the modulus concentration
property at any place. A fortiori, it does not satisfy the equidistribution property at
any place.

Indeed, by (4.3) we have µess
D
(X) = log(2). Let (ωl)l≥1 be a sequence given by

a choice of a primitive l-th root of the unity, a �= 2 a positive prime number and r
an integer with log(a)≤ r log(2). Choose any r-th root a1/r of a and consider the
generic sequences of points

pl =
(
1 : ωl
)

and ql =
(
1 : 2a−1/rωl

)
for l ≥ 1.
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For every v ∈MQ, l ≥ 1, p ∈ Gal(pl)v and q ∈ Gal(ql)v we have (valv)∗(p) = 0
and

(valv)∗(q) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

log(2) if v = 2,

−1
r

log(a) if v = a,

− log(2)+
1
r

log(a) if v = ∞,

0 if v �= 2,a,∞.

Either by computing the local roof functions of D or the Weil heights of the image
of these points under the inclusion ι, we deduce that

hD(pl) = log(2) and hD(ql) = log(2).

Therefore both sequences are D-small. For any place v, the sequence μpl,v con-
verges to λSv,0. In contrast, if we denote uv = (valv)∗(q) for any q ∈Gal(ql)v, then
μql,v converges to λSv,uv . This shows that neither the modulus concentration nor
the equidistribution properties hold for the places 2,a,∞. Varying a, we deduce
that these properties do not hold at any place of Q.

The metric of D at the Archimedean place is the canonical one. The metrics at
the non-Archimedean places can be interpreted in terms of integral models. Let X
be the blow up of P1

Z
at the point (1 : 0) over the prime 2. The fibre of the structural

map X → Spec(Z) over the point 2 has two components: the exceptional divisor
of the blow up, which we denote by E, and the strict transform of the fibre of P1

Z
,

which we denote by Y . Consider the divisor

D = ∞+Y,

where ∞ denotes the closure in X of the point (0 : 1) ∈ P
1(Q). The pair (X ,D)

is a model of (X,D). For each non-Archimedean place v, this model induces an
algebraic metric on D that agrees with the v-adic metric of D.

Example 6.2. Consider now the map ι : Gm,Q→ P
2
Q

given by

ι(t) = (t−1 : 1/2 : t).

Let X be the normalization of the closure of ι(Gm,Q) and D = ι∗(Hcan
). In this

case, X = P
1
Q

and D is the divisor at infinity plus the divisor at zero.
We have ΔD = [−1,1]. As before, we compute the local roof functions using

[BPS14, Example 5.1.16]. Their graphs are represented in Figure 2. For x ∈ [0,2],
we have ϑ2(x) = (1− |x|) log(2) and ϑv(x) = 0 for v �= 2. Thus, the global roof
function is ϑ(x) = (1−|x|) log(2). Its maximum is attained only at the point x= 0.
In this case, ∂ϑ2(0) = [− log(2), log(2)] and ∂ϑv(0) = {0} for v �= 2. We deduce
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log(2)

v = 2
− log(2)

v = ∞ v �= ∞,2

Figure 2. Local roof functions in Example 6.2.

that

B2 = {0}, F2 = [− log(2), log(2)] and Bv = {0}, Fv = {0} for v �= 2.(6.1)

By Corollary 4.13, D satisfies modulus concentration for all places except the
place 2. This toric metrized divisor is not monocritical, and so we cannot apply
Theorem 5.2 in this case. Indeed, later we will see that D does not satisfy the
equidistribution property at any place of Q (Example 7.6).

As in the previous example, the metric of D at the Archimedean place is the
canonical one, and those at the non-Archimedean places can be interpreted in terms
of integral models. Let X be the blow up of P1

Z
at the points (1 : 0) and (0 : 1) over

the prime 2. The fibre of the structural mapX → Spec(Z) over the point 2 has three
components. Consider the divisor

D = ∞+0,

where ∞ denotes the closure in X of the point (0 : 1) ∈ P
1(Q) and 0 the closure of

the point (1 : 0). The pair (X ,D) is a model of (X,D). For each non-Archimedean
place v, this model induces an algebraic metric on D that agrees with the v-adic
metric of D.

Example 6.3. This time we consider the map ι : Gm,Q→ P
3
Q

given by

ι(t) =
(
1 : t/2 : t2/2 : t3

)
.

Let X be the normalization of the closure of ι(Gm,Q) and D = ι∗(Hcan
). In this

case, X = P
1
Q

and D is three times the divisor at infinity.
We have ΔD = [0,3] and the local roof functions are represented in Figure 3.

They are given by ϑ2(x) = log(2)min(x,1,3−x) and ϑv(x) = 0 for v �= 2. The
global roof function is thus ϑ(x) = log(2)min(x,1,3−x), which is maximized at
any point of the interval [1,2]. Choosing the maximizing point x = 3/2, we have
∂ϑv(3/2) = {0} for all v.

Thus D is monocritical, by Proposition 4.16. By Corollary 4.13 and Theo-
rem 5.2, it satisfies both the modulus concentration and the equidistribution prop-
erties for any place.
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log(2)

v = 2

− log(2)

v = ∞

v �= ∞,2

Figure 3. Local roof functions in Example 6.2.

6.2. Positive Archimedean metrics. The following result covers many of
the examples considered in [BPS14, BMPS16, BPS15]: twisted Fubini-Study met-
rics on projective spaces, metrics from polytopes, Fubini-Study metrics on toric
bundles, �p-metrics on toric varieties, and Fubini-Study metrics on weighted pro-
jective spaces. All of them consist of toric varieties over Q with a toric divisor
equipped with a positive smooth metric at the Archimedean place and the canoni-
cal metric at the non-Archimedean ones.

THEOREM 6.4. LetX be a proper toric variety over a number field K andD=

(D,(‖ · ‖v)v∈MK
) a semipositive toric metrized R-divisor with D big. We assume

that, when v is Archimedean, ‖ · ‖v is a positive smooth metric on the principal
open subset Xan

0,v whereas, when v is non-Archimedean, it is the v-adic canonical

metric of D. Then D is monocritical. In particular, it satisfies the equidistribution
property for every place of K.

When K=Q, the v-adic limit measure is λSv,0 for every v ∈MQ.

Proof. Since the metric is smooth and positive onXan
0,v for v Archimedean, the

proof of [BPS14, Proposition 4.4.1] implies that the metric function ψD,v is smooth
and strictly concave, in the sense that its Hessian is negative definite. Therefore
ψD,v is of Legendre type in the sense of [BPS14, Definition 2.4.1] and, by [BPS14,
Theorem 2.4.2(2)], the local roof function ϑD,v is of Legendre type. In particular,
ϑD,v is smooth and strictly concave on the interior of ΔD and the sup-differential
at any point of the border of the polytope is empty.

For the non-Archimedean places, the metrics are canonical and so their local
roof functions are zero. Hence

ϑD =
∑

v|∞
nvϑD,v,
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this function is smooth and strictly concave on the interior of ΔD, and its sup-
differential at any point of the border of ΔD is empty. This implies that there is a
unique maximizing point xmax ∈ΔD, which lies in the interior of the polytope, and
that ∂ϑD(xmax) = {0}. Thus, the first assertion then follows from Proposition 4.16.

When K = Q there is only one Archimedean place. Therefore all the v-adic
metrics are the canonical metric except one. This implies easily that the critical
point in this case is u= (0)v and the last statement follows from Theorem 5.2. �

Example 6.5. Let X = P
1
Q

and D the divisor at infinity equipped with the
Fubini-Study metric at the Archimedean place and the canonical metric at the
non-Archimedean ones. By Theorem 6.4, this toric metrized divisor satisfies the
equidistribution property at every place. Moreover, the limit measure of the Galois
orbits of any generic D-small sequence is λSv,0.

Recall that the canonical metric at the non-Archimedean places corresponds
to the canonical model of (P1

Q
,∞) given by (P1

Z
,∞), where ∞ is the closure of the

point (0 : 1) ∈ P
1(Q). If we change the integral model, different phenomena may

occur. For instance, consider the integral model of Example 6.1, whose global roof
function is given by

ϑD,∞(x) =−
1
2
(x logx+(1−x) log(1−x))+x log(2),

see [BPS14, Example 6.2.3]. The unique maximum of this function is attained at
a point in the interior of ΔD = [0,1]. Since ϑD,∞ is differentiable on (0,1), we
deduce that the sup-differential is reduced to one point. By Proposition 4.16, this
new toric metrized divisor is also monocritical.

In contrast, if we consider the divisor D′ = 0+∞ with the Fubini-Study metric
at the Archimedean place and the metrics induced by the integral model of Exam-
ple 6.2, then the maximum of the global roof function is attained at the point zero
and the sup-differential at this point is [− log(2), log(2)]. Since zero is not a vertex
of this set, by Proposition 4.16 this divisor is not monocritical. Hence it does not
satisfy the equidistribution property at the Archimedean place.

6.3. Counterexamples to the Bogomolov property. In this section, we
give examples of toric metrized divisors not satisfying the Bogomolov property.
For simplicity, we restrict to the case K=Q. As in Section 6.1, we denote by H

can

the canonical metrized divisor at infinity on a projective space.

Example 6.6. Consider the map ι : Gm,Q×Gm,Q→ P
3
Q

given by

ι(t1, t2) = (1 : 2 : t1 : t2).

As in the examples in the previous section, we denote by X the normalization of
the closure of the image of ι and D = ι∗(Hcan

). In this case, X = P
2
Q

and D is the
divisor at infinity.
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We have that ΔD is the standard simplex of NR = R
2 and ΨD : R2→ R is the

function given by

ΨD(u1,u2) = min(0,u1,u2).

By [BPS14, Example 4.3.21], the local metric functions are given, for (u1,u2) ∈
R

2, by

ψD,v(u1,u2) =

{
ΨD

(
u1 + log(2),u2 + log(2)

)− log(2) if v = ∞,
ΨD(u1,u2) if v �= ∞.

By [BPS14, Example 5.1.16], the local roof functions are given, for (x1,x2)∈ΔD,
by

ϑD,v(x1,x2) =

{
(1−x1−x2) log(2) if v = ∞,
0 if v �= ∞.

Hence the global roof function agrees with ϑD,∞. Its only maximizing point is

xmax=(0,0), and one computes easily that ∂ϑD,∞(0,0)=(− log(2),− log(2))+R
2
≥0

and ∂ϑD,v(0,0) = R
2
≥0 for v �= ∞. Thus

B∞ = [− log(2),0]2, F∞ = (− log(2),− log(2))+R
2
≥0,

Bv = [0, log(2)]2, Fv = R
2
≥0 for v �= ∞.

We also have µess
D
(X) = ϑD(0,0) = log(2).

Let (z0 : z1 : z2) be homogeneous coordinates ofX and consider the curve C of
equation z0+z1+z2 = 0. In what follows, we will see that this curve is aD-special
subvariety. Since C is not a translate of a subtorus, this will show that D does not
satisfy the Bogomolov property.

For l ≥ 1 choose a primitive l-th root of the unity ωl. Let z1,l be a solution of
the equation z2 + z+ωl = 0 and put z2,l = ωl/z1,l for the other solution. Then

z1,l+ z2,l+1 = 0 and z1,lz2,l = ωl.(6.2)

In particular, pl = (1 : z1,l : z2,l) is an algebraic point of C .
Let v ∈MQ and q = (1 : q1 : q2) ∈Gal(pl)v. If v �= ∞, then the conditions (6.2)

imply that

valv(q) = (0,0) ∈Bv.(6.3)

If v = ∞, then these same conditions (6.2) give max(|q1|∞, |q2|∞)≤ 1+
√

5
2 . Thus

val∞(q) ∈
(
− log

(
1+
√

5
2

)
,− log

(
1+
√

5
2

))
+R

2
≥0 ⊂ F∞.(6.4)
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Moreover, by the product formula and (6.3), we have

E[νpl,∞] =
1

#Gal(pl)∞

∑

q∈Gal(pl)∞

val∞(q) = (0,0) ∈B∞.(6.5)

By Corollary 4.9, the conditions (6.3), (6.4) and (6.5) imply that hD(pl) = µess
D
(X).

Since the sequence (pl)l≥1 is generic in C , we deduce µess
D
(C) = µess

D
(X) and so

C is a D-special subvariety.

We generalize this example to a family of metrics on toric varieties of dimen-
sion greater than or equal to 2.

PROPOSITION 6.7. Let X be a proper toric variety over Q of dimension n≥ 2
andD a big and nef R-divisor onX. Let u0 ∈NR and consider the metrized divisor
D
u0 over D defined by

ψDu0 ,v(u) =

{
ΨD(u−u0) if v = ∞,
ΨD(u) if v �= ∞.

Then D
u0 satisfies the Bogomolov property if and only if u0 = 0.

Proof. When u0 = 0 we have D
u0 = D

can
. By Theorem 5.12 and Exam-

ple 5.16, this toric metrized divisor satisfies the Bogomolov property.
Suppose u0 �= 0. The local roof functions of D

u0 are given, for x ∈ΔD, by

ϑDu0 ,v(x) =

{
〈x,u0〉 if v = ∞,
0 if v �= ∞.

In particular, the global roof function ϑD coincides with ϑDu0 ,∞. The maximum of
ϑD is attained on a face of ΔD. Fix x0 in the relative interior of this face. If we
denote by ϑ0 the constant function equal to 0 defined on ΔD, then σ0 = ∂ϑ0(x0) is
a cone in NR containing −u0 in its relative interior. Moreover,

∂ϑDu0 ,∞(x0) = u0 +σ0 and ∂ϑDu0 ,v(x0) = σ0 for v �= ∞.

It follows that 0 ∈Bv for every v, that F∞ = u0 +σ0 and that Fv = σ0 for v �= ∞.
As in Example 6.6, to prove that D

u0 does not satisfy the Bogomolov property,
it is enough to exhibit a curve C in X that is D-special but not a translate of a
subtorus.

We identify NR	R
n. SinceX is proper and σ0 is a cone of the fan ofX, there

is a primitive vector n0 ∈N in σ0. It follows that there is ε0 > 0 such that

�0 :=
{
xn0 | −ε0 ≤ x≤ ε0

}⊂ u0 +σ0.

Choose a primitive vector a0 ∈N such that a0 and n0 generate a saturated sublat-
tice V of N . Put b0 = n0 +a0. Then a0 and b0 form an integral basis of V . Fix an
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integer k0 ≥ ε−1
0 and consider the linear map L : VR→ R

2 defined by

L(sa0 + tb0) = k0 · (s,t).

Let S be the toric surface in X0 associated to the saturated sublattice V . The linear
map L induces a toric morphism ι : S → G

2
m,Q. Let C be the curve in G

2
m,Q of

equation x+y+1 = 0 and denote by C0 the closure in X of the curve ι−1(C).
As in Example 6.6, for l ≥ 1 choose a primitive l-th root of unity root ωl. Let

z1,l be a solution of the equation z2 + z+ωl = 0 and put z2,l = ωl/z1,l. Hence

z1,l+ z2,l+1 = 0 and z1,lz2,l = ωl.

In particular, (z1,l,z2,l) ∈ C(Q). Choose a point pl ∈ C0(Q) such that ι(pl) =
(z1,l,z2,l). The sequence of points (pl)l≥0 is generic in C0.

For every place v there is a commutative diagram

(
G

2
m

)an
v

valv
��

San
v

valv
��

� � ��ι�� Xan
0,v

valv
��

R
2 VR

� � ��L�� NR.

Since n0 = b0−a0, we have

� := L(�0) =
{
(x,−x) | |x| ≤ ε0k0

}
.

Arguing as in Example 6.6, for every non-Archimedean place v and every point
q ∈Gal(pl)v, we have

valv(ι(q)) = 0.

Since L is injective, valv(q) = 0 and therefore νpl,v = δ0. In particular,

supp(νpl,v) = {0} ⊂ Fv and E[νpl,v] = 0 ∈Bv.

When v = ∞, the product formula implies that

E[νpl,∞] =
1

#Gal(pl)∞

∑

q∈Gal(pl)∞

val∞(q) = 0 ∈B∞.

On the other hand, note that for every q in Gal(pl)∞, the point ι(q) = (q1,q2) satis-
fies

q1 + q2 +1 = 0 and q1q2 = ωl.
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We thus have |q1|∞ |q2|∞ = 1,

√
5−1
2

≤min
{|q1|∞, |q2|∞

}≤max
{|q1|∞, |q2|∞

}≤ 1+
√

5
2

,

and therefore

|max(− log |q1|∞,− log |q2|∞)| ≤ log

(
1+
√

5
2

)
≤ 1≤ ε0k0.

This implies that

val∞(ι(q)) ∈ �, val∞(q) ∈ �0 ⊂ u0 +σ0 = F∞ and supp(νpl,∞)⊂ F∞.

By Lemma 4.8, we have hD(pl) = µess
D
(X). Being the sequence (pl)l≥1 generic in

C0, we deduce that C0 is D-special. Since C0 is not a translate of a subtorus, we
conclude that D does not satisfy the Bogomolov property, as stated. �

7. Potential theory on the projective line and small points. In this sec-
tion, we apply potential theory on the projective line over a number field, and in
particular Rumely’s Fekete-Szegő theorem, to produce interesting sequences of
small points in the non-monocritical case.

In the absence of modulus concentration, this allows to produce a wealth of
non-toric measures that are limit measures of Galois orbits of generic sequences
of points of small height. These techniques also allow to show that the absence of
modulus concentration at a place can affect the equidistribution property at another
place.

7.1. Limit measures in the absence of modulus concentration. We recall
the basic objects of potential theory on the projective line. For most of the details
and precise definitions, we refer the reader to [Tsu75, BR10] for the Archimedean
and non-Archimedean cases, respectively.

Let K be a number field and fix a place v ∈MK. For a subset E ⊂ Cv, we
denote by E its closure in A

1,an
v . Moreover, for r > 0, put

Bv(E,r) =
{
z ∈Cv | inf

a∈E
|z−a|v ≤ r

}
.

In particular, for a ∈ Cv the set Bv(a,r) is the closed ball with center a and radius
r. Set Ov = Bv(0,1), and recall that Sv = {z ∈ Cv | |z|v = 1}.

Note that if E is a bounded subset of Cv, then E is compact. Since A
1,an
v is

metrizable, it follows that the set of Borel probability measures onE endowed with
the weak-∗ topology is compact, metrizable, and therefore sequentially compact.
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Denoting by A
1,an
v ×A

1,an
v the product of A1,an

v with itself in the category of
topological spaces, let

δv : A1,an
v ×A

1,an
v −→ R

be the function defined by δv(z,z′) = |z− z′|v for v Archimedean, and the unique
upper semicontinuous extension of the function on Cv×Cv defined by (z,z′) �→
|z− z′|v for v non-Archimedean, see [BR10, Proposition 4.1].

Given a Borel probability measure μ on A
1,an
v , the energy integral (with respect

to the point at infinity) of μ is defined as

Iv(μ) =

∫

A
1,an
v ×A1,an

v

− log(δv(z,z
′))d(μ×μ)(z,z′).(7.1)

Let K ⊂ A
1,an
v be a measurable subset. The v-adic Robin constant and capacity

(with respect to the point at infinity) of K are respectively defined as

Vv(K) = inf
{
Iv(μ) | supp(μ)⊂K} and capv(K) = e−Vv(K).(7.2)

If K is compact and capv(K)> 0, then there exists a unique probability measure,
denoted by ρK , supported on K and realizing the infimum in (7.2), see [Tsu75,
Section III.2 and Theorem III.32] for the Archimedean case and [BR10, Proposi-
tions 6.6 and 7.21] for the non-Archimedean one. Hence

Iv(ρK) = Vv(K).

This measure is called the equilibrium measure ofK . It does not charge singletons,
so we can also consider it as a measure on C

×
v . For K = Ov, it agrees with λSv,0,

the Haar probability measure on the unit circle when v is Archimedean, and the
Dirac measure at the Gauss point of A1,an

v when v is non-Archimedean. We also
have

capv(Ov) = 1,(7.3)

see for example [Rum02, Section 3].
In the non-Archimedean case, Cv is a proper subset of A1,an

v . In general, for a
Borel subset E of Cv, we have

capv(E)≤ capv(E),

but this inequality might be strict even ifE is closed and bounded. Equality holds if,
for example, there are r > 0 and a polynomial P with coefficients in Cv, such that
E = {z ∈Cv | |P (z)| ≤ r}, see [BR10, Corollary 6.26] and [Rum02, Section 3.2].

Definition 7.1. An adelic set is a collection E = (Ev)v∈MK
such that Ev is

a subset of Cv invariant under the action of the absolute v-adic Galois group
Gal(Kv/Kv) for all v, and such that Ev = Ov for all but a finite number of v. We
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say that E is bounded (respectively closed, open) if Ev is bounded (respectively
closed, open) for all v.

Given an adelic set E = (Ev)v∈MK
, its (global) capacity is defined as

cap(E) =
∏

v∈MK

capv(Ev)
nv .

By (7.3), this product actually runs over a finite set and so the global capacity is
well-defined.

The following result shows that, in the non-monocritical case, there is a wealth
of limit measures of Galois orbits of generic sequences of points of small height
that are not invariant under the action of the compact torus.

THEOREM 7.2. Let X = P
1
K

and D the divisor at infinity equipped with a
semipositive toric metric. Let Bv,Fv be the associated subsets of NR = R as in
(4.4). Let E = (Ev)v∈MK

be a closed bounded adelic set such that cap(E) = 1,
and such that for every non-Archimedean place v we have cap(Ev) = cap(Ev).
Assume that the following conditions hold:

(1) supp((valv)∗ρEv)⊂ Fv for all v ∈MK;
(2) E[(valv)∗ρEv ] ∈Bv for all v ∈MK;
(3)
∑

v∈MK
nvE[(valv)∗ρEv ] = 0.

Then there is a generic D-small sequence (pl)l≥1 of algebraic points of X0 =

Gm,K such that, for every v ∈MK, the sequence of probability measures (μpl,v)l≥1

converges to ρEv
.

The proof of this theorem will be given after two preliminary propositions. The
next statement is a direct consequence of Rumely’s version of the Fekete-Szegő
theorem in [Rum02, Theorem 2.1].

PROPOSITION 7.3. Let E = (Ev)v∈MK
be a closed bounded adelic set such

that cap(E)≥ 1. There exists a sequence (pl)l≥1 of pairwise distinct points of K
×

satisfying

Gal(pl)v ⊂ Bv
(
Ev,

1
l

)

for all l≥ 1 and v ∈MK. In particular, Gal(pl)v ⊂Ev for every non-Archimedean
place v such that Ev =Ov.

Proof. For l≥ 1, consider the bounded adelic neighbourhood Ul = (Ul,v)v∈MK

of E given by

Ul,v = Bv
(
Ev,

1
l

)
.
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By [Rum02, Theorem 2.1] with S = /0, there is an infinite number of points p∈K×
such that Gal(p)v ⊂ Ul,v for all v. Inductively, for each l ≥ 1 we choose pl as one
of these points that is different from pl′ for l′ ≤ l−1. �

In the notation of Proposition 7.3, when the adelic set E has capacity 1, the
sequence of v-adic Galois orbits of the points pl equidistribute according to the
equilibrium measure of the closure Ev.

PROPOSITION 7.4. Let E = (Ev)v∈MK
be a closed bounded adelic set such

that cap(E) = 1 and such that for every non-Archimedean place v we have
cap(Ev) = cap(Ev). Let (pl)l≥1 be a sequence of pairwise distinct points of K

×

with Gal(pl)v ⊂ Bv(Ev, 1
l ) for all l ≥ 1 and v ∈MK. Then, for all v ∈MK, the

sequence (μpl,v)l≥1 converges to the equilibrium measure of Ev.

Proof. Our hypotheses imply that for every l ≥ 1 the Weil height of pl is
bounded from above independently of l. Together with the Northcott property
and the fact that the points in the sequence (pl)l≥1 are pairwise distinct, this im-
plies that liml #Gal(pl) = ∞. Taking a subsequence if necessary, we assume that
#Gal(pl)≥ 2 for every l ≥ 1.

Since for each place v the space of Borel probability measures on Bv(Ev,1)
is sequentially compact, by taking a subsequence we can suppose without loss
of generality that the sequence (μpl,v)l≥1 converges to a probability measure μv
supported on

⋂
lBv(Ev, 1

l ) = Ev.
For each l ≥ 1 and v ∈MK, put for short Gl,v = Gal(pl)v and set

dl,v =
1

#Gl,v(#Gl,v−1)

∑

q,q′∈Gl,v

q �=q′

log |q− q′|v.

Consider also the probability measure on A
1,an
v ×A

1,an
v , given by

νl,v =
1

#Gl,v(#Gl,v−1)

∑

q,q′∈Gl,v

q �=q′

δq× δq′,

and note that (νl,v)l≥1 converges to μv×μv. The function log(δv(·, ·)) is bounded
from above on Bv(Ev ,1)×Bv(Ev,1). Similarly as in the proof of Lemma 3.8, this
property implies that

(7.4) limsup
l→∞

dl,v = limsup
l→∞

∫

A
1,an
v ×A1,an

v

log(δv(z,z
′))dνl,v(z,z

′)

≤−Iv(μv)≤ logcapv(Ev).

By the product formula,
∑

v∈MK
nvdl,v = 0. Let S ⊂MK be a finite set of

places containing the Archimedean places and those where Ev �=Ov. In particular,
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dl,v ≤ 0 for v /∈ S. Hence, for v ∈MK,

liminf
l→∞

dl,v = liminf
l→∞

∑

w∈MK\{v}
−nw
nv
dl,w

≥ liminf
l→∞

∑

w∈S\{v}
−nw
nv
dl,w

≥−
∑

w∈S\{v}

nw
nv

limsup
l→∞

dl,w

≥−
∑

w∈S\{v}

nw
nv

log(capw(Ew))

≥ log(capv(Ev)).

Together with (7.4) and our hypothesis capv(Ev) = capv(Ev), this implies
Iv(μv) = − logcapv(Ev). Therefore μv is the equilibrium measure of Ev, and the
proof is complete. �

Proof of Theorem 7.2. Let (pl)l≥1 be a sequence of pairwise distinct points of
K
×

as in Proposition 7.4, which exists thanks to Proposition 7.3. Note in particular
that the sequence (pl)l≥1 is generic. On the other hand, Proposition 7.4 implies
that, for every v ∈MK, the sequence of probability measures (μpl,v)l≥1 converges
to ρEv

. Here we have to show that, under the present hypotheses, this sequence of

points is D-small.
Let sD be the canonical section of O(D) with div(sD) = D. This is a global

section vanishing only at infinity. Hence for every v ∈MK the v-adic Green func-
tion

gD,v =− log‖sD‖v

is a continuous real-valued function on A
1,an
v . Let S ⊂MK be a finite set of places

containing the Archimedean places, the places where the metric ‖ · ‖v differs from
the canonical one, and those where Ev �=Ov.

By construction, for each v ∈MK and l≥ 1 we have Gal(pl)v ⊂Bv(Ev,1). In
particular, for v �∈ S, Gal(pl)v ⊂Ov and so gD,v(q) = 0 for all q ∈Gal(pl)v. Hence

hD(pl) =
∑

v∈MK

nv
#Gal(pl)v

∑

q∈Gal(pl)v

gD,v(q) =
∑

v∈S
nv

∫
g̃D,v dμpl,v

for any continuous function g̃D,v on P
1,an
v coinciding with gD,v on the bounded

subset Bv(Ev,1).
The measures μpl,v converge to ρEv and are supported on the closure

Bv(Ev,1). Also, for all v /∈ S, we have ρEv = λSv,0 and gD,v vanishes on the



376 J. I. BURGOS GIL, P. PHILIPPON, J. RIVERA-LETELIER, AND M. SOMBRA

support of this measure. Hence

lim
l→∞

hD(pl) =
∑

v∈S
nv

∫
g̃D,v dρEv =

∑

v∈MK

nv

∫
gD,v dρEv .(7.5)

By condition (3) and the fact that E is an adelic set, we deduce that the col-
lection ν = ((valv)∗ρEv)v∈MK

is a centered adelic measure (Definition 4.4). More-
over, gD,v =−ψD,v ◦valv on A

1,an
v \{0}. By (7.5), we have

lim
l→∞

hD(pl) =−
∑

v∈MK

nv

∫
ψD,v d(valv)∗ρEv = ηD(ν).

Lemma 4.8 together with the conditions (1) and (2) implies that ηD(ν) = µess
D
(X).

Hence the sequence (pl)l≥1 is D-small, as stated, finishing the proof of the
theorem. �

7.2. Local modulus concentration and equidistribution. Corollary 4.13
gives a criterion for a semipositive toric metrized R-divisor to satisfy the modulus
concentration property at a given place. Applying it, one can immediately give
examples where modulus concentration fails at that place. If this happens, then the
equidistribution property also fails at that place.

Can this absence of modulus concentration affect the equidistribution property
at another place? The next result on the projective line over a number field shows
that this can be the case under a rationality hypothesis, see Remark 7.7.

PROPOSITION 7.5. Let X = P
1
K

be the projective line over a number field K,
D the divisor at infinity equipped with a semipositive toric metric, and v0 ∈MK.
For each v ∈MK, let Bv be the set introduced in Notation 4.2. Assume that there
is a point p ∈X0(K) = K

×
such that valv(p) ∈Bv for all v ∈MK and valv0(p) ∈

ri(Bv0).
If D does not satisfy the modulus concentration property at v0, then D does

not satisfy the equidistribution property at any place of K.

Proof. Assume that D does not satisfy the modulus concentration property at
v0. Let v ∈MK. If v = v0 then clearly D does not satisfy the equidistribution
property at v, so we can suppose that v �= v0. Extending scalars to a suitable large
number field and translating by the point p, we can also reduce to the case when
0 ∈ ri(Bv0) and 0 ∈Bw for all w ∈MK.

Let Fv0 , g1,v0 and g2,v0 be as in Notation 4.2, and let x be a point in ΔD at
which g1,v0 + g2,v0 attains its maximum. By Corollary 4.13, the set Fv0 is not a
single point. Since 0 ∈ ri(Bv0) and Fv0 is the minimal face of ∂g1,v0(x) containing
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Bv0 , there is δ > 0 such that the set Fv0 contains the interval [−δ,δ]. Set

c=
eδ+ e−δ

2
> 1

and consider the closed bounded adelic set E = (Ew)w∈MK
given by

Ev0 =

{
[−2c,2c] if v0 is Archimedean,

Bv0(2, c) if v0 is non-Archimedean,

Ev =

{
[−2/c,2/c] if v is Archimedean,

Bv(2,1/c) if v is non-Archimedean,

and, for w �= v0,v,

Ew =

{
[−2,2] if w is Archimedean,

Ow = Bw(0,1) if w is non-Archimedean.

The local capacities of these sets are

capv0
(Ev0) = c, capv(Ev) = 1/c and capw(Ew) = 1 for w �= v0,v,

see for instance [Rum02, Section 3]. Hence, the global capacity of E is 1.
Consider the map R : P1

K
→ P

1
K

defined in affine coordinates by R(z) = z+ 1
z .

Using the expression R(z)−2 = (z−1)2

z , one checks that, for w non-Archimedean,

R−1(Ew) =

⎧
⎪⎪⎨

⎪⎪⎩

{
z ∈ Cv0 | |z−1|2v0

≤ c|z|v0

}
if w = v0,

{
z ∈ Cv | |z−1|2v ≤ c−1|z|v

}
if w = v,

{
z ∈ Cw | |z2 +1|w ≤ |z|w

}
if w �= v0,v,

=

⎧
⎪⎪⎨

⎪⎪⎩

{
z ∈ Cv0 | c−1 ≤ |z|v0 ≤ c

}
if w = v0,

Bv(1, c−1/2) if w = v,

Sw if w �= v0,v.

(7.6)

On the other hand, using

z =
1
2

(
R(z)±

√
R(z)2−4

)
, c−

√
c2−1 = e−δ and c+

√
c2−1 = eδ,

one also checks that, for w Archimedean,

R−1(Ew) =

⎧
⎪⎪⎨

⎪⎪⎩

Sv0 ∪
{
z ∈ Cv0 | im(z) = 0, e−δ ≤ |z|v0 ≤ eδ

}
if w = v0,{

z ∈ Sv | im(z)≥√1− c−2
}

if w = v,

Sw if w �= v0,v.

(7.7)
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e−δ−e−δ−eδ eδ

R−1(Ev0)

x

x−x

−x

R−1(Ev)

1−1

i

−i
R−1(Ew)

Figure 4. Inverse images by R of the sets Ev0 , Ev and Ew for v0, v and w �= v,v0 Archimedean.

We represent in Figure 4 the inverse images by R of the sets Ev0 , Ev and Ew in the
Archimedean case. The point x therein is x= c−1 + i

√
1− c−2.

We deduce from the previous analysis that, regardless whether v0, v or w are
Archimedean or not, we have

R−1(Ev0)⊂val−1
v0
([−δ,δ]), R−1(Ev)� Sv and R−1(Ew)=Sw for w �= v0,v.

Let (pl)l≥1 be a sequence of pairwise distinct points as given by Proposi-
tion 7.3 applied to the adelic set E. For each l ≥ 1, choose a point ql ∈ R−1(pl).
Since for each place v the space of Borel probability measures on Bv(Ev,1) is
sequentially compact, after restricting to a subsequence we can assume that the
sequence (μql,w)l≥1 converges to a probability measure μw on R−1(Ew), for all
w ∈MK. By construction, for each w the supports of the direct image measures
νql,w = (valw)∗μql,w, l≥ 1, are contained in [−δ,δ]⊂NR. Therefore, this sequence
of measures converges in the KR-topology to the direct image (valw)∗μw, which
can be seen by using Remark 3.13.

Let S ⊂MK be the finite subset consisting of the Archimedean places plus v0

and v. If w �= v0, then Gal(ql)w ⊂ val−1
w (0) and E[νql,w] = 0. Thus

E[(valw)∗(μw)] = lim
l

E[νql,w] = 0.
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Hence, thanks to the convergence in the KR-topology and the product formula,

E[(valv0)∗(μv0)] = lim
l

E[νql,v0 ] = lim
l

∑

w∈S
w �=v0

−E[νql,v0 ] = 0.

Thus E[(valw)∗(μw)] = 0∈Bw for allw∈MK. By construction, it is also clear that
supp((valw)∗μw)⊂ Fw for all w. By Lemma 4.8, the sequence (ql)l≥1 is D-small.

We have thus constructed a generic D-small sequence such that its v-adic Ga-
lois orbit converges to a measure μv whose support is contained in the closure
R−1(Ev). On the other hand, the sequence (ωl)l≥1 given by the choice of a prim-
itive l-th root of unity is also D-small, but its v-adic Galois orbit converges to
the measure λS,0. By (7.6) and (7.7) the support of this measure is not contained
inR−1(Ev), so it is different from μv. We deduce that D does not satisfy the v-adic
equidistribution property, as stated. �

Example 7.6. Let X = P
1
Q

and D the divisor at infinity plus the divisor at
zero, equipped with the semipositive toric metric from Example 6.2. As explained
therein, D does not satisfy modulus concentration at the place v0 = 2 and, by (6.1),
we have 0 ∈ ri(Bv) for all v ∈MQ. Theorem 7.2 implies that D does not satisfy
the equidistribution property for any place of Q.

Remark 7.7. A rationality hypothesis like the condition that the setsBv contain
the image by the valuations map of an algebraic point, is necessary for the conclu-
sion of Proposition 7.5 to hold. Indeed, suppose that, for a given non-Archimedean
place v, we have Bv = Fv = {uv} with uv �∈ valv(K

×
v ). By the tree structure of the

Berkovich projective line, this implies that val−1
v (uv) consists of a single point, of

type III in Berkovich’s classification [BR10, Section 1.4]. Hence, the v-adic modu-
lus concentration at v given by Corollary 4.13, easily implies that the v-adic Galois
orbits of D-small sequences of algebraic points concentrate around this point of
type III, regardless of the structure of the set Bv0 .
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LLUÍS COMPANYS 23, 08010 BARCELONA, SPAIN
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