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Highlights 

 

►   ► Phenothiazines water solutions exposed to UV laser beam are stable one 

month. ► Irradiation yields to stable photoproducts of CPZ and PZ, producing oxygen-    

independent photohaemolysis. ► Irradiation process of CPZ and PZ promotes the 

generation of substances with higher cytotoxic character that the parent ones. ► 

Irradiation results in an enhancement of the wetting and distribution of the CPZ and 

PMZ substances in the fabrics. 

 
 
Abstract  

 

Phenothiazine derivatives are non-antibiotics with antimicrobial, fungistatic and 

fungicidal effects. We exposed to a high energy UV laser beam phenothiazines 

solutions in water at 20 mg/mL concentration to increase antibacterial activity of 

resulting mixtures. Compared to previous results obtained on bacteria, more research 

is needed about UV laser irradiated phenothiazines applications on cancer cell cultures 

to evidence possible anticancerous properties. Evaluation of the safety of the newly 

obtained photoproducts in view of use on humans is also needed. Due to expensive 

animal testing in toxicology and pressure from general public and governments to 

develop alternatives to in vivo testing, in vitro cell-based models are attractive for 



preliminary testing of new materials. Cytotoxicity screening reported here shows that 

laser irradiated (4 hours exposure time length) chlorpromazine and promazine are 

more efficient against some cell cultures. Interaction of laser irradiated phenothiazines 

with fabrics show that promethazine and chlorpromazine have improved wetting 

properties. Correlation of these two groups of properties shows that chlorpromazine 

appears to be more recommended for applications on tissues using fabrics as transport 

vectors. The reported results concern stability study of phenothiazines water solutions 

to know the time limits within which they are stable and may be used. 

 

Keywords: laser, phenothiazines, hemolysis, culture cells, in vitro cytotoxicity, 

fabrics 

1. Introduction 

Recent reports have shown that phenothiazines solutions as parent compounds, 

when exposed to ultraviolet (UV) laser radiation generate photoproducts that have 

different molecular structures and properties with respect to them [1-4]. More recent 

studies show that solutions of phenothiazines in water once exposed to laser radiation 

have modified wetting properties with respect to fabrics [5]. These data suggest to 

extend the toxicity studies of phentothiazines exposed to laser radiation towards 

applications on cell cultures and to broaden the studies of their wetting properties on 

fabrics in view of further applications. The antimicrobial activity of irradiated irradiated 

Chlorpromazine (CPZ) against Mycobacterial strains [6] and Gram-positive and Gram-

negative bacterial strains [7] was investigated. Cytotoxicity effects on human acute 

monocytic leukemia cell lines were determined [6]. CPZ irradiated at 20 mg/mL 

different time intervals with 266 nm laser beam presented enhanced activity with 

respect to parental compound for Staphylococcus aureus ATCC 25923, HPV 107 and 

Escherichia coli K-12 AG100, K-12 AG100A and AG100TET8 and AG100ATET8 [7]. For 

Salmonella enterica serovar Enteritidis NCTC 13349, 104, 5408, 104CIP and 5408CIP, 

irradiated CPZ exhibited mild antimicrobial activity but presented an inhibition of efflux 

pumps [7]. Cytotoxicity assay showed that half-maximal inhibitory concentration (IC50) 

decreased with increasing of irradiation time. Irradiated CPZ has enhanced activity 

against Mycobacterial strains [6].  

At a consensus conference of the European Society for Biomaterials in 1986, the 

word “biocompatibility” was defined as “the ability of a material to perform with an 

appropriate host response in a specific application”. Herein, we use biocompatibility to 



include the deleterious effects caused by the unirradiated and irradiated 

phenothiazines, covering the in vitro haemolytic and cytotoxic assessments.  An 

important feature in the development of delivery systems for parenteral administration 

is to determine their ability to cause hemolysis by interaction with cell membrane. The 

potential uses of colloidal self-assemblies as drug delivery systems make hemolysis 

evaluation very important. To this end, we examined this interaction by using 

erythrocytes as a model biological membrane system, since erythrocytes have been 

used as a suitable model for studying the interaction of amphiphiles or other species 

with biological membranes [8-10]. 

The safety evaluation of new products or ingredients made for human use is 

crucial prior to exposure. Due to the expense of animal testing in toxicology and 

pressure from general public and governments to develop alternatives to in vivo 

testing, in vitro cell-based models may be more attractive for preliminary testing of new 

materials [11]. The toxicity prediction is difficult, but cytotoxicity screening, which is 

routinely used in drug screening, is a good indicator of potential adverse effects in 

cells. Rapid, sensitive and reliable bioassays are required to examine toxicity. 

Established cell lines are useful alternative test systems for this kind of toxicological 

studies [12]. However, they must be chosen with care considering their origin [13]. 

Cytotoxicity assays are among the most common in vitro endpoints used to predict 

the potential toxicity of a substance in a cell culture [14]. Cell damage is manifested in 

several ways, including mitochondrion and plasma membrane dysfunction and 

fluctuating intracellular reduction capacity [15]. Current standard approaches to gauge 

the degree of cell damage include assays that measure various aspects of cell viability, 

such as metabolic activity and plasma membrane integrity. MTT reduction assay based 

on reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide by cellular 

dehydrogenases, is among the most commonly used endpoints. This method 

measures the reduction of MTT salt to a coloured insoluble formazan in active 

mitochondria in viable cells and also, in certain cases, outside the mitochondria [16-17]. 

The neutral red uptake (NRU) assay, also widely used in biomedical applications, 

measures the uptake of neutral red dye by viable cells with intact plasma membrane, 

and its concentration in lysosomes [18].  

One of the most common non-epithelial cell line used in short- and long-term 

toxicological in vitro studies on cytotoxicity, biocompatibility, or mechanisms of cellular 

uptake of nanoparticles contains 3T3 fibroblasts. These are readily available, undergo 

contact inhibition, and are closely representative of a physiologic model cell line [19]. 

HeLa cell line is the oldest and most commonly used human cell line, derived from 



cervical cancer cells [20]. Since they were put into mass production, HeLa cells have 

been used for research into cancer, AIDS, effects of radiation and toxic substances, 

gene mapping, and countless other scientific pursuits [21]. Differences in the sensitivity 

of endpoints, together with the type of cell model and the nature of tested chemicals, 

may affect the final outcome [22-23]. 

Biomedical fabrics with antibacterial or, more generally, therapeutic purposes are a 

challenging manufacturing task in textile industries. From one side, the fabric itself 

hosts the bacteria acting as a medium between the human organism and the 

microorganisms; on the other hand, it is regarded as a well assessed tool for drug 

delivery in contact of skin for external applications [24-26]. Therefore wide market 

sectors push textile industries to concentrate more on antibacterial fabrics 

manufacturing to improve fabrics quality and product sales. Natural antibiotics are 

preferred by industries not to degrade product quality. In [27] the authors propose 

benzalkonium chloride as an antibiotic in fabric finishing being more effective in skin 

protection against bacterial infection and less irritating in hand sanitizers. Also, wound 

treatment is a biomedical field where both natural and synthetic polymers are excellent 

candidates for applications [28-29]. Because of their versatility and biocompatibility 

even small changes in drugs molecular structure can bring large changes in their 

interactions with components of biological tissues [30]. 

In this paper the authors propose a cytotoxicity study of new molecules produced by 

laser irradiation as potential new therapeutic agents and their applicability to biomedical 

fabrics. The stability of the new products has been investigated in order to forecast a 

better protection or action  with the target cells for a longer time, also in view of limiting 

the influence on shrinking and tearing properties of fabrics.  

A detailed study is made on the stability of phenothiazines solutions in order to know 

the time limits within which exposed solutions are stable and may be used for 

applications. Secondly, a study of the cytotoxic properties of the irradiated solutions is 

presented and their interaction with fabrics is evaluated in view of biomedical use. 

2. Materials and methods  

2.1 Set-up 

The set-up utilized to study the stability of the irradiated phenothiazines solutions is 

shown in Fig.1a where a variant of a more general system described in [3, 4] is drawn. 

The pulsed laser beam sent on bulk sample (2mL) containing phenothiazines at 20 

mg/mL in water, had 6.5 mJ energy and 266 nm wavelength. The irradiation time was 



for all samples 4 hours and solutions were stirred during exposure to avoid precipitates 

formation. 

 

a) 

  

A.                                                             B. 

                  

C.                                                           D. 



b) 

 

Fig. 1  

After irradiation, absorption and FTIR spectra of bulk samples were measured as well 

as surface tension of droplets of 15 µL volume. 

2.2 Materials 

2.2 Materials 

The studied phenothiazines, described in [3] were chlorpromazine (CPZ; 

C17H19ClN2S; IUPAC name: 3-(2-chloro-10H-phenothiazin-10-yl)-N,N-dimethyl-propan-

1-amine; molecular mass for the hydrochloride form 355.33 g/mol), promazine (PZ;  

C17H20N2S; IUPAC name: N,N-dimethyl-3-(10H-phenothiazin-10-yl)-propan-1-amine; 

molecular mass 284.42 g/mol), promethazine (PMZ; C17H20N2S; IUPAC name: (RS)-N, 

N-dimethyl-1-(10H-phenothiazin-10-yl)propan-2-amine; molecular mass 284.42 g/mol) 

and thioridazine (TZ; C21H26N2S2; IUPAC name: 10-{2-[(RS)-1-Methylpiperidin-2-yl] 

ethyl}-2-methylsulfanylphenothiazine; molecular mass 370.577 g/mol) prepared as 

solutions at 20mg/mL in ultrapure water as shown in [6-7]. The 3D not optimized 

structures of the utilized phenothiazines are shown in Fig.1.b. The identification of 

some of the photo-products and their relative concentrations regarding CPZ exposure 

to 266 nm laser beam was made by liquid chromatograph - time of flight – mass 

spectrometer (LC-TOF/MS). This is one of the most suitable methods to identify new 

photoproducts since it is based on their distribution with respect to the m/z values 

(where m is the molecular mass number of the compound and z to the charge number 

of the corresponding ion measured in the time of flight system) [4]. The LC-TOF/MS 

technique is presented in detail in [4] and offers an extremely accurate mass 

measurements (<5 ppm) due to the TOF high degree of certainty detection. The 

identified photo-products were: PZ, Promazine sulfoxide or Hydroxy-promazine, 2-

Hydroxyy-promazine and other 3 compounds with molecular masses at 292, 300 and 

308 amu, respectively [3]. In general, irradiation of CPZ and PZ generates subproducts 

with similar cytotoxic activity [3]. 

 

2,5-diphenyl-3,-(4,5-dimethyl-2-thiazolyl) tetrazolium bromide (MTT) and neutral red 

dye (NR) were from Sigma-Aldrich (St. Louis, MO, USA). Dulbecco´s modified Eagle´s 



medium (DMEM), fetal bovine serum (FBS), phosphate buffered saline (PBS), L-

glutamine solution (200 mM), trypsin-EDTA solution (170,000 U/L trypsin and 0.2 g/L 

EDTA) and penicillin-streptomycin solution (10,000 U/mL penicillin and 10 mg/mL 

streptomycin) were obtained from Lonza (Verviers, Belgium). The 75 cm2 flasks and 

96-well plates were obtained from TPP (Trasadingen, Switzerland). 

2.3. Interaction with Erythrocytes 

2.3.1. Preparation of Red Blood Cell Suspensions 

Red blood cells were obtained in accordance with the procedure described in [31]. 

Blood was obtained from human donors and drawn into tubes containing EDTA to 

prevent coagulation. The serum was removed from blood by centrifugation and by 

subsequent suction. The red blood cells were then washed three times by 

centrifugation at 3000 rpm with isotonic saline PBS solution (pH 7.4). ). Prior to 

experimentation, an aliquot of the suspension is adjusted with PBS to give an extinction 

of about OD (optical density) = 2.0 at 575 nm wavelength after hypotonic lysis with 

distilled water in 1.0 ml final volume [32]. This OD corresponds to a cells density of 8 × 

109 cell/mL.  

2.3.2. Hemolytic Study 

The membrane-lytic activity of the systems was examined by a hemolysis assay. A 

series of different volumes of a solution (1 mg/ mL) of the unirradiated compounds (20 

mg/ mL) and irradiated phenothiazines samples (20 mg/ mL, 240 min, 6.5 mJ, and 266 

nm) were placed in polystyrene tubes and an aliquot of erythrocyte suspension was 

added to each tube. The tubes were incubated at room temperature for 1 h under 

shaking conditions using an Atom 190 shaker (Atom). Following incubation, the tubes 

were centrifuged (5 min at 10000 rpm). The degree of hemolysis was determined by 

comparing the absorbance (540 nm; Shimadzu UV-160A) of supernatant with that of 

the control samples totally hemolysed with distilled water. Positive and negative 

controls were obtained by adding an aliquot of erythrocyte suspension to distilled water 

and isotonic PBS solution, respectively. 

The degree of hemolysis was determined by the following equation:  

Hemolysis (%) = 100× (Abs–Ab0)/(Abs100–Abs0) 

 



where Abs, Abs0, and Abs100 are the absorbance of test samples, the suspension 

treated with isotonic physiological buffer saline (PBS), and the suspension of complete 

hemolysis treated with distilled water water, respectively. 

 

2.4. Cell cultures 

Murine Swiss albino fibroblast, 3T3 and human epithelial carcinoma, HeLa cell lines 

(purchased from the Celltec UB, Barcelona (Spain ) were grown in DMEM medium (4.5 

g/ L glucose) supplemented with 10% (v/v) FBS, 2 mM L-glutamine, 100 U/mL penicillin 

and 100 μg/ mL streptomycin at 37ºC, 5% CO2. The 3T3 and HeLa and HaCaT cells 

were routinely cultured in 75 cm2 culture flasks and were trypsinised using trypsin-

EDTA when cells reached approximately 80% confluence. 

2.5. Cytocompatibility assays  

The 3T3 (1 x 105 cell/ mL) and HeLa (5 x 104 cells/ mL) were seeded into the central 

60 wells of a 96-well plate After incubation for 24 h under 5% CO2 at 37ºC, spent 

medium was replaced in the wells with 100 μL of fresh medium supplemented with 5% 

FBS containing unirradiated compounds (20 mg/mL) and irradiated phenothiazines 

samples (20 mg/ mL, 240 min, 6.5 mJ, 266 nm) at the required concentration range 

(2.5-150 μg/ mL).  

2.5.1. MTT assay 

The MTT assay is based on the protocol first described by Mosmann [33]. In this 

assay, living cells reduce the yellow tetrazolium salt MTT to insoluble purple formazan 

crystals. After 3T3 and HeLa cell incubation for 24h, phenothiazines-containing 

medium was removed and 100 μL of MTT in PBS (5 mg/mL) diluted 1:10 in medium 

without FBS and phenol red was then added to the cells. The plates were incubated for 

a further 3 h, after which the medium was removed. Thereafter, 100 μL of DMSO was 

added to each well to dissolve the purple formazan product. Plates were then placed in 

a microtitre-plate shaker for 10 min at room temperature and absorbance of the 

resulting solutions was measured at 550 nm using a Bio-Rad 550 microplate reader. 

The effect of each treatment was calculated as the percentage of tetrazolium salt 

reduction by viable cells against the untreated cell control (cells with medium only).  

2.5.2. NRU assay 



Based on the protocol described by Borenfreund and Puerner [34], NRU assay 

determines the accumulation of NR dye in the lysosomes of viable, undamaged cells. 

Following exposure to phenothiazines-containing medium, 3T3 and HeLa cells were 

incubated for 3h with NR dye solution (50 µg/mL1) dissolved in medium without FBS 

and phenol red. Cells were then washed with PBS, following by the addition of 100 µL 

of a solution containing 50% ethanol absolute and 1% acetic acid in distilled water to 

extract the dye. Plates were gently shaken for 10 min to ensure complete dissolution. 

We then measured absorbance of the extracted solution at 550 nm using a Bio-Rad 

550 microplate reader. The effect of each treatment was calculated as the percentage 

of uptake of NR dye by lysosomes against untreated cell control (cells with medium 

only).  

2.6. Statistical analyses 

Experiments were performed at least three times on independent occasions unless 

otherwise stated. Results are expresses as means standard error of the mean (SEM). 

Data were analyzed by PASW Statistics 18 software using one-way analysis of 

variance (ANOVA) with Scheffé post-hoc tests for multiple comparisons. Each 

experiment was performed at least three times on independent. Differences were 

considered statistically significant at p<0.05 or p<0.005. In the figures significant 

differences were illustrated with asterisk. 

2.7. Interaction with fabrics 

Medicines solutions were tested on different materials such as support.:Cotton (CO) 

and polyester (PES) purchased from WfkTestgewebe Test Materials and Concepts 

(Germany). The surfaces preparation consisted in washing CO and PES materials (10 

and 5 times, respectively) in a recipient (1L) using warm tap water. Afterwards, the 

surfaces were cut into small pieces and placed on an adjustable sample holder for 

stretching  

Scanning Electron Microscopy (SEM) coupled with EDS probe has been used to 

characterize the fabrics with and without interaction with irradiated medicines (LEO 

model WP1450- EDS model INCA, Oxford Instruments). A given amount of both 

irradiated and unirradiated sample has been dispensed on fabrics and let it dry. The 

samples have been then gold coated by sputtering. 

 

3. Results and discussion 

3.1 Phenothiazines stability studies 



Prior to use irradiated phenothiazines on cell cultures and on fabrics, a stability 

study was performed in order to identify the time interval within which, after irradiation, 

the solutions remain stable and may be used in applications. The stability studies were 

made first by measuring the absorption spectra of solutions of CPZ, PMZ, PZ and TZ at 

20mg/mL irradiated 4 hours with a pulsed UV laser beam of 6.5 mJ energy. The 

spectra were plotted at this relatively high concentration since along the measured 

spectral range (visible – near infrared, i.e. 450 nm – 1100 nm) the absorption is not 

high enough to saturate the absorption signal but is significant enough to evidence 

small modifications of the spectra which might suggest molecular modifications in the 

samples. FTIR spectra were also plotted for the phenothiazines solutions and surface 

tension measurements were made on droplets of solutions of 15 µL volume. In general, 

phenothiazines solutions are quite stable in time after irradiation, although changes are 

observable in the spectra or surface tension curves. As an example, in Fig.2, 

absorption spectra are shown for CPZ (Fig.2a) and PZ (Fig.2b); these two compounds 

were chosen since their action was the most efficient on the studied cells cultures. 

Each spectrum has a broad peak in the visible around 510 nm which is most probably 

constituted out of contributions belonging to some generated photoproducts; this peak 

does not vanish at long time intervals of the order of months. Besides this peak, both 

solutions exhibit after irradiation near infrared absorption maxima which vanish quite 

rapidly and belong most probably to transient, short lifetime compounds. The 

modifications in the NIR spectra of irradiated CPZ and PZ show that the mixtures of 

photo-products are not stable in the first 24 h from the end of the irradiation, but they 

are afterwards remarkably stable. So, only the concentrations of the short lifetime 

compounds change in time after irradiation. These compounds do not interact with 

culture cells in the experiments because the experiments were made at more than one 

month after medicine solutions irradiation. On the other hand, time evolution of the 

peak in the visible shows a reasonably stable set of compounds in solution at long time 

intervals, although the variations of absorption peak intensity is larger than the 

experimental errors in measuring the absorption spectra (drawn in Fig.2 on the curves 

at 7 days from exposure, according to [2]). 



 

 

Fig. 2 

The same conclusions may be drawn from the FTIR spectra made on bulk samples 

and from the surface tension measurements on droplets of solutions having 15 µL 

volume (data not shown).  

 



3.2. Hemolytic Assessments of Unirradiated and Irradiated Phenothiazines 

Safety evaluation of new products or ingredients destined for human use is crucial 

prior to exposure. One important factor in development of novel systems for parenteral 

administration is to determine their ability to cause hemolysis by interaction with the cell 

membrane. To this end, we examined this interaction by using erythrocytes as a model 

biological membrane system, since erythrocytes have been used as a suitable model 

for studying the interaction of amphiphiles and other molecules with biological 

membranes [35-36].  

The hemolytic activity of unirradiated and irradiated phenothiazines compounds was 

assessed at different concentrations. In these experiments, hemolysis was determined 

at a fixed time (after 1 h incubation) in the presence unirradiated and irradiated 

phenothiazines in the range of 50 to 150 μg/ mL. The hemolytic potential of a material 

is defined as a measure of the extent of hemolysis that may be caused by the system 

when it comes into contact with blood. Data analysis shows two different types of 

behavior. Thus, one can distinguish between (i) CPZ and PZ compounds, for which 

unirradiated and irradiated samples lead to differences in hemolytic response and (ii) 

TZ and PMZ derivatives, for which no apparent effect of the UV irradiation on the 

hemolytic response is observed. 

When the hemolytic responses of unirradiated/irradiated CPZ and PZ compounds 

are compared, a strong increase of hemolytic response of irradiated samples could be 

observed. In CPZ case, 80 % of hemolysis was already observed at the lowest 

concentration, in comparison with the 7 % of hemolysis observed at 150 μg/ mL of the 

unirradiated CPZ sample (Fig.3a). In the case of PZ derivative, unirradiated sample 

showed hemolysis values lower than the permissible level of 5% [35] during the entire 

concentration interval studied. In the case of irradiated PZ sample, hemolysis 

progressively increases until achieves 80 % of hemolysis (Fig. 3b). 

Quite different profiles were obtained for TZ and PMZ derivatives. A general trend is 

that the effect of the UV irradiation can be considered negligible. However, TZ and 

PMZ derivatives showed a very different behavior. In the TZ case, both unirradiated 

and irradiated samples showed dose-response curves that progressively increase until 

achieve 100 % of hemolysis (Fig. 3c). For PMZ derivative (Fig. 3d), for all the 

concentrations assayed, the extent of hemolysis was lower than the permissible level 

of 5%. PMZ-UV slightly exceeds this value at the highest concentration studied.  



From the fitting of the obtained curves, HC50 values for different unirradiated and 

irradiated phenothiazines have been determined. Fig.3e summarizes the obtained 

results.  

  

 
 
Fig 3.  

The hemolysis assay showed that the phenothiazine derivatives as well as the 

irradiation process are controlling parameters of the hemolytic properties of these 

compounds. These results can be compared with those obtained by the determination 

of the photohemolysis of several phenothizines [37]. Drug-induced photosensitivity 

refers to adverse cutaneous responses which follow the combined or successive 



exposure to certain chemicals (photosensitizers) and to light. Several phenothiazines 

have been reported to cause clinical phototoxicity [38].  

Phototoxic reactions are broadly divided into those which are oxygen dependent and 

a lower number which do not require oxygen. The mechanism of damage is one of 

colloid osmotic hemolysis mediated by peroxide formation following porphyrin 

excitation [39] and due to stable photoproducts since the drug irradiated alone failed to 

induce subsequent cell lysis. Although under different experimental conditions (drugs at 

50 μg/mL were exposed to UVA (350 nm, 2.5 mW/cm) for 30 min), the results 

described by Kim and Baek are in the light of our results. These authors showed that 

stable photoproducts were formed by CPZ, producing oxygen-independent 

photohemolysis. On the other hand, TZ was not forming photoproducts. The damage of 

TZ is one of colloid osmotic hemolysis mediated by peroxide formation following 

porphyrin excitation. As for the PMZ derivative, its irradiation had no effect on 

hemolysis. 

 
3.3. Cytotoxic Assessments of Unirradiated and Irradiated Phenothiazines 

It was of great interest in this study to characterize unirradiated and irradiated 

phenothiazines considering the cytotoxic response they induced. Dose–response 

curves were determined by the MTT and NRU assays using 3T3 and HeLa cells lines. 

3T3 fibroblast cell line gave an appropriate in vitro model for skin irritation. HeLa, is the 

oldest and most commonly used human cell line. The cytotoxicity assays were 

performed in the concentration range 2.5-100 μg/mL.  

For comparative purposes, an initial experimental series of cytotoxicity studies were 

performed at the similar range of concentration with that carried out on hemolytic 

studies (25-100 μg/mL). Fig. 4 shows the cytotoxic response of HeLa cell line treated 

with unirradiated and irradiated phenothiazines, determined by MTT and NRU assays. 

Cell viabilities of down to 5 % were observed in all compositions when MTT method 

was used. By NRU method, cell viabilities of up to 10 % were observed in almost all 

compositions. It is well established that MTT assay is a measurement of cell metabolic 

activity within the mitochondrial compartment, while NRU assay measures membrane 

integrity. NR dye diffuses through intact cell membranes to accumulate within 

lysosomes [16-18]. Based on the mechanisms of cell damage detected by each 

cytotoxicity assay, our results suggest that the toxicity mechanism of unirradiated and 

irradiated phenothiazines involve an earlier interaction with the mitochondrial 

compartment while plasma membrane and/or lysosomal compartments could be 



affected at a later stage. Under these conditions, in all cases there are significant 

differences between the obtained values by MTT and NRU methods.  

Concerning potential differences between unirradiated and irradiated samples, in the 

CPZ and PZ derivatives cases, for some conditions, irradiated phenothiazines seems 

to be more compatible with HeLa cells that the irradiated one, by NRU method. 

(Fig.4a). However, for PMZ derivatives, at the lowest assayed concentration, HeLa 

cells seem to be more sensitive to the deleterious effect of the irradiated sample than 

the unirradiated one, determined by MTT (Fig. 4d). At that point, due to the lack of cell 

viability observed under these conditions only is possible to confirm that the 

corresponding IC50 values would be lower than 25 μg/mL. 

 

Fig. 4.  
 

Taken into account these results, subsequent cytotoxicity studies were carried out at 

lower concentration in order to establish the cytotoxic potency of unirradiated and 

irradiated phenothiazines. Fig. 5 shows the cytotoxic response of 3T3 and HeLa cell 

lines treated with unirradiated and irradiated phenothiazines in the concentration range 

2.5-10 μg/mL, determined by MTT and NRU assays. As can be observed, under this 

concentration range, it is possible to discriminate the conditions for which viable and 



dead cells can be observed. Together with some significant differences on cell 

viabilities observed as a function of the endpoint method and cell line type, the most 

remarkable differences have been observed as a function of the irradiation process on 

the phenothiazine derivative. In a way similar with that observed in hemolytic studies, 

the data analysis shows two different types of behavior. Thus, we can distinguish 

between (i) CPZ and PZ compounds, for which unirradiated and irradiated samples 

lead to differences in the cytotoxic response and (ii) TZ and PMZ derivatives, for which 

the effect of the UV irradiation on the cytotoxic response seems to be less remarkable.  

A general trend in cytotoxic responses of CPZ and PZ derivatives is that the 

irradiation process might promote the generation of substances with higher cytotoxic 

character than those present in the unirradiated samples. Fig. 5a and 5b show the 

cytotoxic responses of 3T3 and HeLa cell lines in the presence of CPZ and PZ 

derivatives, respectively. When 3T3 cells were incubated in the presence of CPZ 

derivatives at the lowest and intermediate concentrations, the cytotoxic response 

between unirradiated and irradiated samples appeared to be significantly different, with 

the NRU assay. In a similar way, HeLa cells showed significant differences between 

the cytotoxic response between unirradiated and irradiated samples, especially with the 

MTT assay. At the highest assayed concentration, the lack of cell viability would 

explain the observed similarities between unirradiated and irradiated samples. 

Concerning cytotoxic responses of PZ derivatives (Fig. 5b), the most notable 

differences between unirradiated and irradiated samples have been observed at 

intermediate and highest concentrations. When 3T3 cells where incubated in the 

presence of unirradiated and irradiated samples, significant differences have been 

observed, with both MTT and NRU methods. For HeLa cell line, significant differences 

between the cytotoxic response of unirradiated and irradiated samples were observed, 

especially with the MTT assay.   

Quite different cytotoxic responses were obtained in the case of TZ and PMZ 

derivatives. A general trend is that the effect of UV irradiation can be considered 

negligible or promotes the formation of species that result to be less cytotoxic than the 

unirradiated samples. For TZ derivatives, at the lowest assayed concentration, together 

with some significant differences as a function of the endpoint method, 3T3 and HeLa 

cells resulted to be more sensitive to the deleterious effect of unirradiated samples 

determined by MTT and NRU, respectively (Fig. 5c).The lack of cell viabilities observed 

at such high concentrations (25-100 µg/mL) would explain the observed similarities 

between unirradiated and irradiated samples. Concerning the cytotoxic effects of PMZ 



derivatives, significant differences between unirradiated and irradiated samples can be 

found at the intermediate assayed concentration, by NRU. Only at the highest assayed 

concentration, irraditated PMZ seems to be more cytotoxic to HeLa cells, measured by 

MTT method (Fig. 5d). 

 

 



 

 

 

Fig. 5 

From the fitting of concentration-dependent viabilities curves, the corresponding IC50 

values have been determined. The obtained results have been summarized in Fig. 6. In 

general, the IC50 values of unirradiated and irradiated phenothiazines were similar to 

the 3T3 cells, and only in the case of CPZ derivatives showed a significant decrease 

(p<0.005) in the toxic response after irradiation, as determined by MTT and NRU 

methods (Fig. 6a). In contrast, more significant differences between unirradiated and 

irradiated phenothiazines were observed with HeLa cells. Together with some 

significant differences on the cell viabilities observed as a function of the endpoint 

method, the four types of phenothiazines showed significant differences between the 

cytotoxic responses promote by unirradiated and irradiated compounds (Fig. 6b). For 

CPZ, PZ and PMZ derivatives, lower IC50 values were obtained for the formulations 

containing irradiated compounds in comparison of those obtained with unirradiated 

ones, especially with the MTT method. In contrast, lower IC50 values were obtained in 



the case of unirradiated TZ derivative in comparison with irradiated one, determined by 

the NRU method.  

When the results obtained between the two different endpoints were compared, it 

can be deduced that the NRU assay gave lower IC50 values than the MTT assay did 

(Figure 6c and 6d). However, the latter assay was more sensitive in detecting the 

irradiation effects within the two studied cell lines (Fig.4c). These results suggest that 

irradiated compounds have a greater effect on the metabolic activity than on plasma 

membrane on the cells, especially in the case of the HeLa cell line. In contrast, by NRU 

methods, 3T3 cells seem to be more sensitive to the deleterious effect of CPZ 

derivatives. The significant effect of CPZ derivatives on plasma membrane on 3T3 cells 

resemble that observed in the haemolytic studies, where significant differences were 

only observed in the case of the CPZ derivatives, in comparison with other 

phenothiazines.  

The effect of irradiation on CPZ derivative is in agreement with previous obtained 

results [6]. When in vitro toxicity against the human THP-1 cell lines was determined by 

MTS method, the unirradiated CPZ showed an IC50 value of 5.51 µg/mL. The level of 

toxicity increased with the 4h exposure of CPZ to the 266nm laser beam (2.59 mg/L).  

 

Selectivity index is an important factor in the development of anticancer agent, 

because this index is the factor that ensures the safety of the tested compound [40, 

41].  The selectivity indexes toward cancer cells (Table 1) were calculated as a ratio of 

the average  IC50 values for 3T3 fibroblast cells and the IC50 values for the 

corresponding cancer cell line (Hela cell line).   

From values on Table 1 can be deduced that the selectivity index seems to be 

dependent on the endpoint method. In the case of MTT method, SI-MTT values are 

lower than 1, indicating no selectivity on the action of the unirradiated and irradiated 

phenothiazines for 3T3 and HeLa cell lines. In all cases, however, SI-MTT values for 

irradiated compounds are higher than those obtained for unirradiated ones. For NRU 

method, the obtained SI values are always higher than 1, demonstrated that the tested 

compounds exhibit high degree of selectivity. 

In order to evaluate the effect of the UV-irradiation on the selectivity action of the 

studied phehothiazines, a pseudoselectivity index has been calculated. This index 

would to emphasize differences between the unirradiated and irradiated compounds, 

for both cell lines and both endpoint methods. As can be observed from results 



summarizes in Table 1, the UV-irradiation of TZ derivative didn´t indorse any 

selectivity. However, the irradiation process can induce selectivity that is dependent of 

the phehothiazine derivative. Thus, in the case of PMZ, SI values ranged between 1 

and 1.6 have been obtained. When CPZ compound is irradiated, the SI values 

increased up to 2.0, in several cases. For PZ compound, an interesting selectivity is 

observed. Although SI values are always higher than 2.0, SI values corresponding to 

the HeLa cell line, determined by the MTT method, increased up to 4.5 demonstrating 

a great selectivity.  

 

 
Fig 6.  
 
 
 
Table 1. Comparison of cytotoxic activities of the unirradiated and irradiated 
phenothiazines. From the fitting of concentration-dependent viabilities curves, the 
corresponding IC50 values have been determined. 
 
 



 
 

3.4. Interaction of Unirradiated and Irradiated Phenothiazines with Fabrics 

 

The surfaces preparation consisted in washing procedure of cotton (CO) and 

polyester (PES) materials as shown in [5], (10 and 5 times, respectively) in a recipient 

(≈ 1 L) utilizing warm tap water to eliminate contaminations. Basically, in [5], at the end 

of every washing/cleaning stage/cycle, the water’s surface tension used for washing 

was measured, to compare it with the value of the clean tap water. In the case of the 

CO surfaces, after 10 cycles the used water’s surface tension reached the clean 

water’s value. For PES surfaces 5 cycles were sufficient to obtain the same effect, due 

to the specific properties of PES.  

The EDS maps reveal the distribution of the characteristic element present in the 

medicines acting as tracing agents coupled with morphology observations. In this case 

S and Cl maps have been extracted from the whole spectra. 

3T3-MTT 3T3-NRU HeLa-MTT HeLa-NRU SI-MTT SI-NRU SI(UV) 

3T3 MTT 

SI(UV) 

3T3 NRU 

SI(UV) 

HeLa MTT HeLa  NRU

 6..55 ±0.42 8.68 ±0.19 7.58 ±0.22 3.94 ± 0.07 0.864 2.205 

UV 3.63 ±0.09 3.69 ±0.10 3.92 ±0.04 3.26 ±0.07 0.926 1.131 

 

1.806 

 

2.352 

 

1.934 

3.27 ±0.05 3.33 ±0.18 3.97 ±0.01 2.07 ±0.32 0.825 1.607 

 3.63 ±0.25 3.62 ±0.05 3.97 ±0.05 3.16 ±0.10 0.914 1.147 

 

0.903 

 

0.918 

 

1.000 

10.90 ±0.34 9.86 ±0.10 18.52 ±3.36 9.19 ±0.40 0.588 1.074 

 3.78 ±0.01 4.00 ±0.06 4.03 ±0.10 3.70 ±0.15 0.937 1.081 

 

2.885 

 

2.464 

 

4.595 

 10.48 ±0.45 10.86 ±0.67 20.21 ±0.37 8.47 ±0.05 0.519 1.282 

UV 9.41 ± 0.45 10.25 ±0.32 12.15 ±0.98 8.99 ± 0.02 0.775 1.140 

 

1.114 

 

1.060 

 

1.663 



Morphology investigations performed by Scanning electron microscopy (SEM) have 

given a microscale insight in the wetting properties of irradiated and not irradiated 

samples observed in [5, 7]. In Fig.7 the unirradiated PMZ sample seems to accumulate 

in zones of the fabric without a more homogeneous distribution (see maps of S and Cl) 

where the central part is more densely populated. The presence of more surface active 

compounds as produced by irradiation appears to be effective in the wetting properties 

of the irradiated solutions with respect to a more homogeneous distribution and 

uniformity of the wet fibers. The foam-like structure present in PMZ before the 

irradiation disappears after the laser treatment producing a more homogeneous film 

bridge between the fibers in comparison to the unirradiated sample.  

 

Fig. 7  

 

CPZ also shows improved wetting properties on the fibers with prevalent hydrophilic 

nature like cotton (Fig. 8). On the other hand, the behavior toward the more 

hydrophobic polyester results quite independent from the irradiation stage.  



 

Fig. 8  

 

In general, irradiation produces more wetting agents able to let the substance 

better distribute along the fibers with some differences between cotton and polyester 

according to the more hydrophobic or hydrophilic percentage of surface active agents 

in the solution after irradiation [42]. For PZ the irradiation didn’t appear to change 

appreciably wetting properties and distribution among the fibers. Plain cotton and 

polyester have been taken as a reference with the signal coming from the samples, but 

featuring a lower intensity throughout. On the other hand, the data reported here about 

the wettability of fabrics confirm the results reported in [5] where optical/optofluidic 

methods were used to measure wetting properties. SEM and EDS methods used in this 

paper confirmed the results shown previously in [5].” tracking at nano – micro scale the 

distribution of the new molecules along the fibers.  

 

4. Conclusions 

 

An important number of drugs employed currently in medicine have their origins in 

the chemical manipulation of phenothiazines. In general, chemical manipulation of a 

compound for generation of new derivatives is limited by existing organic chemistry, is 

time consuming and the percent yield of an active product is quite small. Exposure of 

phenothiazines solutions to UV laser radiation generates photoproducts that have 

different molecular structures and properties with respect to them. These data suggest 

to extend the toxicity studies of phentothiazines exposed to laser radiation towards 



applications on cell cultures and to broaden the studies of their wetting properties on 

fabrics in view of further applications.  

Together with some significant differences on the cell viabilities observed as a 

function of the endpoint method (MTT and NRU) and cell line type (3T3 and Hela cell 

lines), the most remarkable differences have been observed as a function of the 

irradiation process on the phenothiazine derivative. Of significant importance is that the 

irradiation photoproducts of CPZ and PZ derivatives have higher in vitro cytotoxicity 

against the studied cell cultures, suggesting that this approach may be useful for the 

development of compounds more bioactive than the parental species. Not all the 

phenothiazines have this kind of effect, such as it is the case of PMZ and TZ; this may 

be due to the different photoproducts obtained from their modification by exposure to 

UV laser radiation. The pseudoselectivity index values demonstrated that the irradiation 

process can induce selectivity in their mode of action. Whereas the UV-irradiation of TZ 

derivative didn´t indorses any selectivity, PMZ and CPZ increased selectivity as a result 

of the irradiation process. For PZ derivative, the irradiated compound demonstrated to 

be 4.5 times more selectivity against HeLa cell line than the unirradiated compound, 

determined by the MTT method. 

On the other hand the interaction of unirradiated and irradiated phenothiazines with 

fabrics show that the most important modifications of the wetting properties may 

reported for CPZ and PMZ whereas these properties are not significantly improved for 

TZ and PZ. In view of possible biomedical applications, the irradiation procedure 

results in the production of more surface active agents in CPZ and PMZ holding to an 

enhancement of the wetting and distribution of the substances in cotton or polyester 

fabrics fibers with some differences according to their hydrophilic/hydrophobic features.  

If the effects of the irradiated phenothiazines on cell cultures are correlate with the 

improvement of the wetting properties the irradiated phenothiazines it results that the 

most recommended phenothiazines for applications if CPZ because its irradiated water 

solutions are more effective on bacteria cultures and at the same time the same 

solutions better wet the studied fabrics. So, knowing the conditions in which cotton and 

polyester textiles can be wetted more easily, it would be possible to use them as drug 

delivery systems. This kind of properties may be useful in designing fabrics with 

controlled release of medicines to targets. 

Though, PZ and PMZ may be considered as candidates for specific applications 

due to their respective advantages which may be used, namely a higher treatment 

efficiency showed by PZ and a better overall wetting characteristic of PMZ. 
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FIGURE CAPTIONS 
 

Fig. 1. Set-up for exposure of the phenothiazines solution to UV laser light a) and the 

3D not optimized structures of the utilized phenothiazines b). 

Fig. 2. Absorption spectra of CPZ and PZ measured immediately after exposure to UV 

laser radiation and kept in dark at 4ºC for time intervals of one month (CPZ) and 3 

weeks (PZ). a) CPZ irradiated 4h; laser beam energy 6,5mJ; laser beam wavelength 

266nm; b)  PZ irradiated 4h; laser beam energy 6,5mJ; laser beam wavelength 266nm; 

Fig 3. Dependence of human erythrocyte hemolysis on unirradiated (blue symbols) and 

irradiated (red symbols) CPZ (a), TZ (b), PZ (c) and PMZ (d) concentration. 

Erythrocytes were incubated for 1 h at room temperature at different concentrations, 

and the amount of released hemoglobin was determined. HC50 values of the 

corresponding unirradiated and irradiated phenothiazines (e). The data correspond to 

the average of three independent experiments ± standard deviation. Statistical 

analyses were performed using ANOVA followed by Scheffé’s multiple comparison 

test; *p < 0.05 denotes significant differences. 

Fig. 4. Concentration-dependent relative viabilities of HeLa cells treated with 

unirradiated (blue) and irradiated (red) CPZ (a), TZ (b), PZ (c) and PMZ (d) derivatives 

for 24 h determined by MTT (solid lines) and NRU (dotted lines) assays. The data 

correspond to the average of three independent experiments ± standard deviation. 

Statistical analyses were performed using ANOVA followed by Scheffé’s multiple 

comparison test; *p < 0.05 and *p < 0.005 denotes significant differences. 

Fig. 5. Concentration-dependent relative viabilities of 3T3 (left) and HeLa (right) cells 

treated with unirradiated (blue) and irradiated (red) CPZ (a), PZ (b), TZ (c) and PMZ (d) 

compounds for 24 h determined by MTT (solid color) and NRU (soft color) assays. The 

data correspond to the average of three independent experiments ± standard deviation. 



Statistical analyses were performed using ANOVA followed by Scheffé’s multiple 

comparison test; *p < 0.05 and *p < 0.005 denotes significant differences. 

Fig. 6. IC50 values of the corresponding unirradiated and irradiated phenothiazines on 

3T3 (a) and HeLa (b) cell lines on varying the endpoint method, and determined by 

MTT(c) and NRU (d) methods on varying the cell line type. The data correspond to the 

average of three independent experiments ± standard deviation. Statistical analyses 

were performed using ANOVA followed by Scheffé’s multiple comparison test; *p < 

0.05 and *p < 0.005 denotes significant differences. 

 

Fig. 7 SEM morphology(1500X) and EDS maps for S (green) and  Cl (red) for 

irradiated and unirradiated PMZ (20mg/mL) on different fabrics (C for Cotton, P for 

Polyester) 

 

Fig. 8 SEM morphology (1500X) and EDS maps for S (green) and  Cl (red) for 

irradiated and unirradiated CPZ (20mg/mL)  on different fabrics (C for Cotton, P for 

Polyester) 
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