
Received June 25, 2020, accepted June 27, 2020, date of publication July 2, 2020, date of current version July 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3006711

Building Uncertainty Models on Top
of Black-Box Predictive APIs
AXEL BRANDO 1,2, DAMIÀ TORRES2, JOSE A. RODRÍGUEZ-SERRANO2,
AND JORDI VITRIÀ 1
1Departament de Matemàtiques i Informàtica, Universitat de Barcelona (UB), 08007 Barcelona, Spain
2BBVA Data and Analytics, 28050 Madrid, Spain

Corresponding author: Axel Brando (axelbrando@ub.edu)

This work was supported in part by the Industrial Doctorates Plan of Generalitat de Catalunya, in part by Banco Bilbao Vizcaya Argentaria
(BBVA) Data and Analytics, and in part by the Universitat de Barcelona under Grant RTI2018-095232-B-C21 and Grant SGR 1742.

ABSTRACT With the commoditization of machine learning, more and more off-the-shelf models are
available as part of code libraries or cloud services. Typically, data scientists and other users apply these
models as ‘‘black boxes’’ within larger projects. In the case of regressing a scalar quantity, suchAPIs typically
offer a predict() function, which outputs the estimated target variable (often referred to as ŷ or, in code,
y_hat). However, many real-world problems may require some sort of deviation interval or uncertainty
score rather than a single point-wise estimate. In other words, a mechanism is needed with which to answer
the question ‘‘How confident is the system about that prediction?’’Motivated by the lack of this characteristic
inmost predictive APIs designed for regression purposes, we propose amethod that adds an uncertainty score
to every black-box prediction. Since the underlying model is not accessible, and therefore standard Bayesian
approaches are not applicable, we adopt an empirical approach and fit an uncertainty model using a labelled
dataset (x, y) and the outputs ŷ of the black box. In order to be able to use any predictive system as a black
box and adapt to its complex behaviours, we propose three variants of an uncertainty model based on deep
networks. The first adds a heteroscedastic noise component to the black-box output, the second predicts the
residuals of the black box, and the third performs quantile regression using deep networks. Experiments
using real financial data that contain an in-production black-box system and two public datasets (energy
forecasting and biology responses) illustrate and quantify how uncertainty scores can be added to black-box
outputs.

INDEX TERMS Aleatoric uncertainty, deep learning, neural networks, regression problems.

I. INTRODUCTION
The success of machine learning in the real-world problems
has led to the increasing commoditization of machine learn-
ing systems. Nowadays, more and more predictive models
are available ‘‘off-the-shelf’’ as part of code libraries [35],
[38], machine learning servers [10], cloud-based services [1]
or inside domain-specific black-box software [39]. In other
words, machine learning has become increasingly more
accessible to users and developers who are not specialists in
this field, but who wish to consume its predictive functional-
ity. It has also become more commonplace to use a predictive
system as a black box inside a larger engineering system [45].

In this paper, we consider regression models implemented
as black boxes. The term black box denotes a predictivemodel

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamad Forouzanfar .

that exhibits three properties: (1) it has been pre-trained,
(2) it exposes a function (typically called predict()) to
estimate the output value given a set of input values, and
(3) its internal details, such as algorithm of choice, or dataset
used for training, are not accessible or even known (typically
the case with prediction APIs).

However, there are many situations of practical value
where a predict() function is not enough, since we need
to have access to a range estimate rather than a point estimate.
This is the case when we want to output the confidence
interval of the predicted value or assess the typical noise of the
target variable. Generally speaking, data scientists encounter
situations where they might be interested in the distribution
of the target variable rather than just the ‘‘most probable’’
value.1

1As an example, most regression classes in python’s sklearn do offer a
predict() function but not the means to get prediction intervals.

121344 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-8103-391X
https://orcid.org/0000-0003-1484-539X
https://orcid.org/0000-0001-8849-0144

A. Brando et al.: Building Uncertainty Models on Top of Black-Box Predictive APIs

FIGURE 1. Proposed method to upgrade any black-box predictive API (for regression) with an Uncertainty Score.

While an alternative would be to move to white-box imple-
mentations of models that do handle the target variable distri-
bution, such as Gaussian Processes [43] or Generalized Addi-
tive Models [5], our aim here is to provide a solution when
this is not possible. Due to the applied nature of their work and
delivery cycles, data scientists tend to be consumers of mod-
els rather than develop their own models from scratch. Our
data science teams experience realistic situations in which
substituting the black box is not viable or not desired, mainly
because one of the crucial properties of the black box needs
to be retained. Common examples of this are when the black
box is a very reliable system (from a software engineer-
ing perspective), costly to replace or is required to fulfil a
specific function in order to comply with regulations (e.g.
medical [50] and some financial models, which sometimes
need to comply with interpretability constraints). To sum up,
we assume that the data scientist still needs the black box,
but there is a need to ‘‘upgrade’’ it with uncertainty scores.
In fact, this work was motivated by one of the data science
teams needing to re-purpose an internal engine for forecasting
– a case we discuss in the experimental section of this paper.

II. RELATED WORK
The black-box concept is normally used in contexts where the
goal is to approximate a full model with another one that is
considered as a white box [20], [36], i.e. aiming to decode or
make accessible a complex model generating a new one that
imitates this currently-in-use system. In this work, we have a
different reason for considering the original model as a black
box. Similarly to [33], [34] but applied to regression prob-
lems, the main goal here is not to generate a new model that
imitates the previous one but to generate a newwrappermodel
that complements and maintains the original prediction with
new information: the uncertainty score, as shown in Figure 1.

Not assuming the internal structure of the currently-in-
use system implies several limitations. One of the most
important is that approaches such as Bayesian optimization
of the parameters or density estimation of the parameters
are not applicable, as this would mean assuming that the
original model is parametric, as is the case in [24]. How-
ever, our black-box system could be a non-parametric pre-

dictive system or even a handcrafted rule-based predictive
system. In this context, Bayesian techniques such as MC-
Dropout [17] or Bayesian neural networks [7], [21], [42],
[48] or considering an ensemble of black boxes [29], [31]
is not possible since we assume that we have a single fixed
pointwise predictive system. In other words, the epistemic
uncertainty that refers to not knowing the parameters dis-
tribution of the black-box model cannot be captured in the
described scenario. Therefore, we focus on the other type of
uncertainty - aleatoric - from the outset, which corresponds
to the variability of possible correct answers given the same
input, p(y | x).
Aleatoric uncertainty is modelled using deep learning

models for classification tasks [25], [32] and regression
ones [8], [47]. However, not all aleatoric solutions can be
applied to the uncertainty modelling of a black-box predictive
system. The only applicable solutions are those that can
disentangle the uncertainty prediction from the prediction of
the response variable in a special manner described hereafter,
where the response variable prediction can be substituted by
the black-box prediction as shown in Figure 1.

III. PROBLEM STATEMENT
A. DEFINITION OF BLACK BOX
We define a black-box predictor (henceforth black box) as
the implementation of a predictive model exposing a function
of the form ŷ = B(x). Here, x represents a set of inputs,
and ŷ represents a predicted quantity, which we will denote
prediction. The fundamental assumption is that we do not
know the functional form of B, and all we can do is call
B(x) and observe the result ŷ. Experienced data scientists
can probably identify with this situation when using a model
method implemented in an off-the-shelf library [35], [38],
API, or cloud service – inmany implementations, the function
B is called predict(). To further frame our problem, let us
discuss some considerations related to the inputs, output and
assumptions regarding B in greater detail.

1) INPUTS TO B
The inputs x represent the attributes that would be passed to
B. Let us consider the following two situations:

VOLUME 8, 2020 121345

A. Brando et al.: Building Uncertainty Models on Top of Black-Box Predictive APIs

The case of preserved input appears when we have access
to the actual values of x at the time we evaluate B(x).

The case of distorted input occurs when we have access
to the prediction of the black-box system B(x) but not to its
input x. For example, let us consider a public API to forecast
electricity consumption in a given geographical area. While
we can call the API, and get its prediction, in this case we
do not have access to the input variables the model uses.
However, we can still build some variables that describe the
’state’ of the input so that this state is informative of the
uncertainty. Indeed, later wewill see some experiments where
the available information (previous consumption values) is
used as variables z to provide a reasonable input context and
successfully forecast the uncertainty.

Finally, we should consider two different model configu-
rations. First of all, when the input of the uncertainty wrapper
is z, we refer to the model as a First Order Decision model,
ψ(z). Otherwise, when z and the black-box prediction B(x)
are both considered input attributes of our uncertainty esti-
mator, we denote this model a Second Order Decision model,
ψ(z,B(x)) (shown as a dotted arrow in Figure 1).

In experiments (Sec. VI), we consider preserved and dis-
torted input problems and also compare First and Second
Order Decision models.

2) OUTPUT OF B
The output, ŷ, represents the predicted quantity. In this article,
we consider regression problems, i.e. ŷ is a scalar. Without
loss of generality, the methods proposed in this paper apply
to vector-valued outputs.Moreover, extensions to binary clas-
sification problems would be possible if we consider ŷ to be
a classification score.

3) THE BLACK-BOX B
We assume that we do not know the functional form of B,
which is the situation when using an off-the-shelf piece of
software. However, it should be noted that our proposal also
applies to situations where Bmay be known but changes in B
are not allowed or would be expensive. Therefore, our defi-
nition of black box in fact means that B is immutable (either
because it is unknown, or because it is costly or impossible to
replace for any of the given reasons).

B. UNCERTAINTY SCORES OF BLACK-BOXES
We use the term uncertainty score to define any function
ψ(z) that can be used to impose an ordering of predictions,
intuitively in terms of quality. The crucial property of an
uncertainty score is that, by thresholding the uncertainty score
and keeping only the samples with uncertainty below a given
threshold, the error metric of interest or dispersion for that
’refined’ subset would be lower than by considering thewhole
set.

We assume we work with a black-box B and at least
have access to the triplets

(
zn, ŷn, yn

)
, where z are preserved

or distorted inputs, ŷn are estimated predictions and yn are
the ground-truth predictions. In this situation, our goal is to

construct a model ψ(z) that provides a quantitative estimate
of the uncertainty score for the predicted value ŷ, given the
preserved or distorted inputs z.

C. A NON-BAYESIAN APPROACH
We aim at obtaining uncertainty scores of ŷ. Broadly speak-
ing, there are two main approaches to elicit the uncertainty of
predictions in statistics [15]: either inducing an uncertainty
over the model parameters (epistemic uncertainty), or fix-
ing the model and assuming the output is noisy aleatoric
uncertainty. Bayesian approaches are a well-known way of
tackling epistemic cases, as they impose a distribution over
the parameter space. Crucially for this work, when dealing
with black boxes, one does not have access to the model
and thus it is not possible to apply Bayesian approaches.

Specifically, we focus on the aleatoric component of uncer-
tainty [15], i.e. the variability of the outputs that depends on
the input data, since, as we will see next, this can be estimated
empirically even if the model is unknown.

IV. METHOD
This section presents the details of different proposed meth-
ods for building the uncertainty wrapper function.

The uncertainty wrapper function is defined as an end-to-
end differentiable model, ψ(z) that, given a loss function,
can be trained to produce an uncertainty score. Taking into
account that this function to be approximated may be as or
even more complex than the function to be approximated by
the black box, we decided to use deep learning models.

The use of deep learning models have advantages and
disadvantages. On the one hand, these models are universal
approximators [12] and they are the state-of-the-art methods
for solving a wide range of high-dimensional problems [14],
[30], [44]. On the other hand, similarly to normal mix-
tures and Boltzmann machines, deep learning models are
not identifiable, which may implies to have different local
minima [18]. Given that we are not associating a meaning to
each internal weight of the model, this problem is not critical
for our scenario. Furthermore, the non-optimal guarantees
about the local minima found is not a critical problem in our
scenario while this models obtain the state-of-the-art solution
for our problem.

More specifically, we have considered three different
strategies for obtaining the uncertainty score:

• Modelling the target variable as a parametric distribution
and posing the problem of uncertainty estimation as a
probabilistic inference problem.

• Estimating the residual error between the predictionB(x)
and the target value y.

• Building a quantile regressor to directly estimate 95%
and 5% percentiles of the target variable.

The training step consists in optimizing ψ(z) through the
use of a specific loss function L() and a dataset

(
zn, ŷn, yn

)
.

Once ψ(z) has been trained, it can be directly used to
predict the uncertainty score of B(x) as ψ(z).

121346 VOLUME 8, 2020

A. Brando et al.: Building Uncertainty Models on Top of Black-Box Predictive APIs

FIGURE 2. Uncertainty modelling using different wrappers of a black box estimation based on a regression Random Tree (RT) to approximate a
non-linear synthetic data set. Note that the uncertainty score only deviates from the expected values when the black-box forecast is erroneous.

At this point, it is worth emphasizing the difference
between the First and Second Order models. In the First
Order case, the entry of the uncertainty wrapper, ψ , model
will be simply the vector z. However, in the Second Order
case, the input will comprise the prediction by the black box,
B, and the vector z, as follows: ψ (z,B(x)). Without loss of
generality we will continue to use the notation ψ (z) to refer
to both cases. On the other hand, note that the black-box input
continues to be x even in the case of having a distorted input,
since what is needed to model the Uncertainty Wrapper, ψ ,
is the prediction by the black box, i.e. B(x).

The following sections describe each strategy in more
detail.

A. PROBABILITY DISTRIBUTION FITTING
The problem posed is to estimate the target variable distri-
bution ŷ = B(x) empirically through observations of triplets(
zn, ŷn, yn

)
.

When considering deep learningmodels, a common choice
is to model the target variable distribution as a Normal [6] or
Laplacian distribution [9] and solve a Maximum Likelihood

estimation problem in order to find the optimal network
parameters. Both distributions are a sub-case of the para-
metric family of symmetric distributions known as Gener-
alized Normal Distribution (GND). Hence, we assume ŷ ∼
GN (B(x), ψ(z), β), where GN is a GND with the black-box
output, B(x), as a location parameter and the deep learning
wrapper, ψ(z), as a scale parameter [28], [41]. Furthermore,
β is another parameter to be optimized and, as highlighted
earlier, represents the Laplacian distribution when β = 1
and the Normal distribution when β = 2. On the whole,
the distribution function, shown in Figure 2.b, is:

GN (y | B(x), ψ(z), β) =
β

2ψ(z)0(1
β
)
e

(
−
|y−B(x)|
ψ(z)

)β
(1)

where 0 denotes the Gamma function.
Importantly, the scale parameter of the distribution, ψ(z),

is a function that depends on z, the preserved or distorted
information available at the input. Therefore, our goal can
be stated as that of finding a functional form of ψ(z) and
the parameter β which maximizes the corresponding log-

VOLUME 8, 2020 121347

A. Brando et al.: Building Uncertainty Models on Top of Black-Box Predictive APIs

likelihood:

L (y,B(x), z)= log
0(1

β
)

β
+logψ(z)+

(
|y−B(x)|
ψ(z)

)β
(2)

As mentioned earlier, the reason for considering ψ(z) as a
deep learning model is clear: we are trying to approximate
a function that might be complex and non-linear, meaning a
high capacitymodel seems judicious. Note that estimating the
possible variability of an output given the input is a regression
problem in itself and therefore as challenging as predict-
ing the expected value. This setting is model-agnostic with
respect to the uncertainty wrapper deep learning architecture.
Given the deep learning output, NN (z), which by default can
take positive and negative values, the only requirement is
that ψ(z) needs to always be positive; we therefore apply
a Softplus function to the output of the deep learning
as proposed in other works when scale parameters are pre-
dicted [25], [26], [46], i.e. ψ(z) = log

[
1+ exp (NN (z))

]
.

In our particular case, however, one crucial detail is that B(x)
is fixed, and thus, the loss function will not be optimized with
respect to it, so the values of |y− B(x)| are fixed.
Finally, on the one hand we can interpret the loss function

of Equation 2 as the sum of a regularization term and a
reconstruction term. If ψ(z) is smaller than the scale of these

errors, the reconstruction term
(
|y−B(x)|
ψ(z)

)β
penalizes the loss

value. Otherwise, if ψ(z) is too large, then the regularization
term logψ(z) becomes dominant. So we have an equilibrium
that yields ψ(z) as the predicted scale of the errors depending
on the input.

On the other hand, the job of β is less evident, for some
fixed set of errors |y−B(x)| and uncertainty scores,ψ(z). The
optimal β is such that the shape of the distribution fits better,
i.e. large values of β correspond to plateau-like distributions,
and low values of β to sting-shaped ones.

B. LIKELIHOOD ESTIMATION OF RESIDUALS
In this case, the aim is to directly estimate the residual error
between the black box and the value to be predicted, letting
ψ(z) = |y − ŷ|. Implicitly, we can do this because y is an
unknown function of x. Assuming the residuals follow aGND
of unknown variance, the loss function for this case is the
negative logarithm of the likelihood, out of constants and
dependence from the variance:

L (y,B(x), z) = log0(1/β)− logβ + |y− B(x)− ψ(z)|β

(3)

C. QUANTILE REGRESSION
A well-known approach to compute confidence intervals and
deal with prediction with uncertainty is Quantile Regression,
in which the target estimate is a certain quantile of the dis-
tribution of real values, instead of the mean [19], [27]. The
length of the centred 90% confidence interval can be used
as a proxy of the uncertainty of the estimation. To do this,
we define two functions φ+(z), φ−(z) as the (1920 =)95% and

(1
20 =)5% percentiles of the distribution of the residual error,
r = y−B(x), for each function and use a surrogate hinge loss
to them [39] in the following way:

L+ (y,B(x), z) = max
[
19(r − φ+(z)), φ+(z)− r

]
L− (y,B(x), z) = max

[
r − φ−(z), 19(φ−(z)− r)

]
.

(4)

The synthetic example presented in Figure 2.c shows how
both quantiles are estimated.

As in the cases included in Section IV-A, we define the
uncertainty score as the Softplus of the quantile differ-
ence, ψ(z) = log

[
1+ exp(φ+(z)− φ−(z))

]
.

V. BASELINES UNDER EVALUATION
In order to evaluate our proposals, we compared the pre-
vious proposals with two methods that allow us to obtain
an uncertainty proxy given a dataset of triplets

(
zn, ŷn, yn

)
.

Additionally, we defined a simple prediction baseline as a
sanity check.

A. NEAREST NEIGHBOUR DISTANCE
The distance to the n-th nearest neighbour in the input
space [49], z, can be seen as a proxy of ‘‘normality’’, which is
sometimes related to reliability. As a simple baseline, we used
the distance to the 5th neighbour to sort predictions by reli-
ability. The distance to other neighbour can be considered.
We have abbreviated this method as NN.

B. NEAREST NEIGHBOUR REGRESSION
As well as using distance, we can also use the targets of
the nearest neighbour to obtain a direct estimation of uncer-
tainty [4]. Specifically, if we call Yneigh = yπ (1), . . . , yπ (K)
the targets of the K first neighbours, we use std(Yneigh) as an
estimate of the prediction uncertainty. We denote this method
as NN-Reg.

C. GAUSSIAN PROCESSES
Following the product-of-GP-expertsmodel proposed in [13],
we built an ensemble of N Gaussian processes, {GPi}Ni=1,
where each one is trained with a different part of the training
set to predict the difference between the black-box prediction
and the real value, i.e. |y−B(x)|. Thereafter, as each Gaussian
process predicts a mean, µi(z), and a variance, σi(z), one way
of defining the uncertainty score could be:

ψ(z) =
1
N

N∑
i=1

µ2
i (z)+ σ

2
i (z) (5)

In this way, we avoid the scalability problems typically
found in Gaussian Processes. We refer to this baseline as GP.

D. STANDARD DEVIATION OF z
When forecasting the next value of a time series, one can use
the standard deviation of the previous time series points as
the simplest means of estimating the uncertainty of the next
value. While we would expect this to yield a poor uncertainty

121348 VOLUME 8, 2020

A. Brando et al.: Building Uncertainty Models on Top of Black-Box Predictive APIs

proxy, we added it as good experimental practice tomake sure
that our proposal yields much better results than simple cases.
From now on we refer to this as std.

VI. EXPERIMENTAL SETTINGS
A. DATA SETS
All the datasets used are of the form [z, y, ŷi], where [z, y] are
the real data, z the available inputs and y the target variable(s),
and ŷi are each of the black-box estimates for y.

1) FORECASTING BANK CUSTOMERS’ IMPENDING
FINANCIAL EXPENSES AND INCOMES
Following [9], our problem is to forecast upcoming monthly
expenses and incomes in a certain aggregated financial cate-
gory for each bank client. Each time series contains 24 points
and the goal is to predict the next aggregated month. To build
the dataset, we used 2 million randomly-selected time series
for a single-year training set and 1 million more for the test
corresponding to the following year.

2) ESTIMATING ELECTRICAL POWER DEMAND
In this problem, we have to forecast the mean electrical power
demand in two hours, given the means for each two-hour
period over the previous 72 hours. Thus, we have time series
of 36 points and the problem is forecasting the next one. The
data were prepared from the sets made publicly available
by Red Eléctrica of Spain, which can be found at [2]. The
public series are at intervals of 10 minutes, so we averaged
every 12 points to obtain the mean value for 2 hours. In this
experiment, data were captured for the period comprising
1-1-2014 to 18-10-2018, so we have 250,000 points, split
evenly between train and test.

3) PREDICTING A BIOLOGICAL RESPONSE CHALLENGE
We also considered a real-world dataset from a public Kaggle
challenge [23]. The data comprised 1, 776 numerical descrip-
tors representing the size, shape or elemental constitution
of each molecule. The aim here was to predict whether the
molecule was seen to elicit a biological response. Although
the challenge is a binary classification problem, for the pur-
poses of this article, we regard it as a regression task, where it
is necessary to predict a real-valued score (0 or 1). The inter-
est of this dataset lies in the fact that one of the participants
published the code for her solution [37], which we used as a
black box. The dataset had 3, 751 points: 500 were used to
train the black box, 2, 000 to train the confidence estimator
and 1, 251 were used as a test set.

B. BLACK BOXES USED FOR EVALUATION
The aim of using several black boxes was to simulate dif-
ferent situations encountered in real-world problems, where
an interpretation is needed or the function B(x) cannot be
changed for practical reasons. For each dataset, we took
existing real systems as black boxes, and in order to extend

the study, in some cases complemented them with additional
simulated black boxes, as follows:

For the Financial dataset, we used the following black
boxes:

• Mean: The average forecast of the historical input val-
ues: ŷ = x̄.

• Last: The last observed value in the time series with 24
points: ŷ = x24, which is known as the ‘‘naive method’’
in the forecasting literature [22].

• In Production: The in-production system that produces
forecasts for the banking app. This system is highly
optimized for production purposes, difficult to replace,
and uses a number of different models and software
components. It outputs a point forecast but not a pre-
diction interval. Therefore, it complies with many of the
black-box assumptions described in this work.

For theElectrical PowerDemanddataset, we considered:

• Company: Red Eléctrica’s own forecasting consump-
tion, computed by the company itself. These forecasts
are available as part of the dataset, but we ignored how
the predictive system is designed. Thus, we could be in
a distorted input case, following Section III.

• RT: A regression tree model with depth 4, available from
the sklearn library.

For the Biological Response dataset, we used a partici-
pant’s solution to the Kaggle challenge, as published in [37],
hereafter referred to as Kaggle.

At this point, it is important to highlight the different kinds
of black boxes used. Firstly, the initial two black boxes (Mean
and Last) proposed for the Financial dataset are a clearly
preserved input case, since both the forecasting method and
the uncertainty estimation method work with the expense
time series data. However, the third case (In Production)
is a distorted input scenario, since the in-production fore-
caster uses more attributes than just the previously predicted
series, which our uncertainty wrapper has no access to. Sim-
ilarly, the Electrical Power Demand estimation done by the
company probably uses additional information that was not
available to us (we assume these to be weather conditions,
dummies for special dates, etc.), meaning that Company is
also a distorted input scenario.

Finally, we considered First and Second Order Decision
models for all of the alternatives.

C. DEEP LEARNING SPECIFICATIONS
Different architectures were combined with different loss
functions. In the two time series datasets, we used recurrent
and dense networks (called LSTM and dense, respectively),
but only the latter in the classification/regression dataset.

In the Financial and the Electrical Power Demand
datasets, the dense network has two hidden dense layers with
50 and 20 units, respectively, while the recurrent network has
a first hidden layer of 50 LSTMunits and a second of 20 dense
neurons.

VOLUME 8, 2020 121349

A. Brando et al.: Building Uncertainty Models on Top of Black-Box Predictive APIs

In theBiological Response dataset, the dense network has
two hidden layers with 3, 000 and 1, 000 units, respectively,
due to the high number of input attributes.

The Second Order dense decision models have the same
structure as the First Order ones, but adding the black-box
output as an extra input, whereas the Second Order recurrent
decision models have an extra dense layer to extract features
from the black-box output to 10 units, which feeds the second
hidden layer as well as the output of the LSTM layer.

All the deep learning models were implemented using the
automatic differentiation library TensorFlow [3] and, specif-
ically, the Keras wrapper [11]. Their corresponding parame-
ters were optimised using a grid search of different parameter
combinations for each model. Furthermore, they were trained
in two phases using 500 epochs with early stopping and
10% of the training set as a validation set. As explained in
Section VI-D, in the first phase, β is trainable so the model
learns the shape of the distribution, whereas in the second
phase, β is constant, so we have more numerical stability to
learn ψ .

Note that when we perform quantile regression, we train
two models, one for the interval’s upper-bound function and
another for the lower-bound one.

On the whole, we considered three different loss functions:

• het: Heteroscedastic aleatoric estimation loss, Eq. (2).
• res: Deterministic bias estimation loss, Eq. (3).
• QR: 90% centered coverage Quantile Regression,
Eq. (4).

D. HYPERPARAMETER POLICY OF β

In both frameworks (heteroscedastic and residual), we first
optimized the network with all the trainable parameters, and
then froze β when it had converged (i.e. low variation of that
parameter is regarded as convergence), and continued training
the other weights (those used to computeψ(z)). This provides
more numerical stability, as minor changes in the value of β
affect the loss value.

VII. RESULTS
In this section, we quantitatively and qualitatively evaluate
certain properties of the uncertainty wrapper, for both our in-
house example and the real-world public datasets.

A. DOES THE UNCERTAINTY WRAPPER PREDICT THE
CONFIDENCE?
The first question we wish to solve is whether the uncertainty
wrapper has the ability to filter those points where our black
box makes larger errors. In other words, do the uncertainty
scores rank the predictions by increasing error?

Note that traditional ways of evaluating regression (or fore-
casting) methods are real-valued error metrics, such as Mean
Absolute Error (MAE) or RootMean Squared Error (RMSE).
However, these are computed based only on the predictions
B(z) and the true values, whereas here we are looking for a
way to evaluate the quality of ψ(z).

1) ERROR-KEEP CURVE
One way to compare the ordering quality of different uncer-
tainty score functions, ψk , is by contrasting their different
error-keep curves [9]. Figure 3 shows the curves for different
methods applied to the financial dataset with respect to the
‘‘In Production’’ industrial black box. Each sub-figure cor-
responds to a different scoring measure indicated in the cor-
responding caption. These curve plots, on the y-axis, have
the respective cumulative scoring measure,D, corresponding
to the subset of the predictions such that ψ(z) < κ , where
κ is a threshold. The x-axis shows the fraction of points
under the threshold. Following [16], if 9i = [ψk (zi) < κ],
the different selected scoring methods are the Mean Absolute
Error (MAE),

EKMAE (y, z,B(x), κ) =

N∑
i=1
|yi − B(xi)| ·9i

N∑
i=1
9i

, (6)

the Mean Absolute Percentage Error (MAPE),

EKMAPE (y, z,B(x), κ)) =

N∑
i=1

∣∣∣ yi−B(xi)yi

∣∣∣ ·9i

N∑
i=1
9i

, (7)

the Mean Percentage Error (MPE),

EKMPE (y, z,B(x), κ)) =

N∑
i=1

yi−B(xi)
yi
·9i

N∑
i=1
9i

, (8)

the Root Mean Squared Error (RMSE),

EKRMSE (y, z,B(x), κ)) =

√√√√√√√√
N∑
i=1
(yi − B(xi))2 ·9i

N∑
i=1
9i

, (9)

the Root Mean Square Percentage Error (RMSPE),

EKRMSPE (y, z,B(x), κ)) =

√√√√√√√√
N∑
i=1

(
yi−B(xi)

yi

)2
·9i

N∑
i=1
9i

, (10)

and the Mean Square Percentage Error (MSPE),

EKMSPE (y, z,B(x), κ)) =

N∑
i=1

(
yi−B(xi)

yi

)2
·9i

N∑
i=1
9i

. (11)

As we can see in Figure 3, for all methods we obtain
a trade-off curve showing that the error decreases as we

121350 VOLUME 8, 2020

A. Brando et al.: Building Uncertainty Models on Top of Black-Box Predictive APIs

FIGURE 3. Error-keep plot of the In Production black box for our Financial Forecasting problem using different scoring measures. Sub-figures (a), (d) and
(e) have a zoomed shot of the initial 50% at the bottom.

‘‘accept’’ only forecasts with decreasing values of the uncer-
tainty ψ(z). In the experiment presented here, we have suc-
cessfully added an uncertainty wrapper on top of an industrial
black box, and we can now use it to filter the forecasts we are
unsure about and not display them to the user.

We are in the scenario that metrics posses advantages in
interpretability are preferable due to the predicted value is
monetary. Following [40], we consider better to focus on
metrics that uses MAE instead of RMSE as they are funda-
mentally easier to understand than the latter. Consequently,
although the standard deviation could seems better, in the
initial part, if we only show Figure 3.c case, we can observe
that in all other cases the proposed methods based on het-
eroscedastic networks and quantile regression obtain the best
performances.

2) EXHAUSTIVE QUANTITATIVE EVALUATION
Since it is impractical to visualize all error-keep figures for
all of the methods, we summarize all of them into a single
metric, which we will denote as ordering score. This value
will be computed for every combination of dataset, method,
black box and order (First and Second order), and evaluated
for all possible combinations.

The ordering score quantifies whether the ordering induced
by an uncertainty function ψ(·) is close to the perfect or,
otherwise, to a random ordering. Its computation details are
explained below.

First, let us consider the error-reject curve of a perfect
ordering. It is clear that the best possible ordering happens
when it is the same as ordering by the real error, that is
ψo(zi) = |B(xi) − yi|. We denote this ideal situation as the
‘‘perfect oracle curve’’.

Similarly, the least informed way to sort by uncertainty
scores is randomly. Clearly, this would yield a constant error-
keep curve with a value corresponding to the MAE of the
dataset (up to random fluctuations). We can define

δk =

[(
1
N

N∑
i=1

|ψk (zi)− yi|

)
, . . .
Repeat N times

]
(12)

as the vector with the value of the whole MAE of ψk .
At this point, where we have defined a lower and upper

bound curve, we are able to define the ordering score of an
uncertainty wrapper function, ψk , as

S(ψk) = 100
(
1−

A(ψk)− A(ψo)
δk − A(ψo)

)
, (13)

where A(v) is the area of the Error-Keep curve of the function
v. The ordering scores is one minus the ratio between the
difference of area between the selected uncertainty wrapper
and the oracle divided by the difference of the area of a
random ordering criteria and the oracle. Therefore, the closer
the ordering score is to 100, the closer it is to a perfect sorting.
On the other hand, a value closer to zero (it may even be

VOLUME 8, 2020 121351

A. Brando et al.: Building Uncertainty Models on Top of Black-Box Predictive APIs

TABLE 1. Ordering scores values for each of the methods explained in Section IV and for each of the datasets of Section VI-A.

negative given stochasticity) will mean an almost random
ordering.

In Table 1 we show the ordering scores values for all
the combinations of datasets, black-boxes, methods and
First/Second order choice explained in Sections IV, V andVI-
A. For all public dataset, the mean and variance ordering
scores values of 10 independent executions are reported.

Returning to the original question about detecting whether
the uncertainty wrapper improves in our confidence, if we
look at the Table 1, we see that all values are positive val-
ues, with the exception of some cases corresponding to the
LSTM-res. Therefore, taking into account the definition of
the ordering score, we can ensure that by using the wrapper
constitutes an improvement in the performance. Additionally,
we can observe that the deep Uncertainty Wrapper strategies
proposed in this article are the ones that get the best results
for every point compared to other baselines.

Furthermore, in the comparison presented in Table 1 we
can observe that the ordering score exhibit relevant varia-
tions in scale depending on the complexity of the problem.
This complexity is related with the presence of distorted
or preserved inputs implying bad performance such as the
residual uncertainty wrappers that obtained close to zero or
even negative values.

B. WHICH IS THE BEST UNCERTAINTY WRAPPER?
The results of the Table 1 leads us to wonder if there is a
method that stands out from the others systematically. While
the 1st ranked method varies over the columns of the table,
we can see that clearly using the Heteroscedastic methods
as wrapper gives us the first or second best position for
any problem and black-box. Thus, we can consider that the
Heteroscedastic model is the most stable when it comes to
getting good generic solutions.

C. FINE-GRAINED ANALYSIS OF ORDERINGS
Table 1 and Figure 3 give insights on the overall quality of
the orderings induced by uncertainty wrappers.

We would also like to check monotonicity properties of
the ordering, i.e. to what degree does the uncertainty score
approximately sort by real-error? In other words, we want
to match the intuition that ‘‘easy to predict’’ inputs should

be assigned low uncertainty scores, while ‘‘potentially disas-
trous prediction’’ should be avoided.

To that end, we first group the samples by MAE,
|yi − B(x)i| into 10 bins. These can be interpreted as 10 dif-
ferent degrees of prediction difficulty (from lowest to highest
error). When we vary the uncertainty threshold κ we could
measure the % of points that fall into each of the 10 bins (y-
axis), while the x-axis corresponds to the Keep % (induced
by κ). We would expect the low-error bins to capture most
% at low Keep rates, and conversely, that the high-error
bins dominate at high values of the Keep rate. For instance,
this could be used to detect wrong predictions with a high
Uncertainty Score and other unwanted scenarios.

In Figure 4, we can show that for all methods displayed,
the bins with large error (the purplish ones) appear at the end.
On the other hand, we can observe that the behaviour of both
Heteroscedastic and quantile regression wrappers is quite
smooth even for lower bins (the yellowish ones). Therefore,
we can conclude that considering ordering score values is a
proper manner to ordering regarding different types of errors.

D. DISCRETIZATION IN LEVELS OF CONFIDENCE
Another important point to verify is the correlation between
the ordering induced by each uncertainty wrappers and the
’true ordering’ based on the real error (oracle). In this case,
for each uncertainty wrapper we could define certain thresh-
olds corresponding to the five required quantiles (i.e. values
between the quantiles 0 − 20, 20 − 40, 40 − 60, 60 − 80
and 80− 100) and associate them to the five classes, respec-
tively. Note that this is equivalent to defining five ’quality
classes’ (Higher Error, High Error, Medium Error , Low
error and Lower Error) and computing a sort of confusion
matrix between the true classes and the predicted classes.

In Figure 5, we observe the confusion matrix for our In
Production problem where it is indicated in each box the nor-
malized number of predictions that have coincided between
the prediction of the oracle and the chosen uncertainty wrap-
per.

As we can see in Figure 5, it is easier for all the different
presented models to detect the points with higher confidence
than the others (given their more yellowish colour). How-
ever, the number of the percentage of points contained in

121352 VOLUME 8, 2020

A. Brando et al.: Building Uncertainty Models on Top of Black-Box Predictive APIs

TABLE 2. β final value after the first part of the optimization for each model and problem.

FIGURE 4. Percentage of points of each bin of real MAE error of the In
Production black-box of our Financial Forecasting problem sorted by the
uncertainty wrapper described in the title. Each color corresponds to a
different real error bin indicated in the legend.

such a box on the bottom left is different depending on the
model: We can see that all baseline models, as well as the
quantile regression model, have a significantly lower value
than theHeteroscedastic case. This indicates us that, although
the ordering score value in our In Production problem of
the Heteroscedastic model may be slightly lower than the
quantile regression model, theHeteroscedasticmodel detects
in a better way the values that are more reliable. Accordingly,
theHeteroscedasticmodel is the one that best orders itsHigh,
Medium, and Lower values as well as those predictions that
have a high probability of being erroneous in the upper right
corner. In short, the model with the most central tendency is
the Heteroscedastic one.

E. CHECKING THE CONVERGENCE OF β

Before finishing, it is important to analyse the convergence
of the extra hyperparameter of the heteroscedastic and esti-

FIGURE 5. Normalized confusion matrix of the problem of classification
into 5-levels of confidence for certain models. Each one has its own
colour map scale.

mation of residuals models, β, which we optimize in a first
learning phase and allow us to optimize the type of distribu-
tion to be fitted, as we explained in Sections IV-A and VI-D.
Table 2 shows the final convergence value of the β hyperpa-
rameter after the first training phase of all the methods in the
different problems. As we can see, the convergence values of
β for the problems where the experiment could be repeated
converges to a stable value. There is only an exception with
the case of the Regression Tree with the LSTM-het model
where, given that the convergence value of β ended in a high
value, the variance also ends up being high. To tackle this
situations, a pre-defined value of β could be considered and
directly optimize the other parameters of the deep learning
wrapper.

F. DISTRIBUTION OF ERRORS REVIEW
Finally, we want to visualize the impact on the probability
of an erroneous prediction when the uncertainty score value
increases by using themore stable black-box for our Financial
forecasting problem: the Second Order version of the Dense-
het model. From the business point of view, this information
would be very useful to take the decision on which value
of the uncertainty score we discard the predictions. We will
now show the whole distribution of the errors sorted by the
uncertainty score.

VOLUME 8, 2020 121353

A. Brando et al.: Building Uncertainty Models on Top of Black-Box Predictive APIs

FIGURE 6. Density plot between the uncertainty score value and their
corresponding Average Absolute Error produced by the Our In Production
black-box when it is predicting in the Financial forecasting problem.

1) HOW TO BUILD THE DISTRIBUTION PLOT
The process to generate the Figure 6 is the following: First
of all, we stratify into 30 bins the distribution of the absolute
values of the error by using our In Production black-box for
all the test-set, i.e. |yi − B(xi)|. Then, we assign to each bin
a certain color of a defined colormap (as it can be seen in
the right of the Figure 6). Afterwards, we order the absolute
values of the errors of our black-box prediction by using their
respective uncertainty score values. Thereafter, in order to
reduce the dimensionality and make the behaviour smoother,
we average in groups of 1024 points the previous sorted errors
and their corresponding uncertainty score values. Finally,
we draw vertically the degree of belonging in each of the error
bins for each of the sorted groups.

2) ANALYSIS OF THE DISTRIBUTION RESULTS
Figure 6 exhibits the desired behaviour of a uncertainty score:
the left part of the plot (low values of the uncertainty scores)
concentrates the samples with lowest error (yellow-ish); the
right part of the plot (high uncertainty values) contains a
majority of samples with high and very high error (blue-ish).

These trade-off plots can also be used to inspect or debug
the failure cases. For instance, we observe a yellow-ish band
(bottom of the plot) with high uncertainty scores, which
corresponds to samples with low error that the uncertainty
model missed. Also, we observe some spikes, which may cor-
respond to specific patterns which do not follow the expected
trend. Again, it would valuable to inspect these cases, but
we recall the global error-keep trend of the plot remains as
desired.

VIII. CONCLUSIONS
Nowadays, automatic predictive systems are more and more
commonly used to tackle real-world problems. This implies
that increasingly these systems make decisions in problems
where the cost of an erroneous prediction is higher than the
reward of a correct one, in which obtaining a global good
accuracy is not enough. Consequently, the uncertainty regard-
ing this predictive process must be modelled and pointwise
predictive system must be replaced by models that considers
their uncertainty too. Specifically, we tackle the situation

where the cost of replacing an in-production model is not
advisable but the uncertainty modelling is required.

In this paper, we propose adding an aleatoric uncertainty
wrapper on top of any in-production pointwise predictive
system considered as a black-box, i.e. no-assumptions about
their internal structure is done and, therefore, it can be a
non-parametric predictive systems or even a handcrafted rule-
based systems. This freedom ensures that any beneficial prop-
erty of the original predictive system is preserved although
this implies that not all types of wrapper models and uncer-
tainties can be considered.

The proposed methods were applied in different real-world
problems using several black-boxes. The most important are
the uncertainty modelling of a real electrical power demand
forecaster that is currently in-use by the electrical company,
the uncertainty modelling of a publicly available solution
for a biological response regression and, finally, the black-
box uncertainty prediction over the financial expenses and
incomes of the bank users that we have currently in-
production.

From the whole range of different alternatives proposed
in the article, we can see that reports better performance is
the second order heteroscedastic model based on a Gener-
alized Normal Distribution fitting. Based on this analysis,
we show an improvement in terms of detecting the degree
of confidence and, therefore, apply an appropriate policy for
each case. Additionally, several ways to visualize the results
and to help this decision are proposed.

To sum up, this work is a further step in the research
to improve the reliability and robustness of currently in-
production systems and state-of-the-art models. Future work
could be continued in lines such as capturing other types of
uncertainty, as well as, extending the proposed methods for
classification problems.

REFERENCES
[1] (Jun. 11, 2020). Amazon Sagemaker Developer Guide. [Online]. Available:

https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
[2] (Jun. 11, 2020). Red Eléctrica: Real-Time Demand and Generation.

[Online]. Available: https://demanda.ree.es/visiona/peninsula/demanda/
total

[3] M. Abadi et al., ‘‘Tensorflow: A system for large-scale machine learning,’’
in Proc. 12th USENIX Symp. Operating Syst. Design Implement. (OSDI),
2016, pp. 265–283.

[4] N. S. Altman, ‘‘An introduction to kernel and nearest-neighbor non-
parametric regression,’’ Amer. Statistician, vol. 46, no. 3, pp. 175–185,
Aug. 1992.

[5] C. M. Anderson-Cook, ‘‘Generalized additive models: An introduction
with R. Simon N. Wood,’’ J. Amer. Stat. Assoc., vol. 102, pp. 760–761,
2007.

[6] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Germany: Springer-Verlag, 2006.

[7] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, ‘‘Weight
uncertainty in neural networks,’’ 2015, arXiv:1505.05424. [Online]. Avail-
able: http://arxiv.org/abs/1505.05424

[8] A. Brando, J. A. Rodriguez, J. Vitria, and A. R. Muñoz, ‘‘Modelling
heterogeneous distributions with an uncountable mixture of asymmetric
laplacians,’’ in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 8836–8846.

[9] A. Brando, J. A. Rodríguez-Serrano, M. Ciprian, R. Maestre, and J. Vitrià,
‘‘Uncertainty modelling in deep networks: Forecasting short and noisy
series,’’ in Proc. ECML, 2018, pp. 325–340.

121354 VOLUME 8, 2020

A. Brando et al.: Building Uncertainty Models on Top of Black-Box Predictive APIs

[10] S. Chan, T. Stone, K. P. Szeto, and K. H. Chan, ‘‘PredictionIO: A dis-
tributed machine learning server for practical software development,’’
in Proc. 22nd ACM Int. Conf. Conf. Inf. Knowl. Manage. CIKM, 2013,
pp. 2493–2496.

[11] F. Chollet. (2015). Keras. [Online]. Available: https://keras.io
[12] G. Cybenko, ‘‘Approximation by superpositions of a sigmoidal function,’’

Math. Control, Signals, Syst., vol. 2, no. 4, pp. 303–314, Dec. 1989.
[13] M. Deisenroth and J. W. Ng, ‘‘Distributed Gaussian processes,’’ in Proc.

Int. Conf. Mach. Learn., 2015, pp. 1481–1490.
[14] L. Deng and D. Yu, ‘‘Deep learning: Methods and applications,’’ Found.

Trends Signal Process., vol. 7, nos. 3–4, pp. 197–387, Jun. 2014.
[15] A. D. Kiureghian and O. Ditlevsen, ‘‘Aleatory or epistemic? Does it

matter?’’ Struct. Saf., vol. 31, no. 2, pp. 105–112, Mar. 2009.
[16] T. Fomby, ‘‘Scoringmeasures for prediction problems,’’ Ph.D. dissertation,

Dept. Econ., Southern Methodist Univ., Dallas, TX, USA, 2008.
[17] Y. Gal and Z. Ghahramani, ‘‘Dropout as a Bayesian approximation: Rep-

resenting model uncertainty in deep learning,’’ in Proc. Int. Conf. Mach.
Learn., 2016, pp. 1050–1059.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Cambridge,
MA, USA: MIT Press, 2016.

[19] L. Hao, D. Q. Naiman, and D. Q. Naiman, Quantile Regression, vol. 149.
Newbury Park, CA, USA: Sage, 2007.

[20] F. E. Harrell, Regression Modeling Strategies: With Applications to Linear
Models, Logistic and Ordinal Regression, and Survival Analysis. Cham,
Switzerland: Springer, 2015.

[21] J. M. Hernández-Lobato and R. Adams, ‘‘Probabilistic backpropagation
for scalable learning of Bayesian neural networks,’’ in Proc. Int. Conf.
Mach. Learn., 2015, pp. 1861–1869.

[22] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Prac-
tice. Melbourne, VIC, Australia: OTexts, 2014, Sec. 2.3.

[23] B. Ingelheim. (2012). Predicting a Biological Response. Kaggle Chal-
lenge. Accessed: Jul. 2, 2020. [Online]. Available: https://www.kaggle.
com/c/bioresponse/data

[24] K. S. Kasiviswanathan and K. P. Sudheer, ‘‘Quantification of the predictive
uncertainty of artificial neural network based river flow forecast models,’’
Stochastic Environ. Res. Risk Assessment, vol. 27, no. 1, pp. 137–146,
Jan. 2013.

[25] A. Kendall and Y. Gal, ‘‘What uncertainties do we need in Bayesian deep
learning for computer vision,’’ in Proc. Adv. Neural Inf. Process. Syst.,
2017, pp. 5574–5584.

[26] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, ‘‘Semi-
supervised learning with deep generative models,’’ in Proc. Adv. Neural
Inf. Process. Syst., 2014, pp. 3581–3589.

[27] R. Koenker and K. Hallock, ‘‘Quantile regression,’’ J. Econ. Perspect.,
vol. 15, no. 4, pp. 143–156, 2001.

[28] T. Koski, ‘‘Scale parameter,’’ in Sf 2955: Computer Intensive Methods.
KTH Royal Institute of Technology, 2019.

[29] B. Lakshminarayanan, A. Pritzel, and C. Blundell, ‘‘Simple and scalable
predictive uncertainty estimation using deep ensembles,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 6402–6413.

[30] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
pp. 436–444, May 2015.

[31] J. Liu, J. Paisley, M.-A. Kioumourtzoglou, and B. Coull, ‘‘Accurate uncer-
tainty estimation and decomposition in ensemble learning,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2019, pp. 8950–8961.

[32] A. Malinin and M. Gales, ‘‘Predictive uncertainty estimation via prior
networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 7047–7058.

[33] J. Mena, A. Brando, O. Pujol, and J. Vitrià, ‘‘Uncertainty estimation for
black-box classification models: A use case for sentiment analysis,’’ in
Proc. Iberian Conf. Pattern Recognit. Image Anal. Cham, Switzerland:
Springer, Jul. 2019, pp. 29–40.

[34] J. Mena, O. Pujol, and J. Vitria, ‘‘Uncertainty-based rejection wrappers for
black-box classifiers,’’ IEEE Access, vol. 8, pp. 101721–101746, 2020.

[35] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin,
R. Zadeh, M. Zaharia, and A. Talwalkar, ‘‘MLlib: Machine learning in
Apache Spark,’’ J. Mach. Learn. Res., vol. 17, no. 1, pp. 1235–1241, 2016.

[36] S. J. Oh, B. Schiele, andM. Fritz, ‘‘Towards reverse-engineering black-box
neural networks,’’ in Explainable AI: Interpreting, Explaining and Visual-
izing Deep Learning. Cham, Switzerland: Springer, 2019, pp. 121–144.

[37] E. Olivetti. (2012). Kaggle_Pbr. [Online]. Available: https://github.com/
emanuele/kaggle_pbr

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, and J. Vanderplas,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Oct. 2011.

[39] F. C. Pereira, C. Antoniou, J. A. Fargas, and M. Ben-Akiva, ‘‘A metamodel
for estimating error bounds in real-time traffic prediction systems,’’ IEEE
Trans. Intell. Transp. Syst., vol. 15, no. 3, pp. 1310–1322, Jun. 2014.

[40] R. G. Pontius, O. Thontteh, and H. Chen, ‘‘Components of information for
multiple resolution comparison between maps that share a real variable,’’
Environ. Ecological Statist., vol. 15, no. 2, pp. 111–142, Jun. 2008.

[41] A. V. Prokhorov, ‘‘Scale parameter,’’ in Encyclopedia of Mathematics.
Springer, 2019.

[42] C. E. Rasmussen, ‘‘A practical Monte Carlo implementation of Bayesian
learning,’’ in Proc. Adv. Neural Inf. Process. Syst., 1996, pp. 598–604.

[43] C. E. Rasmussen, ‘‘Gaussian processes in machine learning,’’ in Sum-
mer School on Machine Learning. Berlin, Germany: Springer, Feb. 2003,
pp. 63–71.

[44] J. Schmidhuber, ‘‘Deep learning in neural networks: An overview,’’Neural
Netw., vol. 61, pp. 85–117, Jan. 2015.

[45] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, ‘‘Hidden
technical debt in machine learning systems,’’ in Proc. NIPS, 2015,
pp. 2503–2511.

[46] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther,
‘‘Ladder variational autoencoders,’’ inProc. Adv. Neural Inf. Process. Syst.,
2016, pp. 3738–3746.

[47] N. Tagasovska and D. Lopez-Paz, ‘‘Single-model uncertainties for deep
learning,’’ in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 6414–6425.

[48] M. Teye, H. Azizpour, and K. Smith, ‘‘Bayesian uncertainty estimation
for batch normalized deep networks,’’ 2018, arXiv:1802.06455. [Online].
Available: http://arxiv.org/abs/1802.06455

[49] H. R. Thompson, ‘‘Distribution of distance to nth neighbour in a population
of randomly distributed individuals,’’ Ecology, vol. 37, no. 2, pp. 391–394,
Apr. 1956.

[50] B. Ustun and C. Rudin, ‘‘Supersparse linear integer models for optimized
medical scoring systems,’’ Mach. Learn., vol. 102, no. 3, pp. 349–391,
Mar. 2016.

AXEL BRANDO received the master’s degree
in artificial intelligence and two degrees in
mathematics and computer science. He is currently
pursuing the Ph.D. degree in industrial with the
Universitat de Barcelona and BBVA Data and
Analytics. His research interest includes uncer-
taintymodeling by using deep learningwith papers
in conferences, such as the Neural Information
Processing Systems (NeurIPS) and the European
Conference on Machine Learning and Princi-

ples and Practice of Knowledge Discovery in Databases (ECML-PKDD)
Conference.

DAMIÀ TORRES worked as an intern researcher
at BBVA Data and Analytics. Currently, he is
an Advanced Mathematics master’s degree stu-
dent at Universitat of Barcelona. He has taken
part in research projects in pure mathematics
at Newton Institute, Cambridge, and Centre de
Recerca Matemàtica, Barcelona. In addition, he
holds many student awards, among them four
international first prizes in university mathematics
competitions.

VOLUME 8, 2020 121355

A. Brando et al.: Building Uncertainty Models on Top of Black-Box Predictive APIs

JOSE A. RODRÍGUEZ-SERRANO received the
Ph.D. degree in computer vision from the Uni-
versitat Autonoma de Barcelona. Since 2015, he
has been a Senior Data Scientist with BBVA Data
and Analytics. He has 12 years of research experi-
ence, mostly in industry. He has authored top-tier
journal and A* conference papers. He holds over
20 patents.

JORDI VITRIÀ received the Ph.D. degree, in 1990.
He has directed 12 Ph.D. theses in the area of
machine learning and computer vision.

He was a Researcher with the Computer Vision
Center, Universitat Autònoma de Barcelona. Since
1990, he has been the Director of the Laboratory
of Electrotechnical Materials, PUB. From 1990 to
2007, he was an Associate Professor with the Uni-
versitat Autònoma de Barcelona. From 1995 to
1999, hewas theDirector of the Electromechanical

Energy Conversion Equipment Research Center. Since 2007, he has been
the Vice Dean of the Faculty of Electrical Engineering, PUB. He joined
the Department of Mathematics and Computer Science, Universitat de
Barcelona, in 2007, where he is currently a Professor of algorithmics and
data science and the Head of the Research Laboratory on Deep Learning and
Applications. Since 2007, he has been a Professor of computer science with
the Universitat de Barcelona. He is currently a Professor with the Department
of Electrical Machines and Materials, PUB. He has authored more than
100 peer-reviewed articles. He holds eight international patents. He has
published more than 200 scientific articles and books in the field of materials
for electrical engineering and insulation systems. His research interests
include agingmechanisms of electrical insulation, insulation systems testing,
polymers breakdown, electrical and water treeing, and electrical materials
(dielectrics and composites). He is a member of CIGRE and an Observer of
CIGRE D2 SC.

121356 VOLUME 8, 2020

	INTRODUCTION
	RELATED WORK
	PROBLEM STATEMENT
	DEFINITION OF BLACK BOX
	INPUTS TO B
	OUTPUT OF B
	THE BLACK-BOX B

	UNCERTAINTY SCORES OF BLACK-BOXES
	A NON-BAYESIAN APPROACH

	METHOD
	PROBABILITY DISTRIBUTION FITTING
	LIKELIHOOD ESTIMATION OF RESIDUALS
	QUANTILE REGRESSION

	BASELINES UNDER EVALUATION
	NEAREST NEIGHBOUR DISTANCE
	NEAREST NEIGHBOUR REGRESSION
	GAUSSIAN PROCESSES
	STANDARD DEVIATION OF z

	EXPERIMENTAL SETTINGS
	DATA SETS
	FORECASTING BANK CUSTOMERS' IMPENDING FINANCIAL EXPENSES AND INCOMES
	ESTIMATING ELECTRICAL POWER DEMAND
	PREDICTING A BIOLOGICAL RESPONSE CHALLENGE

	BLACK BOXES USED FOR EVALUATION
	DEEP LEARNING SPECIFICATIONS
	HYPERPARAMETER POLICY OF

	RESULTS
	DOES THE UNCERTAINTY WRAPPER PREDICT THE CONFIDENCE?
	ERROR-KEEP CURVE
	EXHAUSTIVE QUANTITATIVE EVALUATION

	WHICH IS THE BEST UNCERTAINTY WRAPPER?
	FINE-GRAINED ANALYSIS OF ORDERINGS
	DISCRETIZATION IN LEVELS OF CONFIDENCE
	CHECKING THE CONVERGENCE OF
	DISTRIBUTION OF ERRORS REVIEW
	HOW TO BUILD THE DISTRIBUTION PLOT
	ANALYSIS OF THE DISTRIBUTION RESULTS

	CONCLUSIONS
	REFERENCES
	Biographies
	AXEL BRANDO
	DAMIÀ TORRES
	JOSE A. RODRÍGUEZ-SERRANO
	JORDI VITRIÀ

