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ABSTRACT
Obesity has reached epidemic proportions, leading to severe associated pathologies such as insulin
resistance, cardiovascular disease, cancer and type 2 diabetes. Adipose tissue has become crucial
due to its involvement in the pathogenesis of obesity-induced insulin resistance, and traditionally
white adipose tissue has captured the most attention. However in the last decade the presence and
activity of heat-generating brown adipose tissue (BAT) in adult humans has been rediscovered. BAT
decreases with age and in obese and diabetic patients. It has thus attracted strong scientific
interest, and any strategy to increase its mass or activity might lead to new therapeutic approaches
to obesity and associated metabolic diseases. In this review we highlight the mechanisms of fatty
acid uptake, trafficking and oxidation in brown fat thermogenesis. We focus on BAT’s morphological
and functional characteristics and fatty acid synthesis, storage, oxidation and use as a source of
energy.
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Introduction

Importance of adipose tissue in obesity

Current life styles and continuous nutrient excess are
increasing the incidence of obesity at an alarming rate,
especially at younger ages. Worldwide there are more
than 600 million obese subjects and, importantly, most
of the world’s population live in countries where over-
weight and obesity kills more people than underweight.1

Very worrisome are the concurrent and parallel
increases in the prevalence of pathologic conditions
associated with obesity such as insulin resistance, car-
diovascular and Alzheimer disease, cancer, and type 2
diabetes.

Over the last 2 decades the obesity epidemic has put a
spotlight on the adipose tissue as a key player in the mech-
anisms involved in obesity-related disorders. Human fat
consists of energy-storing white adipose tissue (WAT) and
brown adipose tissue (BAT), which controls thermogenesis
by dissipating energy to produce heat. In addition to adi-
pocytes, adipose tissue is well vascularized and contains
connective tissue and numerous immune cells such as
macrophages, T and B cells, mast cells and neutrophils.2 It
has been demonstrated that obesity-induced insulin resis-
tance is due to several factors: ectopic fat deposition,3

increased inflammation and endoplasmic reticulum
(ER) stress,4,5 adipose tissue hypoxia and mitochondrial
dysfunction,6,7 and impaired adipocyte expansion and
angiogenesis.8-10 Fat is also an active endocrine tissue that
secretes hormones such as leptin, adiponectin or resistin
and inflammatory cytokines such as tumor necrosis factor
a (TNFa), interleukin (IL)-6, IL-1b, etc. in response to
several stimuli. Adipose tissue is therefore a complex and
active organ controlling very important metabolic path-
ways such as energy expenditure, appetite, insulin sensitiv-
ity, endocrine and reproductive functions, inflammation
and immunity.

Rediscovery of human active BAT

The fusion of positron-emission tomography (PET) and
computed tomography (CT) images has allowed radiol-
ogists to retrieve both functional and structural infor-
mation from a single image. In the course of using
PET-CT to detect and stage tumors in humans, active
BAT that increased after cold exposure was rediscov-
ered.11,12 Until that moment BAT was considered exclu-
sive to rodents and human neonates. However, the
breakthrough came in 2009, when 5 independent
research groups used PET-CT to identify the presence
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and relevance of BAT in adult humans.13-17 All showed
major depots of metabolically active fat in the cervical-
supravicular region. Furthermore, these depots
expressed type 2 iodothyronine deiodinase (DIO2), the
b3-adrenergic receptor, and the brown adipocyte-
specific protein, uncoupling protein 1 (UCP1), which
physiologically uncouples ATP production from mito-
chondrial respiration, thereby dissipating energy as
heat.18 The expression of these proteins indicated the
potential responsiveness of human BAT to both hor-
monal and pharmacological stimuli. Here, we review
the possibility that BAT could be induced to enhance
its lipid-burning function even further and thus be an
effective target to fight against obesity and associated
metabolic disorders.

Brown adipose tissue characteristics

BAT localization and morphology

Our knowledge of BAT has been significantly influenced
by studies in rodent models. There, BAT is situated at the
interscapular, cervical, mediastinal and retroperitoneal
regions.19 While in infants BAT is mainly found in the
interscapular area, in adult humans BAT is localized in a
region extending from the anterior neck to the thorax.20

In contrast to white adipocytes, which are unilocular,
with polygonal morphology that optimizes their fat stor-
ing capacity, brown adipocytes are multiloculate and
their color is due to their high mitochondrion content
and vascular suply.21 BAT thermogenesis takes place in
its numerous, densely-packed mitochondria containing
the BAT-specific inner membrane protein UCP1. Multi-
locular lipid stores provide a rapid source of fatty acids
(FAs) for activated mitochondria. FAs released into the
circulation by the WAT are also an important source of
FAs for brown adipocytes. Thermogenesis is classified
into: 1) Obligatory thermogenesis, which takes into
account the standard metabolic rate (energy used for
basic function of cells and organs) and the heat gener-
ated during food metabolism (digestion, absorption,
processing and storing of energy); and 2) Adaptive ther-
mogenesis or heat production in response to environ-
mental temperature and diet. Adaptive thermogenesis
can be further divided into: cold-induced shivering ther-
mogenesis, which takes place in skeletal muscle; cold-
induced non-shivering thermogenesis, which takes place
mainly in brown fat; and diet-induced thermogenesis
triggered by overfeeding, which also takes place in
BAT.22 Thus, BAT generates heat, with 2 main conse-
quences: protection against cold exposure via non-shiver-
ing thermogenesis; and dissipation of the excess of
energy from food. Therefore, BAT can be considered as

an organ that burns off excess lipids, and further exami-
nation of this property may lead to the development of
novel strategies against diet-induced obesity.

Molecular BAT signature: beige and brown
adipocytes

Comprehensive research is being done to define the still
under debate cellular heterogeneity of human fat.23 At
least 2 types of thermogenic adipocyte exist in rodents
and humans: classical brown adipocytes and beige (also
called brite) adipocytes. They have both anatomical and
developmental differences. While brown adipocytes are
mainly located in the above-mentioned BAT depots,
beige adipocytes co-locate with white adipocytes in
WAT near vascular and neural innervation and appear
in response to certain stimuli, such as chronic cold expo-
sure or b3-adrenergic signaling. In adult humans the
ratio of brown to beige increases as one moves deeper
within the neck and back.20,24-27

BAT releases endocrine factors such as insulin-like
growth factor I (IGF-1), IL-6 or fibroblast growth factor
21 (FGF21).28 Brown adipocytes differ from white adipo-
cytes due to their high expression of DIO2, the lipolytic
regulator cell death-inducing DNA fragmentation factor-
a-like effector A (CIDEA), and the transcription co-regu-
lators PR domain-containing 16 (PRDM16) and peroxi-
some proliferator activated receptor gamma coactivator 1
a (PGC1a).29,30 Beige and brown adipocytes have over-
lapping but distinct gene expression patterns.31 Both
express the main thermogenic and mitochondrial genes,
including Ucp1. However, some surface markers such as
CD137, TBX1 and TMEM26 seem to be specific to
murine beige adipocytes24,27 while other genes, like Zic1
and Lhx8, appear to specifically mark classic brown adi-
pocytes.20,32 Basal UCP1 expression and uncoupled respi-
ration before hormonal stimulation are highest in brown
fat cells and lower in beige cells, the lowest being found
in white fat cells.27 However, stimulation with a b3-
adrenergic agonist elevates UCP1 expression in beige cells
to levels seen in brown fat cells (fold-change compared to
white cells).27,33 This suggests that beige cells have a
unique molecular signature with a dual role. They store
energy in the absence of thermogenic stimuli but initiate
heat production when appropriate signals are received.27

White-to-beige conversion of adipocytes is a potential
therapeutic approach to targeting obesity; however, the
signals involved in this process still remain unclear.

Brown adipocytes arise from mesenchymal precursor
cells common to the myogenic cell lineage and express
myogenic factor 5 (Myf5).34 Beige adipocytes derive
from precursor cells that differ from those in classical
BAT and are closer to the white adipocyte cell lineage.
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Thus, while brown adipocytes come from a Pax7C/
Myf5C lineage shared with skeletal muscle, white and
beige adipocytes derive from Pax7¡/Myf5¡ cells via dis-
tinct precursor cells. Beige adipocytes differentiate fol-
lowing activation by cold or other stimuli, and when the
cold challenge is ceased, they become inactive, taking on
the morphology of a white adipocyte.35 However, the cell
lineage and developmental origin of the adipose tissue is
not so simple. Individual brown and white fats contain a
mixture of adipocyte progenitor cells derived from
Myf5C and Myf5¡ lineages, with numbers varying
depending on the depot location. In fact, beige adipo-
cytes in the retroperitoneal WAT are Myf5C.36 For fur-
ther information about the developmental origin of
white, beige and brown adipocytes see other excellent
reviews.34,37,38

At least 2 mechanisms have been postulated to occur
during the browning process: transdifferentiation of
white into beige adipocytes vs. de novo brown adipogen-
esis. The transdifferentiation process is the conversion of
a differentiated somatic cell type into another one.39 The
transdifferentiation of white into beige adipocytes has
been reported in several studies.40-43 On the other hand,
Lee et al. have shown that b3-adrenergic stimulation
induces the proliferation and further differentiation of
precursors in WAT.44 Furthermore, Myf5C precursors
have also been reported to differentiate into white adipo-
cytes.36,45 Thus, whether the browning process arises
from transdifferentiation or de novo brown adipogenesis
is far from being fully understood. One could hypothe-
size that the 2 processes might take place simultaneously
and to a different extend depending on the adipose depot
or browning stimuli.

BAT activity in pathological conditions

Human studies showed that BAT was reduced in aging
and in obese and diabetic patients, indicating that BAT
participates in both cold-induced and diet-induced ther-
mogenesis.13 This significant discovery highlights that any
strategy able to increase the mass or activity of BAT could
potentially be a promising therapy for obese and diabetic
patients. In contrast, enhanced BAT activation has been
described as a negative effect on cancer cachexia.46 In this
study, mice with cachexia-inducing colorectal tumor
showed increased BAT activity despite thermoneutrality,
indicating that BAT activation may contribute to impaired
energy balance in cancer cachexia. Hibernoma is another
BAT pathological condition. A hibernoma is a benign
tumor of BAT that up to date has no clear explanation of
its cause. It is very rare in humans and it is successfully
treated by complete surgical excision.47,48 It has shown to

express UCP1 and thus potentially contribute to whole-
body energy balance.

Activators of thermogenesis

Despite some controversy, a large body of evidence indi-
cates that browning entails the enhancement of thermo-
genesis within WAT, i.e. increased expression and activity
of UCP1 in what are normally considered WAT depots.49

Several factors have been described to activate the brown-
ing of the adipose tissue such as irisin,50 natriuretic pepti-
des,51 bone morphogenetic protein 7 (BMP7)52 and
BMP8b,53 norepinephrine,54 meteorin-like,55 bile acids,56

adenosine,57 or FGF21.58 Interestingly, recent studies have
shown activation of human BAT by the b3-adrenergic
receptor agonist mirabegron.59 b3-adrenergic receptor is
expressed in humans on the surfaces of brown and white
adipocytes and urinary bladder. Cypess et al. administered
200 mg of oral mirabegron, currently approved to treat
overactive bladder, to healthy and young humans. Mirabe-
gron acutely stimulated human BAT thermogenesis and
increased resting metabolic rate. Further studies would be
needed to explore the specificity of mirabegron’s mecha-
nism of action, possible adverse effects such as tachycar-
dia, and the dose used, which was 4-fold higher than that
prescribed for overactive bladder.

Although a large number of browning agents have
been described (extensively reviewed elsewhere)60,61

some studies showed that browning was a secondary
consequence of enhanced heat loss, e.g. because of fur
disruption in rodents.49 The search for potential thera-
peutic browning agents to increase metabolism at ther-
moneutrality, to function through mechanisms other
than those affecting heat loss and to finally decrease obe-
sity should thus continue.

Fatty acid storage

FA synthesis, storage and metabolism are essential dur-
ing thermogenesis because they are required for UCP1
proton transport activity in BAT.62,63 Fundamentally,
brown adipocytes have 2 mechanisms to obtain lipids:
FA uptake via lipoproteins carriers and de novo FA syn-
thesis, also known as lipogenesis.

Fatty acid uptake

While brown adipocytes synthesize FAs, the enzyme
lipoprotein lipase (LPL), bound at the endothelial cell
surface, is the major source of FAs in BAT.64 After a
meal, dietary lipids are transported by chylomicrons and
very low density proteins (VLDL) via lymphatic vessels
into the bloodstream. Once triglyceride (TG) rich-
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lipoproteins reach the bloodstream, LPL hydrolyzes
them into free FAs (FFAs) and monoacylglycerol (MG)
for BAT uptake. Indeed, BAT is an efficient modulator
of triglyceridemia and it is contemplated as a major
plasma lipid-clearing organ in rodents.65-67 In fact, FA
uptake under cold exposure is higher in BAT than in
skeletal muscle.65 Under cold exposure, the b3-adrener-
gic pathway enhances BAT FA flux and clearance via
increased expression and activity of LPL.65 However, the
increase in LPL activity has also been shown to trigger
adiposity and insulin resistance.68 Adipocyte-specific
LPL KO animals show an increase in FAs derived from
lipogenesis and a decrease in polyunsaturated FAs,
accompanied by an increase in the expression of lipo-
genic genes.69 Glycosylphosphatidylinositol-anchored
high density lipoprotein binding protein 1 (GPIHBP1)
transports LPL across capillary endothelial cells, and
GPIHBP1 KO mice show mislocated LPL in many tis-
sues, including BAT,70 decreased TG content and defi-
cient lipolysis,71 Administration of PPARg agonists,
such as rosiglitazone, in rodents increases BAT TG clear-
ance and LPL activity, while lipogenesis is not increased.
This suggests that under rosiglitazone treatment brown
adipocytes metabolize FAs derived from TG hydrolyzed
from lipoproteins or recycled from lipolysis.72

Fatty acid transport

Once FAs are released by LPL, they are taken up into
cells by plasmatic membrane receptors and transported
for further utilization or storage.65,73-75 The most impor-
tant FA transporters in BAT are the following (Fig. 1):

Cluster of differentiation 36 (CD36)

This integral membrane protein is expressed in BAT
among other tissues.73 CD36 belongs to the class B scav-
enger receptor family of cell surface proteins, whose main
function is to translocate FAs, released by LPL activity,
across the plasmatic membrane and thus provide a sub-
strate for BAT thermogenesis.65 Under cold exposure,
CD36 expression and activity increase (Fig. 1).65 However,
CD36 is not a simple translocase; it is considered a lipid
sensor and a regulator of FA uptake and transport in adi-
pocytes.76-78 CD36 KO mice die after 24 hours of cold
exposure, which implicates CD36 in thermogenesis.65 In
addition, CD36 genetic variability has been associated
with body weight differences in humans.79

FA transport proteins (FATPs)

There are 6 isoforms of FATPs. FATP1 and 4 can
be found specifically in BAT (extensively reviewed

elsewhere).80 These proteins translocate FAs into
cells.81 They display very long-chain acyl-CoA synthe-
tase activity,64,82 and their overexpression increases FA
uptake.83

G-protein-coupled receptors (GPCRs)

GPCRs comprise a family of proteins that respond to
several ligands, and trigger a cascade of intracellular sig-
naling (extensively reviewed elsewhere).84 GPR41 (also
known as FFA3) and GPR120 are activated by medium
and long-chain FFA in BAT, and they are considered as
sensors that maintain cell lipid homeostasis.85 Interest-
ingly, GRP120 mRNA expression increases under cold
exposure (3).86

Fatty acid binding proteins (FABPs)

Once in the cytoplasm, FFAs are minimally soluble. To
prevent disruption of membrane or lipotoxicity, cells
have soluble proteins that bind FFAs and transport
them.87 Brown adipocytes harbour 3 different isoforms:
FABP3, FABP4 and FABP5.88 FABP4, commonly known
as adipocyte protein 2 (aP2), has been extensively used
as a marker of adipocyte differentiation.89 Although
FABP4 is the most abundantly expressed isoform in
BAT, only FABP3 and FABP5 are increased by cold
exposure in rats.88,90 Interestingly, FABP3 is overex-
pressed in mice with diet-induced obesity and in UCP1
KO mice, and it is associated with increased thermogene-
sis.91 Thus, FFAs bind to FABPs present in brown adipo-
cytes and are either stored or utilized to maintain
thermogenesis (Fig. 1).

Lipogenesis

De novo FA synthesis or lipogenesis is the metabolic
pathway that synthesizes FAs and ultimately induces TG
synthesis.92,93 Excellent studies on WAT report that glu-
cose uptake, a preliminary step in de novo FA synthesis,
is also involved in the regulation of lipogenesis.94,95

Whether BAT contributes to this process is still unclear.
A recent study examined the dynamics of de novo lipo-
genesis and lipolysis in classic brown, subcutaneous beige
and classic white adipose tissues during chronic b3-
adrenergic receptor stimulation.96 Sustained b3-adrener-
gic stimulation increased de novo lipogenesis, TG turn-
over, and the expression of genes involved in FA
synthesis and oxidation similarly in all adipose depots
indicating that FA synthesis and FAO are tightly coupled
during chronic b3-adrenergic stimulation.

Lipogenesis takes place in the cytosol and it can be
summarized in 3 steps: synthesis of FAs from acetyl-CoA,
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elongation and desaturation. Lipogenesis begins with the
carboxylation of acetyl-CoA to malonyl-CoA, the commit-
ted step catalyzed by acetyl-CoA carboxylase (ACC),
which requires biotin cofactor.97,98 Finally, FA synthetase
(FAS), a multifunctional cytosolic protein, catalyzes differ-
ent reactions to form palmitate, a 16-carbon saturated
FA.93 It has been shown that adipose-specific FAS KO
mice have increased energy expenditure, which comes
from the browning of subcutaneous WAT.99

In the second phase of lipogenesis, FAs derived from
the FAS enzymatic reaction, are elongated by mem-
brane-bound enzymes mostly localized in the ER.93 This
process is induced by the elongation of very long chain
FA (ELOVL) proteins, which have 7 members in mice
and humans.100 Among them, Elovl3 is expressed in
BAT,101 and its expression and activity are upregulated
under cold conditions to re-establish the intracellular
pool of TG and preserve lipid homeostasis.102-104

ELOVL3 KO mice are resistant to diet-induced obesity,
showing an increase in energy expenditure.104

The final phase of lipogenesis is the desaturation of
FAs. This process is catalyzed by desaturases, such as
stearoyl-CoA desaturases (SCDs), which introduce dou-
ble bonds at a specific position in a FA chain.93,97 SCD1
is the predominant isoform in adipose tissue and liver,
and its downregulation in liver prevents diet-induced
obesity.105,106 SCD1 KO mice show an increase in glu-
cose uptake and glycogen metabolism, higher energy
expenditure and basal thermogenesis in BAT.107

Once FAs have been synthesized they can be esterified
to be used for fatty acid oxidation (FAO) or stored as TG
in lipid droplets. In BAT, the proper levels of TG are
associated with thermogenic activity.108 Since TG are
composed of molecules of glycerol and 3 esterified FAs,
TG synthesis depends on intracellular levels of glycerol-
3-phosphate (G3P), the activated form of glycerol and

Figure 1. FA uptake and lipogenesis in brown adipocytes. Schematic representation of FA uptake, transport, synthesis and storage in
brown adipocytes, which provide substrate to mitochondria for thermogenesis. While brown adipocytes synthesize FAs, the enzyme
lipoprotein lipase (LPL) is the major source of FAs in BAT. Once triglyceride (TG) rich-lipoproteins reach the bloodstream, LPL hydrolyzes
them into FFAs for BAT uptake. FAs are sensed and taken up by FFAs 3 (FFA3) proteins, cluster of differentiation 36 (CD36) and/or FA
transport proteins (FATPs). Inside the cytoplasm, FAs are transported by FA binding proteins (FABP). On the other hand, FAs can be syn-
thesized by lipogenesis. This process takes place in the cytosol, and the first phase begins with the formation of malonyl-CoA from ace-
tyl-CoA by the action acetyl-CoA caboxylase (ACC). Then, FA synthetase (FAS) catalyzes various reactions to finally generate palmitate, a
16-carbon saturated FA. In BAT, the last phases of lipogenesis are carried out by very long chain FA 3 (ELOVL3) and stearoyl-CoA desatur-
ase 1 (SCD1). Once FAs are synthesized they can be esterified, becoming available for FAO or stored as TG in lipid droplets (LD). Blue
arrows indicate enhanced processes or expression of proteins after cold stimulation and b3-adrenergic receptor activation.
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first intermediary in TG synthesis. Thus, G3P levels are
preserved under rigorous control in brown adipocytes.66

It has been shown that rosiglitazone, a PPARg agonist,
increases BAT glycerolkinase activity, which phosphory-
lates glycerol generating G3P.67 Since G3P comes from
glucose, glucose metabolism plays a key role in BAT, as
an important glucose-clearing organ, specifically under
sympathetic activation.65 In fact, G3P is a major sub-
strate for BAT respiration.109

In conclusion, coordinated FA uptake, transport and
synthesis contribute to thermogenesis in BAT (Fig. 1).
For this reason, the maintenance of the intracellular pool
of TG to preserve lipid homeostasis in brown adipocytes
is so important.110,111 Indeed, any of these processes
might be a potential target in the treatment of obesity-
related disorders, such as insulin resistance and diabetes.

Fatty acid storage

Cells package the excess of intracellular lipids in a phylo-
genetically conserved organelle called lipid droplet, pre-
venting the lipotoxicity of lipids and cholesterol in the
cytoplasm.112,113 Lipid droplets are composed of a neu-
tral lipid core (cholesteryl ester and TGs) covered by a
phospholipid monolayer, which contains proteins that
regulate lipolysis. Among the lipid droplet membrane
proteins found in brown adipocytes we will highlight fat
storage-inducing transmembrane protein 2 (FITM2/
FIT2), CIDEA and fat-specific protein 27 (FSP27 or
CIDEC).

FITM2/FIT2 is strongly expressed in brown adipo-
cytes and it determines the number of new lipid droplets
formed in these cells.114 FIT2 KO mice show few but
larger lipid droplets in interscapular BAT without
changes in cellular TG levels.115 Thus, FIT2 is not essen-
tial for lipid droplet formation but it is required for nor-
mal storage of TG in vivo.

CIDEA is one of the 3 members of cell death-induc-
ing DFF45-like effector (CIDE) family of proteins, which
has emerged as an important regulator for various
aspects of metabolism.116 CIDEA is highly expressed in
lipid droplet membranes and mitochondria of brown
adipocytes. It is involved in the browning phenomenon
and it is considered as a BAT differentiation
marker.117,118 CIDEA plays an inhibitory role during
thermogenesis because it negatively modulates the activ-
ity of UCP1, being the first protein known to interact
directly with an uncoupler protein.119-121 Moreover,
CIDEA mRNA and protein are down-regulated after
cold exposure121 and CIDEA-null mice are resistant to
diet-induced obesity.118

FSP27 also belongs to the CIDE family, and it is over-
expressed during adipogenesis in BAT. It has been

proposed as a novel lipid droplet protein that promotes
TG storage and inhibits lipolysis, playing a key role in
body energy homeostasis.122,123 FSP27 interacts directly
with another lipid droplet protein, perilipin 1, which is
involved in lipolysis by indirect activation of the adipose
triglyceride lipase (ATGL) at the lipid droplet surface.123

Furthermore, FSP27 KO mice have larger lipid droplets
and higher TG serum levels.124

Thus, the above-mentioned proteins involved in FA
storage contribute to the multilocular phenotype of
brown adipocytes. Lipid droplets prevent lipotoxicity
and provide FAs as substrates for mitochondrial thermo-
genesis. Therefore, the regulation and function of these
proteins might be a target for enhancing BAT activity.

Fatty acids as a source of energy

Lipolysis

Intracellular lipolysis is the catabolic process that allows
cells to obtain FAs and glycerol from the breakdown of
TG stored in lipid droplets. Cells use these FAs and glyc-
erol endogenously in times of metabolic need with the
exception of WAT, which can also export them to circu-
lation so they can reach other tissues in fasting or exer-
cise periods.125 In BAT, lipolysis is vital to its main
physiological function, the cold response. To raise body
temperature BAT dissipates energy as heat and mobilizes
FAs from the breakdown of TGs stored in lipid droplets
to mitochondria for thermogenesis.108 Lipolysis can be
classified in 2 types depending on the pH-optimum of
action of the enzymes involved. Accordingly, there is
neutral lipolysis, which relies on 3 key enzymes that
work at a pH-optimum of 7, and acid lipolysis that
depends on lysosomal degradation of TG by acidic
lipases. Next we will focus on neutral lipolysis.

Neutral lipolysis

Neutral lipolysis takes place in the cytosol and it is the
result of the action of 3 consecutive lipases that hydro-
lyze each ester bond of TG to obtain 3 FAs and glycerol.
The 3 major lipases are ATGL, hormone sensitive lipase
(HSL) and monoacylglycerol lipase (MGL).

ATGL/Desnutrin/calcium-independent phospholi-
pase A2 z (iPLA2z) was discovered in 2004 by 3 inde-
pendent laboratories.126-128 It is strongly expressed in
both WAT and BAT and performs the first step of TG
lipolysis, the hydrolysis of TG into diacylglycerides (DG)
and FAs (Fig. 2).129 It exhibits high substrate specificity
for TG and it is associated with lipid droplets.126 ATGL
regulation is complex and mRNA or protein levels of the
enzyme do not always correlate with enzyme activity.
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This happens because ATGL has strong post transla-
tional regulation that often requires accessory pro-
teins.130 CGI-58 (Comparative gene identification-58) is
a coactivator of ATGL that is necessary for full hydrolase
activity.131 On the other hand, G0S2 (G0/G1 switch gene
2) inactivates ATGL.132 ATGL deficient mice accumulate
TGs in all organs and have enlarged fat depots, especially
BAT, which also displays defective thermogenesis.133

Moreover, aP2-ATGL overexpressing mice display
increased lipolysis and FAO in WAT and increased ther-
mogenesis, resulting in higher energy expenditure and
resistance to obesity.134 Microarrays from ATGL KO
BAT indicate a decrease in mRNA expression of genes
involved in FAO and down-regulation of PPARa target
genes.135,136 In addition, a study using ATGL knock
down brown adipocytes demonstrated that ATGL is
required for the maximal induction of genes involved in

FAO and mitochondrial electron transport.137 All
together, these results point to the crucial role of lipolysis
and its first step, TG hydrolysis by ATGL, in
thermogenesis.

HSL performs the second step in TG lipolysis, hydro-
lyzing DG into MG and FAs (Fig. 2).138 Similarly to
ATGL, HSL mRNA and protein expression are highest
in WAT and BAT.139,140 Although DG are its preferred
substrate, HSL can also hydrolyze TG, cholesterol esters,
MGs and retinyl esters.141 Before ATGL was known,
HSL was believed to be the rate-limiting enzyme for TG
hydrolysis. However, HSL-/- mice efficiently hydrolyze
TG and accumulate large amounts of DG, indicating
that, in vivo, HSL has a more important role as a DG
than as a TG hydrolase.142 Activation of HSL occurs in 2
steps: protein phosphorylation and binding to perili-
pins.143 HSL has 5 putative phosphorylation sites and

Figure 2. Neutral lipolysis players and regulation in BAT. Neutral lipolysis allows cells to obtain 3 free fatty acids (FFAs) and glycerol from
the hydrolysis of triglycerides (TG). Three enzymes control this process: adipose triglyceride lipase (ATGL), which hydrolyzes TG into diac-
ylglycerol (DG), hormone sensitive lipase (HSL), which has high affinity for DG and converts them into monoacylglycerols (MG) and
monoacylglycerol lipase (MGL), which finalizes the hydrolysis of MG into glycerol and FFA that are used as a fuel for thermogenesis. In
basal state ATGL is inhibited by G0/G1 switch gene 2 (G0S2) and ATGL co-activator comparative gene identification-58 (CGI-58) is kid-
napped by perilipin. In addition, HSL is located in the cytosol and thus unable to reach its substrates. Upon b3-adrenergic stimulation,
adenyl cyclase (AC) increases cAMP levels that activate protein kinase A (PKA), which phosphorylates HSL promoting its translocation to
the membrane of lipid droplets (LD). PKA also phosphorylates perilipin, which releases CGI-58 that can then fully activate ATGL. Phos-
phorylated perilipin also enhances HSL activity. On the other hand, insulin stimulation, through protein kinase B (PKB) activates phos-
phodiesterase 3B (PDE3B) which converts cAMP into AMP decreasing PKA activation and its lipolytic action. Figure insert: mouse
models of the enzymes involved in neutral lipolysis. ATGL KO mice accumulate TGs and have enlarged BAT, which displays defective
thermogenesis.133 aP2-ATGL overexpressing mice show a reduction in TGs and increased thermogenesis.134 HSL KO mice accumulate
TGs and specially large amounts of DG leading to an enlarged BAT.142
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one of the most widely studied kinases that regulate its
activity is cAMP-dependent Protein Kinase (PKA).
Other kinases include AMPK, extracellular signal-regu-
lated kinase (ERK), glycogen synthase kinase-4 and
Ca2C/calmoduline dependent kinase II.130

Glucagon, adrenaline or b3-adrenergic agonist stimu-
lation, through adenyl cyclase (AC) activation increases
cyclic AMP (cAMP) levels within the cell. This activates
PKA that in turn phosphorylates HSL on serines 659
and 660, promoting its translocation from the cytoplasm
to lipid droplets, where it acts on its substrates
(Fig. 2).144 Perilipins have an important role mediating
this translocation, and PKA-mediated phosphorylation
of perilipin is necessary for HSL translocation to lipid
droplets and full induction of HSL activity. On the other
hand, insulin activates cAMP phosphodiesterase, pro-
moting cAMP hydrolysis, lowering PKA activity, HSL
activation and lipolysis.144 Mice lacking HSL display nor-
mal thermogenesis145 and are not cold sensitive despite a
lipolytic defect that results in brown adipocyte hypertro-
phy due to TG and DG accumulation. Apparently, dur-
ing HSL deficiency sufficient amounts of FAs that are
not HSL-dependent are mobilized for mitochondrial
heat production. Later work on HSL null mice estab-
lished that HSL KO mice are resistant to high-fat diet
(HFD) effects due to an increase in energy expendi-
ture.146 This was linked to increased UCP1 and carnitine
palmitoyltransferase (CPT) 1 expression levels in white
adipocytes as well as an increase in white adipocyte mito-
chondrial size (see section 4.2.1 for more information).
White adipocytes had increased basal O2 consumption
and increased uncoupling. In addition, HSL is required
to sustain normal expression levels of retinoblastoma
protein (pRb) and receptor interacting protein 140
(RIP140), which both promote differentiation into the
white, rather than the brown, adipocyte lineage. Thus,
HSL may be involved in the determination of white ver-
sus brown adipocytes during adipocyte differentiation.146

MGL specifically hydrolyzes MG derived from intra-
cellular and extracellular TG hydrolysis and phospho-
lipid hydrolysis into FAs and glycerol, culminating the
lipolysis process (Fig. 2). It is ubiquitously expressed in
tissues and localizes in cell membrane, cytoplasm and
lipid droplets.147 MGL has been implicated in the degra-
dation of the bioactive MG 2-arachidonoyl glycerol,
which is a potent endogenous agonist of cannabinoid
receptors.148

Upon lipolysis stimulation the most important mech-
anisms regulating lipolysis are: 1) Activation of ATGL by
CGI-58; and 2) PKA-mediated phosphorylation of HSL
and perilipin 1 (Fig. 2). In basal state, CGI-58 is bound
and kidnaped by perilipin 1, and thus unable to activate
ATGL. In addition, HSL is located in the cytosol far

from its substrates. Upon hormonal stimulation, PKA
phosphorylates HSL, promoting its translocation to the
lipid droplet surface, where it hydrolyzes its sub-
strates.149,150 In addition, PKA phosphorylates perilipin
1, liberating CGI-58, which is then available to bind and
activate ATGL.151

The final result of lipolysis is the provision of energy
to the cell in the form of FFAs and glycerol. Elevated
levels of FFAs can be toxic for cells.8 Brown adipocytes
can prevent this lipotoxicity by matching this incre-
ment in FFAs with an increase in oxidative capacity.
b3-adrenergic stimulation triggers lipase activation,
resulting in a rise of lipolytic products that act as
ligands of PPARa and PPARd. PPAR activation pro-
motes expression of oxidative genes such as UCP1 or
PGC1a and as a result expands the oxidative capacity
to match FA supply.137 These findings highlight the
importance of coupling lipolysis with increased oxida-
tive capacity, which ultimately depends on the uptake
of FAs to the mitochondria for FAO by carnitine
acyltransferases.

Fatty acid oxidation

Consistent with its physiological role, BAT presents
one of the highest FAO rates in the body.152 Most of
the oxidation of longchain fatty acids (LCFAs) to ace-
tyl-CoA takes place in the mitochondrial matrix,
although peroxisomal FAO has also been implicated
in thermogenesis.

Mitochondrial fatty acid oxidation
Traditionally, research on the regulation of BAT thermo-
genesis has focused on the central role of UCP1 in maxi-
mizing rates of proton leak and heat production. In fact,
FAs and HFD activate UCP1 and diet-induced thermo-
genesis.153-155 However, studies by Yu et al.156 support
the hypothesis that additional systems and genes cooper-
ate in the thermogenic system. These authors demon-
strated that cold induces simultaneous FA synthesis and
FAO in murine BAT. Similar conclusions were obtained
by Mottillo et al.96 In addition, it has recently been
reported in primary brown adipocyte culture that intra-
cellular FA levels are critical for thermogenesis157 and
that in rodents maximal BAT thermogenesis relies on
the levels of LCFA pool, which activates entry to the
mitochondria.158 Acyl-CoA synthetase-1 (ACSL) medi-
ates the conversion of FAs to acyl-CoA and specifically
directs them toward mitochondrial FAO via the CPT1
system (Fig. 3). Experiments with ACSL KO mice
showed that ACSL is required for cold thermogenesis.159

The CPT system permits the entry of LCFAs into the
mitochondrial matrix, where they can undergo FAO.
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The first component of the system, CPT1 is located on
the mitochondrial outer membrane (Fig. 3). This enzyme
catalyzes the trans esterification of a fatty acyl group
from CoA to carnitine, which is considered the rate-lim-
iting step in the regulation of mitochondrial FAO of
FAs.160,161 Acylcarnitines are shuttled to the mitochon-
drial matrix by the transporter carnitine/acylcarnitine
translocase (CACT). Once inside the mitochondria, acyl-
carnitines are converted to acyl-CoA by CPT2, located in
the inner mitochondrial membrane, and can thus enter
the FAO cycle. There are 3 isoforms of CPT1, denoted
CPT1A,162,163 CPT1B164 and CPT1C.165 They differ in
their sequence, tissue distribution, intracellular location,
kinetics and malonyl-CoA sensitivity. CPT1B is strongly
expressed in BAT, skeletal muscle, heart, testis and, in
some species, in WAT (human, rat and hamster)108,166

while CPT1A is predominant in other tissues such as
liver, kidney, lung, ovary, spleen, brain, intestine, mouse
WAT and pancreas. CPT1C appears to be expressed
exclusively in the neurons and testis. While CPT1A and
B are located on the mitochondrial outer membrane and
both isoforms are involved in the regulation of the flux

of FAs into the mitochondria, CPT1C has been found on
the ER membrane167 and its function seems to be related
with ceramide metabolism rather than FAO.168,169

CPT1A and B isoforms have high sequence similarity
but show important kinetic differences. In particular,
they differ in their affinities for the substrate carnitine
and their physiological inhibitor malonyl-CoA,170 which
is synthesized from acetyl-CoA by ACC and is degraded
by malonyl-CoA decarboxylase.171 CPT1B has higher
affinity for the inhibitor malonyl-CoA and lower affinity
for carnitine than CPT1A.172,173 Doh et al.152 examined
the relation between the long-chain FAO rate and the
CPT1A and CPT1B activity in different tissues. They
found that all the tissues containing CPT1B showed a
strong positive correlation between palmitate oxidation
rate and the CPT1 activity and, among the tissues with
CPT1B (heart, red and white gastrocnemius and BAT),
BAT showed the highest palmitate oxidation and CPT1
activity. In addition, mice lacking CPT1B die during
cold-exposure as a result of their inability to perform
thermogenesis.174 These observations indicate that
CPT1B may play an important role in enhancing BAT

Figure 3. Mitochondrial and peroxisomal fatty acid oxidation. Transport of long-chain fatty acids (LCFAs) from the cytosol to the mito-
chondrial matrix for FAO involves the activation to acyl-CoA by acyl-CoA synthetase-1 (ACSL), conversion of LCFA-CoA to LCFA-carnitines
by carnitine palmitoyltransferase (CPT) 1, translocation across the inner mitochondrial membrane by the carnitine/acylcarnitine translo-
case (CACT) and reconversion to LCFA-CoA by CPT2. These acyl-CoAs are b-oxidized and render acetyl-CoA. The entry of acetyl-CoA to
the tricarboxylic acid cycle generates NADH and FADH. These cofactors transfer the electrons to the electron transport chain, where the
protons are transported to the mitochondrial intermembrane space to generate energy as ATP. UCP1 dissipates the proton gradient,
releasing energy as heat. Very long chain fatty acids (VLFA) enter the peroxisome to be shortened by peroxisomal FAO. Shortened acyl-
CoAs and acetyl-CoA are transported to the mitochondria to be completely oxidized.
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thermogenesis. Indeed, inhibitors of CPT1 also inhibit
mitochondrial respiration driven by LCFA in murine
BAT.158 Interestingly, BAT of diabetic rats showed
decreased CPT1 activity and FAO.175 Further, a recent
study in adipose CPT2 KO mice demonstrated that FAO
is required for both acute cold adaptation and the induc-
tion of thermogenic genes in BAT.176 Taking into
account the effect that this and other mitochondrial
FAO alterations177 produce in thermogenesis and cold
intolerance, it could be an appealing strategy to enhance
FAO in BAT mitochondria to increase energy expendi-
ture and fight against obesity-induced metabolic disor-
ders. Studies enhancing FAO by CPT1 overexpression in
the context of obesity have shown a decrease in TG con-
tent and an improvement in insulin sensitivity.178-188

These results indicate that activation of FAO may pro-
vide the basis for the development of novel treatment
options for obesity.189

Peroxisomal fatty acid oxidation
Oxidation of very long chain FAs preferentially occurs in
peroxisomes rather than in mitochondria (Fig. 3).190

However, FAO in peroxisomes is not carried to comple-
tion. Since peroxisomes, unlike mitochondria, lack a cit-
ric-acid cycle and respiratory chain, shorter FAs can be
shuttled to the mitochondria to be oxidized. During cold
exposure peroxisomal FAO is also activated in BAT.191

Furthermore, catalase protein, a marker of the quantity of
peroxisomes, is dramatically increased in rat BAT under
cold exposure.192 However, the contribution of peroxi-
somal FAO to thermogenesis is not well established. Ace-
tyl-CoAs produced by peroxisomal FAO may enter the
mitochondria to fuel UCP1-mediated thermogenesis.
Alternatively, a recent review by Lodhi et al.193 suggests
that peroxisomal FAO may contribute to adaptive ther-
mogenesis independently of UCP1 by the generation of
heat instead of ATP. Peroxisomes do not have a respira-
tory chain and the electrons from FADH2, obtained in the
first step of peroxisomal FAO, are transferred by the flavo-
protein acyl-CoA oxidase directly to O2 producing H2O2,
and energy is released as heat.

In summary, mitochondrial and peroxisomal FAO are
necessary for thermogenesis in BAT, and enhancing
these catabolic processes is an unexplored strategy in our
fight against the current obesity epidemic.

Future directions: BAT fat-burning power as a
potential therapy against obesity

Despite the considerable current effort made worldwide,
the prevalence of obesity and associated metabolic dis-
eases is rising exponentially, jointly with their healthcare
costs. The first line therapy is based on behavioral

modifications, including healthy eating and exercise.
However, this meets limited success when it comes to
long-term maintenance of weight loss. Bariatric surgery
achieves a sustained weight loss over the years, but its
cost and associated dangers reduce its clinical indication
to morbidly obese patients.194 Moreover, the endocrine
effects of bariatric surgery seem to be more important
than the mechanically induced food restriction, which
has led many researchers to assess obesity treatments
based on the endocrine modifications derived from it.195

Interestingly, bariatric surgery also leads to alterations in
the microbiome.196

Even though the list of potential anti-obesity drugs is
increasing, the approval of new anti-obesity drugs has
met relatively limited success. This is due to the history
of withdrawals of anti-obesity drugs from the market
due to serious adverse effects (i.e., dinitrophenol, fenflur-
amine, dexfenfluramine, phenylpropanolamine, sibutr-
amine and rimonabant).197,198 This has led US Food and
Drug Administration (FDA) and European Medicines
Agency (EMA) to make it harder for pharmaceutical cor-
porations to market new anti-obesity drugs, especially in
the case of the European regulator.199 Today, the lipase
inhibitor orlistat is approved by both FDA and EMA but
it has shown limited long-term effectiveness.200 In the
US, the serotonergic lorcaserin is also approved,201,202

but its European marketing authorization application
has been withdrawn because of the lack of evidence
regarding safety in tumorogenesis in long-term use.203

Liraglutide, a previously approved antidiabetic drug,
has recently been approved by both regulators for an
anti-obesity indication.204,205 Nonetheless, the fixed-dose
combination of bupropion/naltrexone, which is
described to act in the central nervous system (CNS) by
increasing POMC neuron activity, has obtained market-
ing approval as an anti-obesity drug by the FDA,206 but
the EMA seems to be much more conservative regarding
the approval of weight-management drug with effect on
the CNS.207

The mechanisms of action of obesity-management
drugs are classified into 3 groups:208 1) centrally acting
medications impairing dietary intake (including bupro-
pion/naltrexone and lorcaserin); 2) medications that act
peripherally to impair dietary absorption (e.g., orlistat);
and 3) medications that increase energy expenditure,
whose effect is mediated by CNS. We propose that the
increase in energy expenditure is a promising way to
manage obesity, but only if this could be achieved via a
direct effect on peripheral tissues without involving the
CNS. Thus, some of the collateral effects, which caused
other drugs to be withdrawn, would be overcome. Here
we highlight an increase in FAO as a potential approach
to enhance energy expenditure in peripheral tissues.
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Several studies enhancing FAO by CPT1 overexpression
in the context of obesity have shown an improved meta-
bolic phenotype.178-187 Thus, an increasing body of evi-
dence highlights FAO activation as a potential target to
develop novel anti-obesity strategies.

The pathogenesis of obesity is multifactorial and com-
plex. However, the rediscovery of active BAT in adult
humans and its relevance in metabolism has put a spot-
light on this tissue as a potential target for therapies
against obesity and metabolic diseases. A large number
of activators of thermogenesis are increasingly being
identified. This year, the b3-adrenergic receptor agonist
mirabegron, the first compound able to stimulate human
BAT thermogenesis and to increase resting metabolic
rate, has been described.59 Although further studies are
needed to explore the specificity of its mechanism of
action and potential adverse effects, mirabegron provides
the first evidence of human BAT thermogenesis
stimulation.

As a controller of thermogenesis BAT is a good mod-
ulator of triglyceridemia, an important consumer of glu-
cose and the major plasma lipid-clearing organ in rodents.
Furthermore, diabetes has been shown to decrease CPT1
activity and FAO in rat BAT.175 Thus, strategies designed
to enhance the fat-burning power of BAT and to increase
lipid mobilization and oxidation could be very useful in
the treatment of obesity and associated pathologies. Tradi-
tionally, most research has focused on the activation of
BAT thermogenesis through UCP1. However, recent stud-
ies have shown that cold stimulates both FA synthesis and
FAO in murine BAT.96,156 Moreover, BAT peroxisomal
FAO may generate heat independently of UCP1.193 BAT
transplantation is another strategy proving BAT’s lipid-
burning capacity in obesity. BAT transplantation to HFD-
induced obese mice has shown a beneficial effect improv-
ing whole-body energy metabolism by increasing FAO-
related genes such as PPARa, PGC1a, CPT1B and UCP1
in endogenous BAT.209 Although the present review is
focused on obesity, it is noteworthy to mention the role of
BAT in atherosclerosis. Data showing both a positive and
negative effect of BAT activation in the development of
atherosclerosis have been reported.210,211 On the one
hand, Dong et al.210 showed that sustained cold exposure
accelerated the atherosclerotic plaque development by
increasing plasma levels of small low-density lipoproteins
(LDL) in apolipoprotein E (ApoE) and LDL receptor
(LDLr) deficient atherosclerosis mouse models. On the
other hand, Berbee et al.211 reported that APOE*3-Leiden.
CETP mice (a model for human-like lipoprotein metabo-
lism) treated withWestern diet, to induce hyperlipidaemia
and atherosclerosis, plus CL316243 (a b3-adrenergic
receptor agonist) had fewer atherosclerotic lesions. In this
case BAT activation lead to enhanced uptake of FAs from

TG-rich lipoproteins into BAT and increased hepatic
clearance of cholesterol-enriched remnants and lower
plasma cholesterol levels. The apparent opposite effects
between the 2 studies could be explained by the different
mouse model used. ApoE and LDL receptor are essential
for hepatic clearance of TG-rich lipoprotein remnants.
Thus, this pathway is blocked in ApoE (-/-) or LDLr (-/-)
mice but not in APOE*3-Leiden.CETP mice. In fact, the
antiatherogenic effect seen by Berbee et al. was blunted in
ApoE (-/-) or LDLr (-/-) mice. Importantly, mice treated
with the b3-receptor agonist lost weight and had increased
FAO. This indicates that the beneficial effect of BAT acti-
vation on atherosclerosis could be the consequence of
decreased obesity and enhanced FAO shedding light into
FAO as a potential target to fight against obesity-induced
metabolic disorders such as atherosclerosis.

At least 3 questions still need to be answered before
increased BAT FAO can become an effective approach
for obesity therapy. First, it is not known whether FAO
enhancement might reach a limit in BAT, in which ther-
mogenesis is tightly adjusted to the environmental tem-
perature. Second, since increasing flux through FAO
would only make sense together with a corresponding
enhancement of energy demand,212 the physiological rel-
evance of this strategy might be questioned if the individ-
ual is at thermoneutrality. Third, secondary effects of
BAT pharmacological activation may include excessive
body temperature or increased food intake as a compen-
satory effect to re-establish energy balance. Increased
BAT FAO may augment mitochondrial burning capacity
through an increase in the number of mitochondria and/
or the increased expression of UCPs, and thus dissipate
the excess of energy as heat and ATP. These could well
alleviate the mitochondrial pressure found in lipid over-
load states.

In summary, an increase in FAO and BAT mass and/
or activity could indeed be one of the underlying protec-
tive mechanisms against obesity-induced metabolic
abnormalities. Although more research is needed, we
strongly believe that enhancing BAT thermogenic power
through increased FAO may be available in the near
future as a therapy to treat obesity and its associated
severe diseases.
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AC adenyl cyclase
ACC acetyl-CoA carboxylase
AMPK AMP-dependent protein kinase
ATG autophagy-related protein
ATGL adipose triglyceride lipase
BAT brown adipose tissue
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BMP8b bone morphogenetic protein 8b
cAMP cyclic AMP
CIDEA cell death-inducing DNA fragmentation fac-

tor-a-like effector A
CGI-58 comparative gene identification-58
CNS central nervous system
CPT carnitine palmitoyltransferase
DG diacylglycerol
DIO2 type 2 iodothyronine deiodinase
ELOVL elongation of very long chain FA
ER endoplasmic reticulum
FA fatty acid
FAO fatty acid oxidation
FFA free fatty acids
FGF21 fibroblast growth factor 21
G0S2 G0/G1 switch gene 2
GPCRs G-protein-coupled receptors
HFD high-fat diet
HSL hormone-sensitive lipase
IGF-1 insulin-like growth factor I
IL-1b interleukin-1b
IL-6 interleukin-6
KO knockout
LAL lysosomal acid lipase
MEFs primary mouse fibroblasts
MG monoacylglycerol
MGL monoacylglycerol lipase
Myf5C myogenic factor 5-positive
iPLA2z calcium-independent phospholipase A2 z
PGC1a peroxisome proliferator activated receptor

gamma coactivator 1 alpha
PKA protein kinase A
PKB protein kinase B
PRDM16 PR domain-containing 16
pRb retinoblastoma protein
RIP140 receptor interacting protein 140
TG triglyceride
TNFa tumor necrosis factor a
UCP1 uncoupling protein-1
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