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Abstract: HERC proteins are ubiquitin E3 ligases of the HECT family. The HERC subfamily is
composed of six members classified by size into large (HERC1 and HERC2) and small (HERC3–HERC6).
HERC family ubiquitin ligases regulate important cellular processes, such as neurodevelopment,
DNA damage response, cell proliferation, cell migration, and immune responses. Accumulating
evidence also shows that this family plays critical roles in cancer. In this review, we provide an
integrated view of the role of these ligases in cancer, highlighting their bivalent functions as either
oncogenes or tumor suppressors, depending on the tumor type. We include a discussion of both the
molecular mechanisms involved and the potential therapeutic strategies.
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1. Introduction

Ubiquitin E3 ligases take part in protein ubiquitylation. These enzymes catalyze the last step of a
cascade where ubiquitin is initially incorporated to a ubiquitin-activating enzyme (E1), which in turn
is transferred to a ubiquitin-conjugating enzyme (E2), and finally, to a target protein through a process
defined by a ubiquitin E3 ligase that interacts with the substrate protein (Figure 1). The ubiquitin-like
proteins SUMO, NEDD8, and ISG15 are also covalently attached to the target protein via an E1/E2/E3
cascade. Specifically, the E3 ligases can be classified into three groups, of which one is homologous to
the E6AP carboxyl terminus (HECT) protein. All HECT ligases have a catalytic domain in their carboxyl
terminus that contains a conserved cysteine residue that is involved in forming a transiently thioester
bond to ubiquitin before transferring it to the lysine residue of the substrate protein (Figure 1) [1]. HECT
ligases containing one or more regulator of chromosome condensation 1 (RCC1)-like domains in their
amino-terminal domain form a HERC subgroup [2]. HERC1 and HERC2 are the largest HECT ligases,
having molecular weights exceeding 500 kDa, and constitute the large HERC protein subfamily [3].
By contrast, HERC3 to HERC6 have molecular weights around 100–120 kDa and constitute the small
HERC protein subfamily. Despite the structural similarity between large and small HERC proteins
(Figure 1), they are evolutionarily very distant. In fact, they are the result of convergence phenomena
rather than being phylogenetic paralogs [3–5]. Moreover, the small HERC proteins HERC5 and HERC6
may also function as ISG15 E3 ligases [6,7].
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Figure 1. The ubiquitin-conjugating system in HERC E3 ligases: (A) Ubiquitin (Ub) is conjugated to a 
target substrate via a cascade that comprises an E1 activating enzyme, an E2 conjugating enzyme, and 
an E3 ligase enzyme. The HERC proteins belong to the HECT family of E3 ligases, which form a 
thioester bond with Ub via a conserved cysteine residue. Once formed, Ub is transferred to the 
substrate’s lysine residue (see text for details). Ub-like proteins, such as ISG15, are also covalently 
attached to the substrate protein via an E1/E2/E3 cascade; (B) structural features of large and small 
HERC proteins are also shown. HERC5 and HERC6 may also function as ISG15 E3 ligases. 

2. The Role of HERCs in Cancer 

HERCs play roles in a wide range of cellular functions, including neurodevelopment, cell 
response to replication stress and DNA damage, cell proliferation, cell migration, and immune 
responses. As such, mutations in HERCs are associated with severe pathologies [3,6,8], with a notable 
impact in cancer. An extensive list of the different cancers associated with the specific large and small 
HERCs is provided in Table 1. 

  

Figure 1. The ubiquitin-conjugating system in HERC E3 ligases: (A) Ubiquitin (Ub) is conjugated to
a target substrate via a cascade that comprises an E1 activating enzyme, an E2 conjugating enzyme,
and an E3 ligase enzyme. The HERC proteins belong to the HECT family of E3 ligases, which form
a thioester bond with Ub via a conserved cysteine residue. Once formed, Ub is transferred to the
substrate’s lysine residue (see text for details). Ub-like proteins, such as ISG15, are also covalently
attached to the substrate protein via an E1/E2/E3 cascade; (B) structural features of large and small
HERC proteins are also shown. HERC5 and HERC6 may also function as ISG15 E3 ligases.

2. The Role of HERCs in Cancer

HERCs play roles in a wide range of cellular functions, including neurodevelopment, cell response
to replication stress and DNA damage, cell proliferation, cell migration, and immune responses.
As such, mutations in HERCs are associated with severe pathologies [3,6,8], with a notable impact in
cancer. An extensive list of the different cancers associated with the specific large and small HERCs is
provided in Table 1.
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Table 1. Cancers associated with HERCs and related molecular mechanisms.

Genes Associated Cancers Related Molecular Mechanisms Reference

HERC1

Acute promyelocytic leukemia HERC1-PML genomic fusion [9]

Acute Myeloid Leukemia HERC1 mutations [10]

Acute lymphoblastic leukemia Decreased MSH2 protein levels and HERC1
deletions [11]

Adult T-cell acute lymphoblastic
leukemia HERC1 mutations [12]

T-cell prolymphocytic leukemia HERC1 mutations [13]

Non-melanoma skin cancer Enhanced BAK protein degradation [14]

Pulmonary sclerosing pneumocytoma HERC1 mutations [15]

Invasive lobular breast cancer HERC1 mutations [16]

Metastatic triple-negative breast cancer HERC1 mutations [17]

Sporadic colorectal cancer Decreased MSH2 protein levels and HERC1
deletions [11]

Osteosarcoma Negative correlation of SOX18
overexpression and HERC1 mRNA levels [18]

HERC2

Pheochromocytoma and paraganglioma HERC2 mutations [19]

T-cell prolymphocytic leukemia HERC2 mutations [13]

Cutaneous melanoma
SNPs in HERC2 gene increase susceptibility [20–23]

Gene-gene interactions between HERC2
gene and IL31RA and DDX4 genes [24]

Epistatic effects between HERC2 and VDR
genes [25]

Cutaneous squamous cell carcinoma
SNPs in HERC2 gene impact on time to
develop the tumor in organ transplant

recipients
[26]

Uveal melanoma SNPs in HERC2 gene increase susceptibility [27]

Non-small-cell lung cancer Worse prognosis in patients expressing
high HERC2 mRNA levels [28]

Breast cancer Enhanced BRCA1 degradation [29,30]

Gastric and colorectal carcinomas HERC2 mutations [31]

Osteosarcoma Negative correlation of SOX18
overexpression and HERC2 mRNA levels [18]

HERC3

Glioblastoma Degradation of SMAD7 and activation of
the TGFβ signaling [32]

Gastric and colorectal carcinomas HERC3 mutations [31]

Osteosarcoma Negative correlation of SOX18
overexpression and HERC3 mRNA levels [18]

HERC4

Multiple myeloma Decreased c-Maf degradation [33]

Lung cancer HERC4 overexpression [34]

Non-small cell lung cancer Increased Smo protein stability and Hh
pathway activation [35,36]

Breast cancer
HERC4 upregulation [37]

Decreased expression of miRNAs targeting
HERC4 expression and enhanced LATS1

degradation
[38]

Hepatocellular carcinoma HERC4 overexpression [39]

Osteosarcoma Negative correlation of SOX18
overexpression and HERC4 mRNA levels [18]
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Table 1. Cont.

Genes Associated Cancers Related Molecular Mechanisms Reference

HERC5

Pediatric germ cell tumors
Chromosome copy number variations

(CNVs) at a region encompassing HERC5
gene

[40]

Glioblastoma HERC5 upregulation [41]

Acute myeloid leukemia HERC5 downregulation [42]

Oropharyngeal cancer HERC5 gene expression is associated with
overall survival [43]

Non-small cell lung cancer HERC5 promoter hypermethylation [44]

Breast cancer HERC5 upregulation [45]

Hepatocellular carcinoma
Negative correlation of CCL20

overexpression and HERC5 mRNA levels [46]

Reduced p53, p21 and Bax/Bcl-2 pathway
activation [47]

Ovarian cancer HERC5 upregulation is associated with
drug resistance [48,49]

Osteosarcoma Negative correlation of SOX18
overexpression and HERC5 mRNA levels [18]

HERC6 Osteosarcoma Negative correlation of SOX18
overexpression and HERC6 mRNA levels [18]

Mutations in large HERCs have been found in leukemia [10–13] and breast cancer [16,17].
Frameshift mutations in HERC2 have been found in both gastric and colorectal carcinomas with
microsatellite instability [31]. The HERC2 locus has also been associated with both cutaneous melanoma
and uveal melanoma, whereas the HERC1 locus has been found to be mutated in non-melanoma skin
cancer [20,21,25,27]. Higher expression levels of HERCs are associated with better patient prognosis in
kidney, head and neck, and pancreatic cancers when HERC1 expression levels are elevated, and in
patients with renal cancer when HERC2 expression levels are elevated [50]. By contrast, the expression
levels of HERC2 have been found to negatively correlate with patient survival in non-small-cell
lung cancer [28]. In osteosarcoma, upregulation of the HERC2-binding protein SOX18 enhances
cell proliferation, and it correlates with a reduction in both large and small HERC mRNA levels
(Table 1) [18].

Several studies using gene expression analyses of different tumor tissues have showed differential
expression patterns of small HERCs between healthy and tumor samples as well as between tumors at
different stages. This raises the possibility of using small HERCs as diagnostic or prognostic biomarkers
for different cancer types. For instance, HERC4 and HERC5 expressions have been shown to correlate
with tumor progression in breast cancer [37,45] and have been implicated in both lung [34–36,44]
and hepatocellular [39,46,47,51] carcinomas. In addition, high levels of HERC3 expression correlate
with poor prognosis in glioblastomas [32], while HERC5 appears to be differentially expressed and
associated with progression in acute myeloid leukemia (Table 1) [42].

3. Signaling Pathways Regulated by HERCs

Gene expression and survival studies suggest that HERCs have different roles in cancer. Gaining a
better understanding of HERCs can be facilitated by understanding the intracellular signaling pathways
where HERCs operate. HERCs appear to have bivalent functions, acting as either oncogenes or as
tumor suppressors depending on the tumor type. In turn, this complicates research into the relevant
signaling pathways where HERCs participate. In recent years, several studies have contributed to
our understanding of the tumor suppressor function of large HERCs, with three major regulatory
mechanisms emerging: regulation of genomic stability, regulation of p53 transcriptional programming,
and regulation of mitogen-activated protein kinase (MAPK) signaling.
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3.1. Regulation of Genomic Stability

Genomic instability is a hallmark of cancer that is observed in the early stages of tumorigenesis [52,53].
HERC2 participates in the modulation of genomic stability through degradation of key regulators
of DNA repair pathways. Xeroderma pigmentosa A (XPA) is critical to the nucleotide excision
repair machinery. It is ubiquitylated by HERC2, which targets it for proteasomal degradation in
a circadian-dependent manner (Figure 2A) [54]. The regulation of this process depends on the
phosphorylation state of XPA. Its phosphorylation by serine/threonine-protein kinase ATR prevents
ubiquitylation by HERC2, and its dephosphorylation by protein phosphatase 1D (also known as WIP1)
enhances its ubiquitylation by HERC2 [54,55].
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amplifies the ubiquitin chain formation in histones. By contrast, USP16 levels increase in a HERC2-
dependent manner and negatively regulate H2A histone ubiquitylation to fine-tune chain formation; 
(C) HERC2 is present in the replication fork complex that regulates the balance between DNA 
elongation and origin firing. HERC2 facilitates ATR-dependent MCM2 phosphorylation, which 
enhances origin firing, and this is inhibited by Claspin, another HERC2-interacting protein. (D) G4 
structures cause replication stress, and this leads to HERC2 promoting RPA2 phosphorylation via 
ATR. Then, HERC2 polyubiquitylates the phosphorylated form of RPA2, targeting it for proteasomal 
degradation, and thereby fine-tuning the total levels of phospho-RPA2. This mechanism is essential 
for assembling the BLM and WRN RecQ helicases to the RPA complex and for its later role in 
suppressing G4 structures. 
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Figure 2. Involvement of HERC2 in the regulation of genomic stability: (A) HERC2 catalyzes the
polyubiquitylation of different DNA damage response (DDR) regulators, such as XPA, BRCA1, and USP20,
targeting them for proteasomal degradation; (B) upon double-strand break in the DNA, HERC2 is
phosphorylated (by ATM, ATR, or DNA-PK) and SUMOylated (by PIAS4). These posttranslational
modifications allow HERC2 to bind to RNF8, promoting the specific assembly of RNF8 with the E2
enzyme Ubc13. This allows the formation of K63 polyubiquitin chains in H2A-type histones flanking the
double-strand break site. HERC2 interacts with and stabilizes RNF168, and this amplifies the ubiquitin
chain formation in histones. By contrast, USP16 levels increase in a HERC2-dependent manner and
negatively regulate H2A histone ubiquitylation to fine-tune chain formation; (C) HERC2 is present
in the replication fork complex that regulates the balance between DNA elongation and origin firing.
HERC2 facilitates ATR-dependent MCM2 phosphorylation, which enhances origin firing, and this is
inhibited by Claspin, another HERC2-interacting protein. (D) G4 structures cause replication stress,
and this leads to HERC2 promoting RPA2 phosphorylation via ATR. Then, HERC2 polyubiquitylates
the phosphorylated form of RPA2, targeting it for proteasomal degradation, and thereby fine-tuning the
total levels of phospho-RPA2. This mechanism is essential for assembling the BLM and WRN RecQ
helicases to the RPA complex and for its later role in suppressing G4 structures.
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Another HERC2 degradation target is breast cancer suppressor 1 (BRCA1) (Figure 2A) [29].
BRCA1 maintains genome stability by repairing double-strand breaks [56]. The HERC2-dependent
degradation of BRCA1 is regulated by the binding of different protein interactors to HERC2 or BRCA1;
for example, BARD1 binds BRCA1, forming a heterodimer that prevents BRCA1 ubiquitylation by
HERC2. Similarly, TUSC4 binds to HERC2 and prevents BRCA1 degradation, with its knockdown
consistently shown to enhance BRCA1 degradation through the proteasome pathway [29,30].

Further, also concerning the response to DNA damage, HERC2 is required for the retention of
DNA repair factors such as 53BP1, RAP80, RNF168, and BRCA1 at sites of DNA damage in response
to double-strand breaks [57]. Upon double-strand breaks, HERC2 is phosphorylated on T4827 by
serine-protein kinase ATM or other DNA damage-related kinases like ATR or DNA-PK. In addition,
it can be SUMOylated in its ZZ domain by the E3 SUMO ligase PIAS4 [58]. These posttranslational
modifications allow the binding of HERC2 to RNF8, another ubiquitin E3 ligase involved in the DNA
damage response. In these conditions, HERC2 promotes the specific assembly of RNF8 with one of its
E2 enzymes, Ubc13, which catalyzes the formation of K63 polyubiquitin chains formed in H2A-type
histones flanking the double-strand break site. HERC2 therefore mediates the specificity of the
interaction between the E2 enzyme Ubc13 and the E3 ligase RNF8, safeguarding the formation of K63
ubiquitin chains that are essential for recruiting repair factors to the damaged chromosomes. In parallel,
HERC2 can interact with, and stabilize, the E3 ligase RNF168 that is responsible for amplifying the
ubiquitin chain formation initiated in histones by RNF8 [57,58]. Levels of the deubiquitinase USP16
then increase in a HERC2-dependent manner during DNA damage, and this negatively regulates
H2A histone ubiquitylation to fine-tune polyubiquitin chain formation. Ultimately, USP16 triggers the
ubiquitylation signal termination once the damage is repaired. These findings suggest that HERC2 has
a central role in regulating and fine-tuning the DNA damage response pathway (Figure 2B) [59].

HERC2 also regulates the levels of Claspin, a protein essential for both G2-M checkpoint activation
and replication fork stability. HERC2 interacts with Claspin in the presence of BRCA1 [60]. Upon DNA
damage, ATR phosphorylates USP20, a deubiquitinating enzyme which is a degradation target of
HERC2 (Figure 2A). USP20 detaches from HERC2, leading to its stabilization, and in turn deubiquitylates
and stabilizes Claspin levels. The Claspin can then interact with the serine/threonine-protein kinase
CHK1, promoting ATR-dependent phosphorylation, checkpoint activation, and genome stability [61,62].
Moreover, HERC2 has been described as a component of the DNA replication fork complex that
regulates origin firing and fork progression. During DNA replication, origin firing and elongation
must be correctly balanced. Claspin and CHK1 enhance elongation but restrict origin firing. When
faced with replication stress that impairs DNA elongation, HERC2 facilitates the phosphorylation and
activation of the DNA replication licensing factor MCM2 (Figure 2C). Thus, origin firing is upregulated
as a compensatory mechanism [60]. Dysregulation of these replication mechanisms can lead to DNA
damage and genome instability [63].

Some guanine-rich DNA sequences can fold into a secondary structure known as G-quadruplex
(G4). These structures are involved in transcriptional initiation and termination, replication initiation,
and telomere maintenance. However, the deregulation of G4 can cause fork stalling during DNA
replication that promotes DNA damage and genome instability. HERC2 interacts with replication
protein A (RPA), a heterotrimeric complex formed by RPA1, RPA2, and RPA3 and that binds
to single-stranded DNA and protects it from spontaneous annealing and G4 formation. RPA
assembly to the RecQ DNA helicases BLM and WRN is essential for suppressing the formation
of G4 DNA structures. Under conditions of replication stress, ATR phosphorylates RPA2 at Ser33 in
an HERC2-dependent mechanism. Then, HERC2 ubiquitylates the phosphorylated form of RPA2,
targeting it to proteasomal degradation [64]. Although the specific effects of RPA2 phosphorylation
and its later degradation by HERC2 are not fully understood, both mechanisms are essential for HERC2
to function correctly in suppressing G4 structures. HERC2 may fine-tune the levels of phosphorylated
RPA2 by promoting its ATR-dependent phosphorylation and targeting it for proteasomal degradation
through polyubiquitylation. This precise balance might be needed for the correct assembly of the BLM
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and WRN helicases to the RPA complex, as well as for the subsequent suppression of G4 structures
and the maintenance of genomic stability (Figure 2D) [65].

HERC1 has also been associated with the DNA damage response through its regulation of MSH2,
which forms heterodimers with MSH6 and MSH3. Both these dimers are responsible for the DNA
mismatch repair mechanism, and loss of function impairs DNA repair. Depleting HERC1 has been
linked to reduced protein MSH2 levels in human leukemia cells, leading to increased genomic instability
and chemotherapy resistance [11].

3.2. Regulation of p53 Transcriptional Programming

Large HERCs may also function as tumor suppressors by regulating gene expression. For example,
HERC2 controls the transcriptional activity of the tumor suppressor protein p53 [66]. Tetramerization
of p53 is a key step in its activation, and this oligomerization process is modulated by a complex
formed by NEURL4 and HERC2 [67]. Recently, it has been reported that MDM2 is present in this
complex. In non-stressed cells, this ubiquitin E3 ligase promotes lower levels of p53 by targeting it
for proteasome degradation. Upon DNA damage induced by bleomycin, MDM2 is dissociated from
the p53/HERC2/NEURL4 complex, and phosphorylation and acetylation of oligomeric p53 increases.
Activated p53 then binds to the p53 response elements in the promoters of its target genes. MDM2 is
one such gene whose promoter competes with HERC2 for binding of oligomeric, phosphorylated, and
acetylated p53. As its gene expression increases MDM2 protein levels, these can bind p53 and restart
the regulatory loop (Figure 3) [68]. These findings highlight the importance of HERC2 in regulating
the transcriptional program of the tumor suppressor protein p53.
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Figure 3. Regulation of the p53/MDM2 pathway by HERC2. In basal conditions, HERC2 and
NEURL4 regulate p53 transcriptional activity by promoting its oligomerization. MDM2 maintains
low levels of p53 by targeting it for proteasomal degradation. Upon DNA damage, associated kinases
phosphorylate MDM2 and HERC2. In addition, p53 is activated by acetylation and phosphorylation.
The phosphorylated MDM2 is detached from the complex and is autopolyubiquitylated and
subsequently degraded. Activated p53 binds to the promoters of its target genes, such as p21
or MDM2, and a negative feedback loop is established in the latter case.
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3.3. Regulation of MAPK Signaling

MAPKs are organized in three-tiered cascades regulated by phosphorylation: MAPKK kinases
(MAPKKKs) are serine/threonine-protein kinases that phosphorylate and activate MAPKKs, which
in turn phosphorylate the MAPKs that mediate the cellular response by phosphorylating effector
proteins. This signaling has therefore been shown to be key for cell differentiation, growth, proliferation,
and survival. The classic MAPK cascades include Jun N-terminal kinase (JNK), p38, and extracellular
signal-regulated protein kinase (ERK) pathways. Dysregulation of these cascades has been linked
extensively to oncogenesis [69–71].

HERC1 and HERC2 each have roles in MAPK signaling. For example, HERC2 has been reported
to be part of a high-molecular weight complex formed by UBE3A, NEURL4, and MAPK6/ERK3 [72].
Some cellular functions that might be regulated by this complex involve transcription, protein
translation, formation and transport of vesicles, as well as metabolism [73]. To date, the precise
molecular mechanism remains to be elucidated, necessitating further research. By contrast, our
knowledge of the regulation of MAPK by HERC1 has evolved and grown in recent years. HERC1
controls cell proliferation through the regulation of ERK signaling by targeting the proto-oncogene
C-RAF, an MAPKKK, for proteasomal degradation (Figure 4A) [74]. The HERC1 ligase also regulates
the p38 pathway and cell migration. Research indicates that HERC1 knockdown increases p38
activity by increasing the levels of MKK3, an MAPKK of the p38 pathway, in a manner dependent on
C-RAF. Thus, HERC1 regulates a previously unknown crosstalk between these two MAPK signaling
pathways [75]. In this context, it is postulated that HERC1 functions as a tumor suppressor protein, given
that its depletion leads to the dysregulation of two essential cascades for tumorigenesis (Figure 4B).

4. Perspective and Therapeutic Implications

The ubiquitin proteasome system has been targeted for cancer therapy through proteasome
inhibitors such as bortezomib, and these are achieving promising results in ongoing clinical trials.
However, given that the treatments lack specificity, they can induce clinically relevant side effects [76].
Hence, the possibility of targeting E3 ligases, which display high substrate specificity, may help achieve
more specific and efficient therapies. Given the possible tumor suppressor role of large HERCs in
some cancers, a potential therapeutic approach would be to rely on enhancing their tumor suppressor
activities. Following this theory, both HERC1 and HERC2 could be potential drug candidates. On the
one hand, promoting the capacity of HERC2 to oligomerize p53 using the CPH domain of HERC2 [66]
could boost the p53 transcriptional program and potentially alleviate tumor progression in tumors
with non-mutated p53. On the other hand, a growing body of evidence suggests that targeting C-RAF
could be a promising therapeutic strategy based on its efficiency in K-Ras and Trp53 mutant mice
models of lung [77] and pancreatic ductal [78] adenocarcinomas. Enhancing HERC1 ubiquitin ligase
activity in this context could be an interesting approach to stop tumor progression in MAPK-dependent
cancers. These approaches could also be combined with other therapeutic strategies that target the
inhibition of MDM2 with Nutlins in the case of HERC2, and epidermal growth factor receptor activity
with monoclonal antibodies or tyrosine kinase inhibitors in the case of HERC1.

Given the role of large HERCs in DNA damage response, inhibitors for these proteins could be
designed to exploit synthetic lethality as a therapeutic strategy in some cancers. Deficiencies in the
DNA repair mechanisms of tumor cells can be exploited by inhibiting the remnant mechanisms and
triggering tumor cell death [79]. Many genes involved in DNA repair mechanisms are mutated in
tumors [80]. Synthetic lethality also benefits from the fact that cancer cells present higher replication
stress due to their aberrant proliferation [81]. The viability of synthetic lethality strategies has been
demonstrated with the use of poly [ADP-ribose] polymerase (PARP) inhibitors, since tumor cells
harboring BRCA1/2 mutations are 1000 times more sensitive to PARP inhibition than wild-type
counterparts [82]. Given this evidence, large HERC inhibitors, especially those for HERC2, could
eventually be of use in this setting.
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Figure 4. Regulation of MAPK signaling pathways by HERC1: (A) HERC1 polyubiquitylates C-RAF
with a lysine 48-linked chain that causes its degradation by the proteasome and downregulates ERK
activity; (B) in the absence of HERC1, the levels of C-RAF increase and upregulate the RAF/MEK/ERK
signaling pathway. The levels of MKK3 also increase, which in turn phosphorylates and activates p38.
In summary, therefore, the absence of HERC1 may enhance cell responses regulated by these MAPKs,
including the migration, differentiation, growth, proliferation, and survival of cells.

5. Conclusions

HERCs can function as either oncogenes or tumor suppressors depending on the cancer type.
This bivalent activity hinders the study and understanding of the regulatory mechanisms where they
operate. Although important cellular processes such as genome stability, gene expression, and MAPK
signaling are regulated by HERCs proteins, future in vivo and in vitro studies are required to elucidate
the molecular mechanisms where HERCs participate and to identify new substrates specific for each
cancer type. Screenings for activator and inhibitor molecules for their ubiquitin ligase activities could
also be useful when developing novel therapeutic strategies.
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