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Introduction

Winter mountaineering is a challenging sport that has gained popularity in recent years 

at the recreational, competitive and commercial levels (Ainslie et al., 2005). Even 

though the most popular mountains usually have an established ascent route, it is not 

uncommon for technical mountaineers to climb on virgin snow. In addition to this, 

within certain mountaineering styles and philosophies, first ascents are considered 

meritorious, and by definition they have to take place via routes that have not previously 

been trodden (International Climbing and Mountaineering Federation, 2002). 

Locomotion in ascent requires a higher energy expenditure than over flat terrain (Billat 

et al., 2010), and the most efficient mountain path gradient is 25% if there are no 

performance limitations impeding the subject from reaching maximal power (Minetti, 

1995). Efficiency in locomotion decreases in snowy terrain, especially in individuals 

with little experience (Billat et al., 2010), presumably because of changes in 

biomechanical patterns of walking (Ramaswamy et al., 1966). Considering this, fitness 

is described as an additional strategy to increase mountain safety (Burtscher et al., 

2015), especially if ascents are performed at altitude or in adverse meteorological 

conditions, but little is known of its influence on technical mountaineering performance 

and additional energy demands. Our working hypothesis was that walking on fresh 

snow is more expensive in terms of the need for power and energy expenditure, as 

ascents along non-traced routes usually appear to be slower and more fatiguing. 

Moreover, among professional mountain guides it is well known that being the first 

climber in a group is usually more exhausting than not leading the climb. However, to 

the best of our knowledge, there are no controlled intra-subject comparisons that 

confirm this statement or elucidate the metabolic reason for this widespread subjective 

feeling; neither have specific repercussions on training programs been assessed. 
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Therefore, the main objective of this study was to evaluate differences in 

cardiorespiratory responses and the energetic cost of locomotion between an exercise 

performed in snowy terrain that had been previously compacted and walking on fresh 

snow. Our findings may contribute to decision making, not only when planning an 

ascent, but also during training for this specific mode of sport and when facing 

unexpected events on a mountain.

Material and methods

Subjects

The subjects recruited for this study were 15 healthy and physically active volunteers 

(13 male, 2 female), who were 35.4 ± 5.3 years old. All were highly experienced in 

winter mountain activities at a competitive level and followed a training regime of up to 

10 hours per week. The anthropometric characteristics of the subjects were: height 1.72 

± 0.07 m, weight 67.1 ± 8.5 kg, body mass index 22.8 ± 2.6 kg·m-2. Their maximal peak 

oxygen consumption was 66.4 ± 7.7 mL·kg-1·min-1. After approval by the local ethics 

committee, all of them where informed of the objective of the study, and signed an 

informed consent form to accept participation in the study. The protocol was conducted 

according to the principles of the Declaration of Helsinki.

A group of 15 subjects shows statistical power higher than 80%. The sample size 

calculated to evaluate the differences in performance in a maximal test, with α error = 

0.05, β error = 0.20 and an expected drop out of 15%, was of 11.

Laboratory test
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The laboratory test was performed in the exercise laboratory of the Physiological 

Sciences Department of the Universitat de Barcelona, at an ambient temperature of 

22⁰C-24⁰C and relative humidity between 55% and 66%. Each test took place in the 

morning, after a light breakfast.

Participants performed the laboratory test on a pre-calibrated treadmill (Quasar, HP 

Cosmos Sports & Medical GmbH, Nussdorf-Traunstein, Germany), at a constant speed 

of 9 km·h-1, starting at 0% slope which increased 1% every minute until exhaustion. 

Oxygen consumption and CO2 production were recorded by means of an automatic gas 

analyzer (Metasys TR-plus, Brainware SA, La Valette, France), equipped with a 

pneumotachograph using a double way mask (Hans Rudolph, Kansas, USA). Before 

each test, calibration was performed including volume and gas composition, according 

to the manufacturer’s recommendations. Heart rate was continuously monitored during 

the test (CardioScan v.4.0, DM Software, Stateline, Nevada, USA).

Field test

The field test took place on a northeastern slope, from a starting altitude of 2,043 m to a 

final altitude of 2,104 m, resulting in a positive ascent of 61 m. The total distance 

covered was 211 lineal meters. The ascent profile exhibited an initial gradient of 15% 

with a progressive increase in inclination, reaching a maximum gradient of 59% 

The snowpack was homogenous, of approximately 60 cm depth. With altitude gain, the 

stiffness and cohesion of the surface crust varied, becoming weaker, thus allowing a 

deeper descent of the footstep, varying from 1-3 cm to 10-12 cm depth. 

Experimental design
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A crossover study was designed in order to compare the different variables, with 

subjects being their own control. 

Before the start of the field test, a homogenous pathway 50 cm wide was traced, which 

permitted comfortable locomotion. The depth of the pathway varied depending on the 

characteristics of the snow pack previously described. The test took place between 

1200h and 1600h.

For each subject, four ascents were performed: locomotion inside the pathway (FP) at 

100% (FP100) and 70% (FP70) of individual maximal capacity; and locomotion outside 

the pathway (FS) at 100% (FS100) and 70% (FS70) of individual maximal capacity. 

Assignment of the sequence of the ascents was random among the participants. The 

ascents in virgin snow (FS) took place in parallel to the pathway (FP), without 

modifying the ascent conditions.

Every participant was equipped with a GPS watch including a heart-rate monitor 

(Sunnto Ambit3 Peak, Vantaa, Finland). Only the ascending phase was considered for 

data collection. The participants wore rigid mountaineering footwear and dressed with 

the innermost of the three layers of clothing that are considered the gold standard in 

mountaineering apparel. The participants were allowed to cover up with warmer layers 

between ascents, but all ascents had to be performed with the same clothing. At each 

ascent finish, monitoring was interrupted and a Borg test (rate of perceived exertion 

scale) (6-20) was performed (Borg et al., 2006). The variables reported by the GPS 

watch were: heart rate, respiratory rate, oxygen consumption (calculated from heart 

rate) and time elapsed. Participants were allowed to descend slowly and recovery was at 

the base of the slope.

Page 5 of 20



Carceller, A

Resting time between ascents was 12 to 15 minutes, checking that subjects had reached 

their basal heart rate.

Atmospheric conditions

On the day of test, the average temperature at a local meteorological station was -6.7°C, 

with a maximum temperature of 0.8°C, which minimized the risk of snow 

transformation. Relative humidity was 73%, with moderate winds and no precipitation.

Statistical analysis

The Kolmogorov–Smirnov test was used to establish the normal distribution of the 

different samples. Student’s t-test was used to evaluate differences between the outdoor 

ascent trials. The correlations between the different cardiorespiratory responses and 

performance indicators during the outdoor tests were analyzed using Pearson’s bivariate 

correlation test. Statistical significance was set at p<0.05 for all the analyses, which 

were performed using SPSS v.15 (SPSS Inc., Chicago, USA.

Results

Field test 

Maximal exercise

As can be observed in Table 1, the maximal calculated oxygen consumption showed a 

moderate but statistically significant increase (2.6% CI95%: 0.9%-4.5%, t=3.22, 

p=0.005) when the subjects followed the previously traced pathway (FP) compared to 

the virgin snow (FS). The time necessary to complete the FS100 route was clearly 

longer than for the FP100 pathway. Thus, compacted snow allowed locomotion speed to 
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increase by 0.43 ± 0.11 km·h-1 (t=4.21, p=0.01). Meanwhile, the respiratory rate was 

significantly higher during FS100 ascent conditions (an increase of 2.3±2.4 b·min-1, 

t=4.00, p=0.001) than for FP100. No statistically significant differences were found 

between FS100 and FP100 when considering the Borg scores for declared perception of 

effort, heart rate or oxygen consumption (Table 1). 

Submaximal exercise

Similarly to the maximal test, more time was necessary to complete FS70 than FP70 

(Table 2), with this difference (36 ± 25 s) being statistically significant (t=6.33, 

p<0.001). The calculated mean oxygen consumption during the FS70 test was higher 

than for FP70 and this difference also reached statistical significance (1.2 ± 2.3 

mL·kg·min-1, p=0.048). In line with this, the respiratory rate was faster during FS70 by 

2.9 ± 4.4 b·min-1 (p=0.02). We also detected statistical differences in the subjective 

perception of effort, according to the Borg scale: it was higher for FS70 than for FP70 

(FS70: 14.6 ± 0.7; FP70: 14.0 ± 0.2; p=0.04). Remarkably, the average score was 

around 14, which corresponds to a moderate effort equivalent to 70% of maximal 

individual capacity. As in the maximal test, average heart rate did not show a 

statistically significant difference between FS70 and FP70 (Table 2).

Laboratory test

Maximal exercise

In the laboratory test, we observed that the maximal respiratory parameters (oxygen 

consumption and respiratory rate) as well as the maximum heart rate were higher than 
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those observed in the maximal field test (Table 3). When comparing the maximal 

performance observed in the field test with the maximal parameters obtained in the 

laboratory, we observed a correlation between the individual maximal O2 consumption 

and the time elapsed during the maximal test inside the pathway (FP100) (r=0.763, 

p=0.002). When studying the values observed at the aerobic threshold (ATh1) of the 

laboratory test, we observed correlations between time for the field test inside the 

pathway (FP70) and: oxygen consumption (VO2) in the laboratory (r=0.539, p=0.047), 

fraction of O2 in expired air (FeO2) (r= -0.634, p=0.002), fraction of CO2 in expired air 

(FeCO2) (r=0.604, p=0.029), oxygen uptake per heart beat (O2 pulse) (r=0.626, 

p=0.022) and end-tidal PCO2 (PETCO2) (r= 0.622, p=0.023). Conversely, there was no 

relationship between submaximal virgin snow performance (FS70) and the 

cardiorespiratory data observed in the laboratory conditions at ATh1, except for heart 

rate. When correlating the values observed at the anaerobic threshold (AnTh2) of the 

laboratory test with the data for the submaximal effort field test, we observed a 

relationship between performance in the field test of FP70 and tidal volume (VT) (r= 

-0.736, p=0.004). When considering performance in FS70 and laboratory 

cardiorespiratory data, we also observed a positive relationship with: fraction of O2 in 

expired air (FeO2) (r=0.579, p=0.038), respiratory equivalent for O2 (ERO2) (r=0.585, 

p=0.036), respiratory equivalent for CO2 (ERCO2) (r=0.566, p=0.044), end-tidal PO2 

(PETO2) (r=0.596, p=0.031) and end-tidal PCO2 (PETCO2) (r= - 0.575, p=0.04).

Discussion

In this study, we show the differences between training and performing a real ascent on 

a fresh snow surface (FS) or a previously trodden route (FP), which have different 

repercussions for energy expenditure and imply the use of different metabolic 

Page 8 of 20



Carceller, A

substrates. This can have significant technical, biomechanical and tactical (in 

competition) repercussions. The applicability of our results includes the fields of 

competition and sports events; as well as mountain safety strategies affecting the 

workload that can be assumed by mountain rescue teams, mountain border patrols and 

other emergency service operatives in snowy terrain. Moreover, there is the possibility 

of applying field CT100 tests to obtain an estimated maximal oxygen consumption 

value for athletes. 

The time to complete the same route was higher in virgin snow (FS): 12% at maximal 

intensity and 11% in submaximal efforts. The power developed, considering time spent 

for moving the same weight, was higher when following the route inside an established 

pathway (FP) in both series. Given that alpinism is a sport where intensities are usually 

mild or moderate but sustained for a long period of time (Burtscher et al., 2015), our 

data suggest that when planning activities in snowy terrain not previously traced out, 

slower ascents can be expected. This is common knowledge among experienced 

mountaineers, but our study allows for a more accurate quantification of this extra effort 

to be developed.

The lack of significant differences in the values of heart rate for the different routes in 

the field test reflects similar intensity during the ascents and consequently our FP and 

FS data are comparable, in either maximal or submaximal efforts.

It is known that, for an equal load, walking on snow implies a higher maximal oxygen 

consumption than on a treadmill at the same intensity along flat terrain (Smolander et 

al., 1989); and that the increase in energy expenditure is proportional to the depth of the 

footprint in the snow (Heinonex et al., 1959). The value of the maximal oxygen 

consumption observed in the maximal ascents in this study was a 2.6% higher when 
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locomotion was performed in FP than in FS, due to the higher capacity to develop speed 

and aerobic power. In the maximal effort outside the pathway (FS), there probably 

exists a greater anaerobic component, reflected in an increase of the respiratory rate of 

2.3 cycles per minute in maximal effort and 2.9 in submaximal effort. This could be 

related to the additional biomechanical requirements for locomotion in virgin snow, due 

to the loss of the elastic rebound component of walking on a solid surface and the 

greater peripheral energy requirements of lower limb muscles (Minetti, 1995), as more 

effort is necessary to overcome the obstacle that the thickness of the snow represents 

(Ramaswamy et al., 1966); this leads to less efficient body postures and increased 

difficulties in maintaining balance (Pandolf et al., 1976). All of this could be modulated 

according to individual experience, as well as the acquisition of locomotor abilities 

through training (Billat et al., 2010; Burtsher et al., 2015).

The difference in respiratory data between field tests and laboratory tests is higher in 

submaximal efforts than in maximal efforts. This finding can be justified by considering 

that at maximal load, there is an intrinsic anaerobic component due to the high intensity, 

which could reduce the differences between respiratory cycles observed in FP and FS. 

In contrast, at submaximal load and when locomotion is performed at FP, this 

component is reduced due to the lower intensity; consequently, there is no need for such 

a degree of anaerobic metabolism to be involved.

Finally, speed was significantly greater in maximal efforts (13%) and in the submaximal 

series (16%) in FP, suggesting that even at low intensities and at the depth of snow 

footprint assessed in this study, alterations to normal walking gestures can be a limiting 

factor when it comes to maintaining an appropriate locomotion speed. This finding is 

not in agreement with previous reports that the maximum depth of footprint in snow 

suitable to maintain constant locomotion is 20 cm (Pandolf et al., 1976).
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When analyzing correlations among data in submaximal effort in the field test and in the 

laboratory test, we observed that respiratory parameters during effort intensity below the 

aerobic threshold in the laboratory are related to the performance results of the field test 

in the FP trials. Conversely, performance on fresh snow did not correlate with the data 

obtained at the aerobic threshold in the laboratory test. Thus, the hypothesis that the 

development of aerobic power is not limited in FP is reinforced.

Maximal values of heart rate and respiratory parameters in the laboratory test were 

higher to those obtained in the field test, challenging the equivalence of the data 

observed in a laboratory stress test and real performance in the field, in spite of using a 

laboratory stress test adapted to mountaineering requirements. Even so, it was possible 

to establish a relationship between time in the maximal test FP100 and maximal aerobic 

power registered in the laboratory. This opens up a possibility for a valid field test to 

estimate maximal oxygen consumption, based on time to complete FP100 (VO2max= 

110.9-11.73*t). The results of this correlate fairly well with those of the laboratory test 

(Figure 1). However, despite there being a correlation, maximal oxygen uptake results 

are lower in the field than in the maximal laboratory test. This, added to the lower 

tachycardization for the same workload when performing in the field, either at maximal 

or submaximal efforts, suggests that limitation of individual performance when walking 

uphill remains, even if there is a trodden pace, but the limiting factor does not seem to 

be the cardiorespiratory system. Peripheral muscular demands appear be higher in the 

field, and even adapting the laboratory test by increasing the specificity for alpine 

needs, the results yield an acceptable data correlation but the test is not capable of 

faithfully reproducing the mountaineering requirements of other components of fatigue, 

such as muscular fatigue of the lower limbs. Differences in the intensity measurements 

between laboratory tests and field tests may also influence the different results.
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These observations lead us to consider that for the design of both a field and a 

laboratory test oriented to assessing the physical performance in a mountaineer whose 

sporting objective includes progression in snow, inclusion of the peripheral strength 

requirements when designing the treadmill protocol might be considered. This would 

potentially improve the specificity of the test in addition to the usual assessment of 

aerobic power and oxygen uptake capacity. Technical and lower limb strength training 

in order to achieve more efficient locomotion in snow seems to be an important element 

that would permit mountain athletes to develop their aerobic power in the field.

Limitations

Backpack weight and altitude effects were not considered during the field tests. The 

reduced number of participants did not permit us to have strong statistical power. 

Although mountaineering experience was one of the inclusion criteria of the study, 

individual ability to walk in snow is difficult to control for, as is the influence of 

footwear. We tried to solve these limitations by taking the subjects as their own control. 

Sex differences were not analyzed because of the small number of female participants 

included in the study.  

Conclusions

Whether locomotion on snowy terrain is conducted on a previously trodden pathway or 

breaking a trail through virgin snow has demonstrable consequences. The latter requires 

more time and has an increased energy cost for a given route, either at maximal or 

submaximal intensities. 
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During submaximal efforts, at an exercise intensity equivalent to that usually adopted in 

mountaineering climbing activity, locomotion on virgin snow involves a greater average 

oxygen consumption, an increase of the workload, a higher energy cost, with a higher 

anaerobic component, and higher subjective fatigue perception than following a 

previously trodden path. This limitation for locomotion due to the characteristics of the 

terrain impedes development of maximal aerobic power, especially on fresh snow, so 

peak oxygen consumption is higher when walking inside an established pathway. 

Consistent with this, respiratory data observed in the laboratory below the anaerobic 

threshold correlate with performance in the submaximal test on the terrain; and these 

laboratory data at the anaerobic threshold are fairly well related with field tests 

performed on virgin snow. Our results should be interesting for mountain safety, as they 

objectively describe limitations to ascents, depending on the pathway. This knowledge 

could lead to different strategies when climbing with a group in order to limit individual 

fatigue, such as changing the leader regularly, assuming longer ascent times along 

virgin snow routes and considering lower limb strength and specific training for snowy 

terrain as important requirements when confronting the ascent. These data may also be 

useful to design field tests for performance assessment in mountaineering and other 

snow sports which allow aerobic power to be an estimated.

In the same way, knowing if an ascent has been performed on a previously established 

pathway or on fresh snow can be a differential factor when comparing different 

activities, especially if time of ascent is assessed as a sports merit, or if ascents of the 

same mountain are performed via different routes under a range of snow conditions. 
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Table 1. 

Variables FS100 FP100 p value

Time (s) 256 ± 30 225 ± 29 <0.001

Speed (km · h-1) 3.14 ± 0.36 3.56 ± 0.52 0.001

Heart rate (beats · min-1) 164.0 ± 9.6 163.6 ± 8.0 0.521

Respiratory rate (breaths · min-1) 38.1 ± 5.5 35.8 ± 5.8 0.001

Calculated VO2 max (ml · kg-1 · min-1) 33.5 ± 4.4 34.4 ± 4.3 0.007

Calculated VO2 mean (ml · kg-1 · min-1) 29.9 ± 4.0 29.7 ± 3.9 0.631

Borg score 20 ± 0 20 ± 0 -
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Table 2. 

Variables FS70 FP70 p value

Time (s) 326 ± 30 290 ± 24 <0.001

Speed (km · h-1) 3.1 ± 0.4 3.6 ± 0.5 0.001

Heart rate (beats · min-1) 148.6 ± 11.5 144.3 ± 11.7 0.084

Respiratory rate (breaths · min-1) 31.8 ± 5.8 28.9 ± 4.6 0.02

Calculated VO2 mean (ml · kg-1 · min-1) 25.2 ± 3.3 24.0 ± 3.8 0.048

Borg score 14.6 ± 0.7 14.0 ± 0.2 0.004
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Table 3. 

Variables ATh1 AnTh2 Maximal

Respiratory rate (breaths · min-1) 30.7 ± 5.7 41.6 ± 8.2 51.4 ± 9.0

VE (l ·min-1) 67.8 ± 9.6 108.0 ± 19.2 135.7 ± 27.3

VT (l·min-1) 2.01 ± 0.33 2.38 ± 0.32 2.41 ± 0.38

VO2 (ml · kg-1 · min-1) 44.4 ± 12.6 58.1 ± 6.1 66.4 ± 7.7

VO2 (l·min-1) 2.75 ± 0.56 3.88 ± 0.70 4.44 ± 0.84

VCO2 (l·min-1) 2.40 ± 0.44 3.94 ± 0.70 4.90 ± 1.01

Heart rate (beats · min-1) 141.7 ± 35.9 171.7 ± 10.3 178.2 ± 10.6

O2 pulse (ml·beat-1) 17.2 ± 5.8 22.5 ± 3.7 24.8 ± 4.3
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Legends for Tables and Figure

Table 1. Data for outdoor tests performed at maximal individual capacity. Mean values ± 
standard deviation.

(FS100; locomotion off the pathway at 100%; FP100: locomotion along the pathway at 100%)

Table 2. Data from submaximal outdoor tests. Mean values ± standard deviation

Table 3. Performance-related parameters measured during maximal laboratory test. Mean 
values ± standard deviation

(VE: ventilation; VT: tidal volume; VO2·kg-1: oxygen uptake relative to body weight; VO2: 
oxygen consumption; VCO2: CO2 production; O2 pulse: oxygen uptake per heart beat)

Figure 1. Relationship between real maximal oxygen consumption during lab test and 
estimated oxygen consumption during outdoor ascent at individual maximal capacity.
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