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ABSTRACT  

Lipophilicity is a fundamental property to characterize the structure and function of proteins, 

motivating the development of lipophilicity scales. Here we report a versatile strategy to derive a 

pH-adapted scale that relies on theoretical estimates of distribution coefficients from 

conformational ensembles of amino acids. This is accomplished by using an accurately 

parametrized version of the IEFPCM/MST continuum solvation model, as an effective way to 

describe the partitioning between n-octanol and water, in conjunction with a formalism that 

combines partition coefficients of neutral and ionic species of residues, and the corresponding 

pKa of ionizable groups. Two weighting schemes are considered to derive solvent-like and 

protein-like scales, which have been calibrated by comparison with other experimental scales 

developed in different chemical/biological environments and pH conditions, as well as by 

examining properties such as the retention time of small peptides and the recognition of antigenic 

peptides. A straightforward extension to nonstandard residues is enabled by this efficient 

methodological strategy. 
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Lipophilicity is a cornerstone concept in chemistry and biology, as this property is crucial to 

understanding a variety of processes, such as the partitioning of molecules into inmiscible 

solvents, the formation of host-guest complexes, the folding of proteins, and the stability of 

supramolecular aggregates.1,2 In proteins lipophilicity is mainly determined by the side chains of 

amino acids, and obtaining quantitative lipophilicity profiles of peptides and proteins is key to 

examine their structural and functional properties in biological environments. Accordingly, 

several strategies have been proposed to quantify the lipophilicity of amino acids, leading to 

lipophilicity scales that exploit the partitioning of small molecules between bulk solvents, the 

application of knowledge-based techniques to structural data, or experimental information 

derived from biological assays (for comprehensive reviews see refs. 3-5). Using these scales, 

lipophilicity profiles of peptides or proteins can be derived from the lipophilicity of single 

residues, generally assuming an additivity principle. Nevertheless, there are differences not only 

in the absolute magnitude of the residue lipophilicities, but also in the relative values, giving rise 

to a variable degree of correlation between scales that reflects the differences between the 

material systems, methods and experimental conditions that underlie the definition of each scale. 

In this study our aim is to develop a lipophilicity scale from theoretical computations that takes 

into account the structural dependence of the conformational preferences of amino acids as well 

as the influence of pH in order to provide a consistent description of pH-adapted lipophilicity 

profiles in peptides and proteins. Here attention is focused on the set of natural amino acids, but 

the methodological strategy is intended to be easily adapted to nonstandard residues, such as 

nonproteinogenic residues, or to chemical modifications, such as phosphorylation, sulphonation 

and nitrosation, which regulate enzyme activity and signaling processes. To achieve this goal, 

each residue has been characterized by its distribution coefficient (DpH) using as model system 
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the corresponding N-acetyl-L-amino acid amides, taking into account the potential contribution 

of ionizable species at a given pH as noted in Eq. 1, which has recently been shown to reproduce 

the pH-dependent lipophilicity profiles of amino acid analogues.6  

                               logD
pH
= log PN +PI ⋅10

δ( )− log(1+10δ )                 (1) 

where PN and PI denote the partition coefficient of neutral and ionized species of an ionizable 

amino acid, and δ is the difference between the pKa of the ionizable group and the pH of the 

environment. 

Let us note that choice of N-acetyl-L-amino acid amides in this study enables a direct 

comparison with the experimental results reported by Fauchère and Pliska,7 as their experimental 

lipophilicity scaled was determined using these model systems in their study. The partition 

coefficients PN and PI  were determined from theoretical computations using the B3LYP/6-

31G(d) version of the quantum mechanical IEFPCM-MST continuum solvation method,8 which 

relies on the Integral Equation formalism (IEF) of the Polarizable Continuum Model (PCM).9,10 

Following our previous study of the hydration free energy of the natural amino acids,11 the 

backbone-dependent conformational library compiled by Drunback and coworkers12-14 

(http://dunbrack.fccc.edu) was used to extract the conformational preferences of residues, which 

defined the ensemble of structures used to estimate the log DpH values from IEFPCM-MST 

calculations in n-octanol and water (see SI for a detailed description of the computational 

methods). 

Two schemes were explored for weighting the contribution of each conformational state to the 

differential solvation in the two solvents. In one case, PN and PI  were determined using a 
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Boltzmann`s weighting scheme to the relative stabilities of the conformational species of a given 

residue in the two solvents, leading to the solvent-like scale (SolvL). In the second scheme, 

named protein-like scale (ProtL), the contribution of each conformation was directly taken from 

the population distribution reported in the backbone-dependent conformational library. 

Therefore, these weighting schemes are expected to yield scales better suited for reflecting the 

lipophilic balance of amino acids well exposed to bulk solvent or in a protein-like environment, 

respectively. Finally, the effect of pH on the logDpH values was introduced from the 

experimental pKas of ionizable residues in peptide models in aqueous solution15,16 and in folded 

proteins17,18 for the SolvL and ProtL scales, respectively.  

The values of these lipophilicity scales for the amino acids at physiological pH are shown in 

Table 1 (ProtL data are averages of the log D7.4 values determined separately for α-helix and β-

sheet structures, which are reported in SI Table S1). Taken Gly as reference, the ProtL scale 

comprises log D7.4 values ranging from -3.91 (Arg) to 3.99 (Phe), reflecting the extreme values 

of hydrophilic residues (Arg, Asp, Glu and Lys), and hydrophobic ones (Trp, Phe) (see also SI 

Figure S1). These trends are also found in the SolvL scale, although the distribution of log D7.4 

values varies from -1.35 (Glu) to 2.62 (Phe). This trait is also found in other scales, as 

knowledge-based methods generally give rise to a narrower range of lipophilicites compared to 

other experimental scales.19 In our case, this arises from the distinct weighting factors used in 

ProtL and SolvL scales, leading to larger differences in the log D7.4 values of polar and ionizable 

amino acids, which show a preference for extended conformations (SI Figure S2), likely 

reflecting the formation of stabilizing interactions (e.g salt bridges) or the solvent exposure to 

bulk water in proteins.20,21  
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The sensitivity of the lipophilicity of ionizable residues to pH changes is shown in Figure 1, 

which compares the log DpH values at pH 2.1, 7.4 and 9.0, chosen as representative values of the 

pH changes along the gastrointestinal tract. The hydrophilicity of acid/basic amino acids is 

enhanced at basic/acidic pHs, as expected from the predominance of the ionic species. In the 

SolvL scale, it is worth noting the hydrophilic nature of protonated His at acidic pH, and the 

slight hydrophobicity of protonated Glu. In contrast, the ProtL scale exhibits a higher sensitivity 

to pH, as noted in the large changes in the log DpH values of Asp and Glu, which are decreased 2-

3 log DpH units upon deprotonation, the reduced hydrophilicity of Lys at basic pH, and the 

change from hydrophobic (at acid and physiological pH) to hydrophilic (at basic pH) of Cys. 

This reflects the ability of these scales to present the pH influence on the lipophilicity of 

ionizable residues, which may be affected by the local environment in proteins.22,23 

To calibrate the suitability of these scales, comparison was made with the log D7.4 values 

reported by Fauchère and Pliska,7 which were experimentally determined from the partitioning 

of N-acetyl-L-amino acid amides between n-octanol and water at physiological pH (Figure 2). 

Comparison with the SolvL values gives satisfactory results, as noted in a correlation coefficient 

(r) of 0.96 and a mean unsigned error (mue) of 0.33 log D7.4 units for a set of experimental 

values ranging from -3.36 to 0.61. The correlation coefficient is slightly worse (r = 0.92) and the 

mue increases to 1.68 for the ProtL scale. For the sake of comparison, the same analysis was 

performed by using log D7.4 values obtained from computations with the SMD solvation model,24 

in conjunction with the two weighting schemes, and the results also revealed a better 

performance for the solvent-adapted scheme (r = 0.85, mue = 0.83; SI Figure S3). On the other 

hand, the SolvL scale also performed better than the empirical estimates of log D7.4 obtained 
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from ACD/ILab25 (r = 0.88, mue=0.60) and ChemAxon26 (r = 0.92, mue=0.65) when compared 

with the experimental values reported by Fauchère and Pliska (SI Figure S4). 

Table 2 shows the comparison of the SolvL and ProtL lipophilicities with experimental scales, 

including four bulk solvent-based scales (Fauchère-Pliska,7 Eisenberg-McLachlan,27 Hopp-

Woods,28 Wimley et al.29), two biological-derived (Moon-Fleming,30 Hessa et al.31) and two 

knowledge-based (Koehler et al,19 Janin et al.32) scales, and a consensus (Kyte-Doolittle33) one. 

The bulk solvent-based scales rely on experimental measurements of the transfer between n-

octanol and water (Fauchère-Pliska, Eisenberg-McLachlan) at physiological pH or at basic 

conditions (pH = 9.0; Wimley et al.), and between ethanol and the vapor phase (Hopp-Woods). 

Excellent correlations are found with Fauchère-Pliska, Eisenberg-McLachlan, and Hopp-Woods 

scales (0.89 < r < 0.92). A worse correlation (r ≈ 0.60) is found in the comparison with Wimley 

et al. scale, but at large extent this can be attributed to the formation of salt bridges between 

Arg/Lys residues with the terminal carboxyl group in n-octanol for the AcWL-X-LL 

pentapeptides used as model systems, as noted by 13C-NMR studies.34 Exclusion of Arg and Lys 

enhances the correlation coefficient to 0.87. On the other hand, the bulk solvent-based 

lipophilicities are consistently closer to the values collected in the SolvL scale (mue of 0.36-0.92 

log P/D units) than to the ProtL ones (mue of 0.84-1.24 log P/D units). 

The correlation coefficients obtained with biological-, knowledge-based and consensus scales 

are satisfactory (0.74 < r < 0.94; Table 2), but tend to be lower than the values obtained with the 

bulk solvent-based transfer scales. This is not unexpected keeping in mind that the lipophilicites 

are derived from statistical analysis of topological distributions of residues in proteins (Koehler 

et al, Janin et al.), or from complex biochemically-adapted assays, such as the transfer of amino 

acids from water to a phospholipid bilayer (Moon-Fleming), the recognition of artificial helices 
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by the Sec61 translocon (Hessa et al.), or the combination of water-vapor transfer free energies 

with the interior-exterior distribution of amino acids in the consensus (Kyle-Doolittle) scale. 

Keeping in mind the notable differences in the material systems and protocols used to derive 

these experimental scales, the correlation coefficients obtained from the comparison with the 

SolvL scale are still remarkable. 

The sensitivity of the results to the pH was examined by extending the comparison to the 

lipophilicities determined for the SolvL and ProtL scales at pH values of 3.8, 7.4, and 9.0 (note 

that the acidic and basic pH values were chosen in the studies reported by Moon and Fleming 

and Wimley et al., respectively). In general, there is little difference between the correlation 

coefficients obtained at pH 7.4 and 9.0 (Figure 3). However, a larger effect is found in the 

comparison of the log D3.8, as there is a general decrease in the correlation coefficient, which is 

remarkable for the bulk solvent-based transfer scales, especially in the case of Hoop -Woods and 

Wimley et al. The only exception is found in the comparison with the Moon-Fleming scale, as 

the highest correlation coefficient is found for the ProtL values corrected at pH 3.8. These 

findings support the suitability of the SolvL/ProtL scales to account for the pH influence on the 

lipophilicity of amino acids. 

The reliability of the SolvL/ProtL scales has been calibrated by comparing the cumulative 

lipophilicity with the (RP-HPLC) retention time determined for different sets of peptides.35,36 

Given the small size of the peptides (≤ 13 residues) and the lack of well defined secondary 

structures, non-additivity effects can be expected to play a minor role.37 Accordingly, the 

cumulative lipophilicity was determined assuming an additive scheme (Eq. S3 in SI 

Computational Methods).  
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The first test comprises eight 10-mer peptides with equal charge that differ in the content of 

hydrophobic residues (SI Table S2).38 The SolvL cumulative lipophilicity yields a correlation 

coefficient of 0.96 (Figure 4A), which compares with the value estimated from the hydrophobic 

surfaces of peptides derived from molecular dynamics simulations (r = 0.97),38 whereas a 

slightly lower correlation was found for the ProtL scale (r = 0.91; SI Table S3). For this simple 

set of homogeneous peptides, most of the experimental lipophilicity scales generally yielded 

correlations higher than 0.9 (SI Table S3).  

A more challenging test is the set of 248 peptides with equal length, but different net charge at 

the experimental acidic conditions (pH = 2.1),39,40 comprising 36 peptides with two charged 

amino acids (Arg combined with His or Lys), 105 peptides with a single charged residue (Arg, 

Lys, or His), and finally 17 neutral peptides. The SolvL cumulative lipophilicity correlates 

satisfactorily with the retention time determined for the whole set of peptides (r = 0.85; Figure 

4B). Among bulk solvent-based scales, Fauchère-Pliska, Eisenberg-McLachlan and Hopp-

Woods also provided reasonable correlations coefficients (0.74 < r < 0.85; SI Table S2 and 

Figure S6), but a worse correlation was found for Wimley et al., although this may be attributed 

to the different pH used in this latter scale (pH = 9.0) and the experimental assay conditions (pH 

= 2.1). The performance of biological-, knowledge-based and consensus scales was also worse 

(0.55 < r < 0.64; SI Table S3 and Figure S5), but for Moon-Fleming (r = 0.78), likely reflecting 

the acidic pH conditions considered in the derivation of this lipophilicity scale. 

Finally, given the relevance of partition (log PN)/distribution (log D7.4) coefficients for ADME 

properties of peptides,41 the suitability of the SolvL scale was further checked for reproducing 

the differences in log PN /log D7.4 of a set of random peptides.42 The SolvL-based additive 

scheme yielded promising results, as noted in r values of 0.93 and 0.83 in reflecting the 
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experimental range of log PN and log D7.4 for sets of 118 and 116 peptides, respectively (Figure 

4C,D). Compared to experimental scales, a similar predictive power was attained for Fauchère-

Pliska and Eisenberg-McLachlan scales (r ≈ 0.90) for the set of 118 log PN data, and for Hopp-

Woods (r ≈ 0.88) for the set of 116 logD7.4 values, but with a larger mue (around 2.3 versus 0.7 

for the SolvL scale; SI Tables S4 and S5). 

In these test cases, the ProtL scale performed worse (0.60 < r < 0.91; SI Figure S6) than the 

SolvL one, suggesting that the Boltzmann-weighting scheme is better suited for describing the 

lipophilicity of residues in structureless peptides. However, one might expect an improved 

performance of the ProtL scale in the analysis of the lipophilic complementarity in peptide-

protein and protein-protein complexes. To this end, we have examined the relationship between 

the ProtL cumulative lipophilicity and the experimental binding free energies of 19 peptides to 

MHC (HLA-A*02:01 allele) proteins (SI Table S6). These peptides were chosen subject to the 

availability of (i) a precise structural information of the peptide-protein complex in the Protein 

Data Bank,43 and (ii) an estimate of the binding affinity in the Immune Epitope Database and 

Analysis Resource44 (SI Table S6). The cumulative lipophilicity was determined taking into 

account the fraction of solvent-exposed area of the peptide residues in the MHC complex, 

supplemented with two correction parameters that account for the contribution due to the 

involvement of the backbone in hydrogen bonds,45 and to the burial of apolar residues from 

water to hydrophobic environments30 (Eq. S4 in SI Computational Methods). 

The results show that the ProtL scale works better than the SolvL scale (correlation coefficients 

of 0.58 and 0.42, respectively; Figure 5) when the whole set of 19 peptides is considered, 

yielding correlation coefficients that are comparable with Moon-Fleming and Eisenberg-
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McLachlan scales (r of 0.61 and 0.51, respectively; SI Table S7). This correlation is remarkable 

keeping in mind the heterogeneity of the peptides, and the uncertainty arising from the 

combination of data taken from different studies and determined using distinct experimental 

approaches. Further, a significant improvement is observed upon exclusion of the two Cys-

containing peptides (PDB codes 3MRG and 2PYE), perhaps reflecting a quenching effect of 

cysteine in fluorescence assays.46,47 Thus, upon exclusion the correlation coefficient of ProtL and 

SolvL scales increases up to 0.80 and 0.73, respectively, leading to regression equations with 

increased statistical significance (p-values of 2 × 10-4 and 2 × 10-3, respectively). Finally, let us 

note that this improvement outperforms the results obtained with the experimental scales (r < 

0.67; SI Table S7). 

Overall, the results point out the versatility of the SolvL/ProtL scales to examine the 

relationships between lipophilicity and physicochemical properties of peptides under different 

pH conditions. From a methodological point of view, the strategy relies on the combination of 

accurately parametrized version of continuum solvation models with an elaborate formalism to 

derived distribution coefficients from the partition of neutral and ionic species, in conjunction 

with the pKa of ionizable groups. The simplicity of the computational strategy and the low cost 

of required calculations permit an straigthforward extension to non-standard residues, such as 

effect of chemical modifications on lipophilicity maps of proteins, thus providing information 

valuable to explore biomolecular recognition, and to modulate the properties of engineered 

polymeric materials. 
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Table 1. Solvent-like (SolvL) and Protein-like (ProtL) Lipophilicity Scales Based on the logDpH 
Values Determined for N-Acetyl-L-Amino Acid Amides at Physiological pH. The experimental 
pKa of Side Chain Ionizable Groups, and Calculated Partition Coefficients of Neutral (logPN) and 
Ionized (logPI) Residues Are Also Given. 
 

Residue 
Exp. pKa log PN log PI log D7.4 a 

SolvL  ProtL SolvL  ProtL SolvL  ProtL SolvL  ProtL 

Ala - - -1.16 -2.47 - - -1.16 (0.85)  -2.47 (0.66) 

Arg 12.5b 12.5b -2.86 -3.66 -2.99 -7.38 -2.99 (-0.98) -7.04 (-3.91) 

Asn - - -2.98 -3.97 - - -2.98 (-0.97) -3.97 (-0.84) 

Asp 3.90c 3.50d -2.26 -3.18 -2.80 -8.54 -2.80 (-0.79) -5.87 (-2.74) 

Cys 9.83e 6.80d -0.16 -1.47 -4.19 -5.78 -0.16 (1.85) -2.17 (0.96) 

Gln - - -2.22 -4.00 - - -2.22 (-0.21) -4.00 (-0.87) 

Glu 4.20c 4.20d -1.49 -3.79 -3.38 -6.20 -3.36 (-1.35) -5.96 (-2.83) 

Gly - - -2.01 -3.13 - - -2.01 (0.00) -3.13 (0.00) 

His (δ) 7.00 c 6.60d -1.20 -4.67 -4.06 -5.97 -1.35 (0.66) -4.56 (-1.43) 

His (ε) 7.00 c 6.60d -0.72 -4.98 -4.06 -5.97 -0.87 (1.14) -4.97 (-1.84) 

Ile - - -0.50 -0.38 - - -0.50 (1.51) -0.38 (2.75) 

Leu - - 0.05 -1.36 - - 0.05 (2.06) -1.36 (1.77) 

Lys 11.1c 10.5d -0.40 -2.19 -3.24 -6.81 -3.18 (-1.17) -5.08 (-1.95) 

Met - - -0.51 -1.83 - - -0.51 (1.50) -1.83 (1.30) 

Phe - - 0.61 0.86 - - 0.61 (2.62) 0.86 (3.99) 

Pro - - -0.77 -1.44 - - -0.77 (1.24) -1.44 (1.69) 

Ser - - -2.04 -4.12 - - -2.04 (-0.03) -4.12 (-0.99) 

Thr - - -1.22 -3.01 - - -1.22 (0.79) -3.01 (0.12) 

Trp - - 0.33 0.16 - - 0.33 (2.34) 0.16 (3.29) 

Tyr 10.3c 10.3d -0.49 -1.80 -4.21 -9.59 -0.49 (1.52) -1.80 (1.33) 

Val - - -0.93 -1.68 - - -0.93 (1.08) -1.68 (1.45) 
 
a Values for ionizable residues are shown in bold. Log D7.4 values relative to glycine are given in parenthesis.  
b Ref 14. c Ref  15. d Ref 16. e Ref 17. 
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Table 2. Statistical Parameters of the Comparison of the SolvL and ProtL Scales with Other 
Lipophilicity Scales. Comparison Was Made Using the Values Adapted to the Specific pH of 
Each Scale and Relative to Gly. 
 

Scalea 
SolvL ProtL 

mseb mue rsmd r 
p-value mse mue rsmd r 

p-value 

Bulk-Solvent Adapted Scale 

Fauchère - Pliska -0.20 0.36 0.46 0.94 
2 × 10-10 

0.36 0.98 1.28 0.92 
6 × 10-9 

Eisenberg - 
McLachlan -0.20 0.44 0.57 0.90 

3 × 10-8 
0.36 1.08 1.35 0.91 

2 × 10-8 

Hopp - Woods -0.49 0.60 0.74 0.91 
2 × 10-8 

0.07 0.84 1.08 0.89 
9 × 10-8 

Wimley et al. 
-0.60 1.02 1.16 0.59 

0.006 0.04 1.24 1.64 0.61 
4 × 10-3 

-0.87c 0.92 1.03 0.87 
2 × 10-6 -0.30 1.03 1.25 0.87 

2 × 10-6 

Biological-Based Scale 

Moon - Fleming -0.12 0.57 0.67 0.94 
4 × 10-10 0.24 0.72 0.93 0.91 

7 × 10-9 

Hessa et al. -0.92 0.93 1.18 0.79 
3 × 10-5 

-0.36 1.08 1.46 0.82 
6 × 10-6 

Knowledge-Based Scale 

Koehler et al. -0.91 1.10 1.33 0.78 
4 × 10-5 

-0.35 1.55 1.87 0.80 
2 × 10-5 

Janin et al. -1.06 1.11 1.32 0.78 
3 × 10-5 

-0.51 1.36 1.71 0.74 
2 × 10-4 

Consensus Scale 

Kyte-Doolittle -0.81 1.43 1.71 0.72 
3 × 10-4 

-0.25 1.13 1.41 0.78 
3 × 10-5 

 

a A physiological pH was considered in all cases, but for Wimley at al. and Moon-Fleming, since the corresponding 
pH was fixed at 9.0 and 3.8 following the specific experimental conditions. 

b mse: mean signed error, mue: mean unsigned error, rmsd: root-mean square deviation, r: Pearson correlation 
coefficient, p: statistical p-value. mse, mue and rmsd are given in log PN/ D units.  

c Values in this row were obtainined upon exclusion of Arg and Lys. Since this scale was built up using model 
pentapeptides (AcWL-X-LL) at pH 9.0, Arg and Lys formed a salt bridge with the terminal carboxyl group in n-
octanol as noted by 13C-NMR studies.34    
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Figure 1. Representation of the pH Dependence of the SolvL (left) and ProtL (rigth) 

Lipophilicity Scales for Ionizable Amino Acids (Values Relative to Gly). Values Determined at 

pH of 2.1, 7.4 and 9.0 are Shown in Orange, Green and Blue, Respectively, and the Values of the 

Neutral Species (log PN) are Shown in Black.  
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Figure 2. Comparison Between (left) SolvL and (right) ProtL Lipophilicity Scales Derived From 

the IEF/MST Solvation Model (Expressed as log D7.4) and Fauchère-Pliska Experimental Values 

for the Twenty N-Acetyl-L-Amino Acid Amides (r: Pearson correlation coefficient; mse: Mean 

signed error; mue: Mean Unsigned Error; rmsd: Root-Mean Square Deviation). Regression 

Equations Shown in Table S8. 
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Figure 3. Representation of the Pearson Correlation Coefficient in the Comparison of the SolvL 

scale with Bulk Solvent-Based Scales, and ProtL Scale with Biological-Based, Knowledge-

Based and Consensus Lipophilicity Scales at pH 3.8, 7.4 and 9.0 (Shown as Green, Red and Blue 

Lines, Respectively).  
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Figure 4. Relationship Between the Cumulative Lipophilicities Determined from the SolvL 

Scale Versus (A) the Retention Time for Eight 10-mer Peptides (pH 7.4; Ref. 38), (B) 248 

Unique 13-mer Peptides (pH 2.1; Ref. 39,40), (C) log PN for 118 Random Peptides (Ref. 42), 

and (D) log D7.4 for 116 Random Peptides (Ref. 42). Regression Equations Shown in Table S8. 
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Figure 5. Relationship Between the Cumulative Lipophilicities Determined from (left) SolvL 
and (right) ProtL Scales Versus Experimental Binding Affinities of MHC-Bound Peptides. Cys-
Containing Peptides Are Indicated as Red Dots. Regression Equations Shown in Table S8. 

 

 

 


