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Introduction 28 

In addition to obesity, T2DM is a major risk factor for cardiovascular disease (CVD). Hyperglycemia 29 

and insulin resistance (IR) are powerful predictors of adverse cardiovascular events, and these two 30 

risk factors in combination exert a detrimental synergistic effect [1]. However, despite a number of 31 

recognized risk factors including family history of diabetes, age, sex, and numerous anthropometric, 32 

biochemical, socioeconomic, and lifestyle variables, the identification of individuals with increased 33 

risk of T2DM and/or CVD remains a laborious task [2]. Typical biomarkers in T2DM prediction 34 

models include elevated concentrations of fasting plasma glucose and insulin, glycated hemoglobin 35 

(HbA1c), serum ferritin, C-reactive protein (CRP), and interleukin-2 receptor alpha (IL2RA); these 36 

models also predict a decrease in effective serum insulin and adiponectin concentrations [3, 4]. 37 

Recent advances in “omics” such as genomics and metabolomic technologies are generating an 38 

increasing number of potential biomarkers to identify crucial stages in the pathogenesis and 39 

progression of a determined pathological state, including T2DM. In addition, they are also gaining 40 

insights in the underlying molecular disease-causing mechanisms through the discovery of 41 

associations between some genetic variants and key small molecules. These relationships highlight 42 

the power of integrating multiomic approaches (Systeomics) to better understand the causal 43 

mechanisms [5]. For instance, recently, Wang et al. [6] delineated the role of fatty acid desaturases 44 

(FADs) in regulating human liver lipid composition through a targeted lipidomic analysis and 45 

associated them with FADS single nucleotide polymorphisms (SNPs) from genome-wide association 46 

studies (GWASs). They suggested that FADS1 and its polymorphisms were related with long-chain 47 

fatty acid accumulation in human liver [6]. Metabolomics is defined as a comprehensive 48 

characterization of endogenous or exogenous metabolites representing the metabolome [7]; the use 49 

of this technology enables the detection of physiological or pathological changes in cells, tissues, or 50 

body fluids and represents a useful tool for biomarker detection [8, 9]. In diabetes research, 51 

metabolomics has been successfully applied to diagnostic and prognostic biomarker discovery, 52 

elucidation of disease pathways, identification of drug side effects, and discovery of functional 53 

biomarkers for drug activity [10]. The present review aims to summarize the distinct family of 54 

metabolites that have been proposed as potential biomarkers of different stages of T2DM by 55 



metabolomic approaches. Additionally, the impact of diet, as an important lifestyle factor, on classical 56 

and metabolomic biomarkers will be reviewed for better understanding the pathophysiology of 57 

diabetes, aiming to implement healthcare strategies in the future. 58 

Metabolomic Biomarkers in Prediabetes 59 

The term prediabetes refers to the impaired glucose tolerance (IGT) and/or impaired fasting glucose 60 

(IFG) of subjects with a relatively high risk of developing diabetes. IFG is characterized by fasting 61 

plasma glucose levels between 100 mg/dl (5.6 mmol/l) and 126 mg/dl (7.0 mmol/l). IGT is defined 62 

by 2-h plasma glucose values after an oral glucose tolerance test (OGTT); values between 140 mg/dl 63 

(7.8 mmol/l) and 200 mg/ dl (11.1 mmol/l) are considered indicative of IGT [11]. In addition to IFG 64 

and IGT, IR is also considered a crucial metabolic status because it can precede the dysglycemic 65 

states of prediabetes and T2DM [12]. Because prediabetic stages are asymptomatic, extended time 66 

periods may elapse before diagnosis of T2DM, hampering early detection. In addition to the most 67 

common test used to assess impaired insulin sensitivity (IS), homeostasis model assessment of insulin 68 

resistance (HOMA-IR), OGTTs are also indirectly used to assess insulin resistance.  69 

Metabolomics may be extremely helpful in the identification of novel biomarkers of prediabetes and 70 

metabolic disturbances that precede the new onset of T2DM. In this regard, a targeted metabolomic 71 

approach has shown that IR emerges in insulin-dependent processes, such as proteolysis, lipolysis, 72 

ketogenesis, and glycolysis, in addition to the reduction in glucose uptake and suppression of 73 

gluconeogenesis, thus, reflecting a broad switch from catabolism to anabolism [13]. The 74 

understanding of the role of dyslipidemia in prediabetes has progressed significantly with the 75 

implementation of lipidomics, a new branch of metabolomics [14–16]. The current and advanced 76 

analytical techniques used in lipidomics such as chromatography coupled to mass spectrometry (MS) 77 

or nuclear magnetic resonance (NMR) as well as other spectroscopic approaches are powerful 78 

techniques used in lipidomics for lipid detection and characterization [17]. They allow detection and 79 

characterization up to several hundreds of lipids belonging to major lipid classes (i.e., fatty acyls, 80 

phospholipids, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids) [17]. As an example 81 

of the high throughput obtained by these technologies, a recent lipidomic study reported over 500 82 



different lipid molecular species among the main lipid classes in plasma of individuals [18]. The 83 

importance of lipoprotein fatty acid composition and its role in IS has been emphasized in a study 84 

using lipidomic techniques, including ultra-performance liquid chromatography coupled to mass 85 

spectrometry (UPLC/MS). In this study, the degree of fatty acid saturation in triacylglycerols (TAG) 86 

within the VLDLIDL- LDL axis and HDL were differentially related to IR [15]. Specifically, serum 87 

TAG molecules, such as 16:0/16:0/18:1 and 16:0/18:1/18:0, correlated positively with HOMA-IR; 88 

however, TAG containing essential fatty acids, such as 18:1/ 18:2/18:2, correlated negatively. The 89 

findings of this study reinforce the role that fatty acids may have in the pathogenesis of IR; therefore, 90 

the serum fatty acid composition may be considered a more precise marker of insulin resistance than 91 

total serum TAG concentrations [15]. Consistent with this hypothesis, in the Framingham Heart Study 92 

(FHS), serum TAG characterized by relatively low carbon number and double bond content (i.e., 93 

C46:1, 48:1) were positively associated with HOMA-IR; conversely, TAG with increased carbon 94 

number and double bond content (i.e., C56:9, C58:10) were not correlated with HOMA-IR [16]. 95 

These results were consistent even after the participants were grouped in quartiles according to 96 

HOMA-IR [16].  97 

Zhao et al. [19] also observed a characteristic lipid profile for individuals with IGT as a prediabetic 98 

condition. Applying untargeted metabolomics using UPLC-qTOF-MS, the authors reported increased 99 

plasma levels of free fatty acids (FFA) (i.e., C16:0, C18:0, C18:1) and glycochenodeoxycholic acid 100 

as well as decreased concentrations of lysophosphatidylcholines (lysoPC) (i.e., C16:0, C18:0, C18:1 101 

and C18:2) relative to subjects with normal glucose tolerance (NGT) [19]. In the same study, the 102 

NGT individuals trended towards lower plasma levels of saturated fatty acids (SFA), including 103 

palmitate and stearate, but not monounsaturated (MUFA) or polysaturated fatty acids (PUFA), such 104 

as oleate and arachidonic acid, respectively [19]. 105 

Beyond the isolated impact of dyslipidemia, amino acid signature has been also reported as a 106 

characteristic signature in obese prediabetic subjects. In a broad metabolic profiling study performed 107 

by Newgard et al., the PCA-component including certain amino acids, branched-chain amino acids 108 

(BCAA) (leucine/isoleucine and valine), methionine, glutamate/ glutamine, aromatic amino acids 109 



(phenylalanine and tyrosine), as well as acylcarnitines (AcylCN) C3 and C5 was obesity associated 110 

and linearly related to IR assessed by the HOMA index [20]. These findings were supported by 111 

Huffman et al., who reported that a similar group of metabolites containing large neutral amino acids 112 

(proline, valine, leucine/ isoleucine, methionine, phenylalanine, tyrosine, histidine) and uric acid were 113 

related to IR in a mixed-sex population (n=73) at risk for T2DM [21]. Additionally, a group of 114 

metabolites including FFA and fatty acid oxidation byproducts was associated with an impaired 115 

pancreatic response. The authors suggested that a poor compensatory response to insulin production 116 

is associated with increased concentrations of circulating FFA, potentially having a toxic effect on β 117 

cells in prediabetic subjects [21]. Interestingly, the same authors also observed sex differences; men 118 

were more susceptible to amino acid-induced IR, whereas women were more vulnerable to lipid-119 

mediated β cell toxicity [21]. More recently, using proton nuclear magnetic resonance (1HNMR)- 120 

based analysis, a set of 20 serum metabolites was also associated with IR in a cohort of 7098 young 121 

adults [22]. 122 

BCAAs, aromatic amino acids, glycolysis and gluconeogenesis intermediates, and fatty acid 123 

composition and saturation were positively correlated with HOMA-IR. Conversely, glutamine and 124 

ketone bodies (3-hydroxybutyrate and acetoacetate) exhibited an inverse correlation, as did the 125 

average number of double bonds per fatty acid chain. Furthermore, the authors observed interactions 126 

between four amino acids (leucine, isoleucine, valine, and tyrosine) and sex and obesity variables, 127 

with significant associations in women with central obesity [22]. Nevertheless, the ethnicity of 128 

populations has to take into account when interpreting results. Metabolomics [23], jointly with 129 

genomics [24], is a promising and needed tool for evaluating differences between different ethnical 130 

populations as previously some studies observed that different populations have different rates of 131 

T2DM [24]. A recent metabolomic study has shown that a pattern of reduced plasma glycine and 132 

increased aromatic and BCAA was related to individuals with high IS compared with low IS 133 

individuals in European-American subjects, while other ethnics (Hispanics or African Americans) 134 

did not show the same associations [23]. Further metabolomic studies are needed in ethnically and 135 

racially diverse populations. To segregate the effects of obesity and IR on the metabolic changes 136 

observed in prediabetic subjects, Tai et al. compared the metabolic profiling of two non-obese (BMI 137 



~24 kg/m2) Asianethnic populations with IR. Using a combination of two metabolic platforms, 138 

tandem mass spectrometry (MS/MS), and gas chromatography coupled toMS (GC-MS), the authors 139 

identified significant changes in plasma and urine metabolites in individuals separated by tertiles of 140 

IR based on HOMA indices [25]. The results showed up to 26 clusters composed of amino acid and 141 

AcylCN, between other metabolites that contributed to the grade of IR. One of these clusters was 142 

composed of 10 amino acids that were significantly increased in individuals with a high HOMA 143 

index. The same trend was observed in another group composed of pyruvate, lactate, and arginine. 144 

Moreover, isobutyrylglycine and isovalerylglycine , included in another cluster, were significantly 145 

lower in the high-HOMA group than in the low-HOMA group but in only one population. 146 

Interestingly, no association between IR and traditional IR biomarkers such as inflammatory 147 

mediators and fatty acids was observed in this study [25]. 148 

Metabolic signatures of prediabetes composed of few metabolites have been proposed in several 149 

studies. Wang-Sattler et al. quantified 140 metabolites with an AbsoluteIDQTM p180 kit 150 

(BIOCRATES Life SciencesAG, Innsbruck, Austria) in fasting serum samples of subjects from the 151 

Cooperative Health Research in the KORA S4 study. The authors observed that glycine and lysoPC 152 

18:2 were significantly decreased, whereas AcylCN C2 was increased in IGT individuals compared 153 

to the NGT group [26•]. Similar results were observed in the follow-up KORA F4 study. In the 154 

prospective KORA S4→F4 cohort, lower levels of glycine and lysoPC 18:2, but not C2 AcylCN, 155 

were found to be predictors of both IGT and T2DM. This was independently confirmed by the same 156 

authors in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort 157 

[26•]. In other clinical studies, α-hydroxybutyrate (α-HB) has also been proposed as a strong 158 

prediabetic biomarker [27, 28•]. Based on a subset (n=399) of the EPIC cohort, Gall et al. identified 159 

α-HB as the most significant metabolite associated with IR and, interestingly, as an early marker for 160 

dysglycemia (IFG + IGT) independent of and in addition to IR [27]. Ferrannini et al. later confirmed 161 

the association of α-HB with IR, along with the novel metabolite linoleoylglycerophosphocholine (L-162 

GPC) [28•]. Ferranini et al. observed a positive correlation between α-HB and IR in two prospective 163 

observational cohorts, the Relationship between Insulin Sensitivity and Cardiovascular Disease 164 



(RISC) study (n=1261) and the Botnia Prospective Study (n=2580) with 3 and 9.5 years of follow-165 

up, respectively. Additionally, L-GPC was negatively correlated with IR. α- HB was also reciprocally 166 

related to indices of β cell function derived from OGTT. In the follow-up of both studies, α-HB was 167 

a positive predictor and L-GPC a negative predictor of dysglycemia (RISC study) or T2DM(Botnia 168 

Study), independently of the family history of diabetes, sex, age, BMI, and fasting plasma glucose 169 

[27]. Recently, a novel branched-chain ketoacid derivative of isoleucine, called 3-methyl-2- 170 

oxovalerate, was found to be significantly associated to IFG, both in the plasma and urine of 171 

individuals with prediabetes relative to control individuals with diabetes [29]. The observation that 172 

3-methyl-2-oxovalerate was the second strongest predictive biomarker for IFG, after glucose, was 173 

first reported in a cohort of 2204 females from Twins, UK, and was subsequently replicated in 174 

individuals with IFG (n=536) in the follow-up study KORA F4 [29]. Other metabolites that are not 175 

directly linked with major metabolic pathways have been significantly associated with prediabetes. 176 

For example, decreased urinary levels of gut microbiota-associated metabolite biomarkers, including 177 

hippuric acid, methylxanthine, methyluric acid, and 3- hydroxyhippuric acid, have been linked to 178 

IGT [19].  179 

Metabolomics Biomarkers and Pathways Altered in T2DM 180 

Because T2DM triggers multiple metabolic disorders, efforts have been made to elucidate the 181 

mechanisms causing these disorders and systemic complications. Metabolomics has been 182 

successfully applied in T2DM research to elucidate novel metabolic pathways as well as to define 183 

relationships between significant metabolites in these pathways. Nowadays, the knowledge of 184 

interactions between affected T2DM pathways is improving through building biological pathways 185 

and network analysis techniques which integrate data from the different Bomics^ [30, 31]. To obtain 186 

a more comprehensive analysis of the metabolic processes negatively regulated by T2DM, a summary 187 

of metabolomic studies and the resulting metabolites significantly altered in diabetics is shown in 188 

Table 1. Furthermore, Fig. 1 illustrates a summary of metabolic networks presumably affected by 189 

T2DM. To this end, we used the MetaCoreTM software (Thomson Reuters) fromGeneGo, uploading 190 

the complete list of T2DM biomarkers reported in literature (Table 1). Metabolomic studies 191 



evaluating individuals with T2DM confirm that metabolic networks of primary biomolecules, such 192 

as carbohydrates, lipids, and amino acids, are altered as a consequence of the diabetic stage (Fig. 1). 193 

Hyperglycemia and glycosuria are the major biomarkers of uncontrolled T2DM [29, 54]. However, 194 

abnormal levels of other metabolites reflect dysregulation of carbohydrate metabolism (i.e., fructose, 195 

mannose) (Fig. 1). Impairment of glycolysis and gluconeogenesis has been demonstrated by 196 

metabolomic approaches through the identification of metabolites included in the sepathways: 197 

glycerol-3-phosphate, phosphoenolpyruvate, pyruvate, and lactate. Additionally, downstream 198 

tricarboxylic acid cycle (TCA) metabolites, such as citrate, 2-oxoglutarate, succinate, fumarate, and 199 

malate, are deregulated in diabetes (Table 1). Controversial results suggest that levels of circulating 200 

and urinary glucogenic amino acids [29, 33, 36, 39, 41, 45, 46, 52, 55] in diabetic subjects indicate 201 

deregulation of glucose biosynthesis (Table 1). Furthermore, significant increases in three ketone 202 

bodies, acetone, acetoacetate, and β-hydroxybutyrate, in plasma [32, 41] and urine [34], reflect a 203 

reduction in glucose uptake and the onset of ketosis in T2DM [56]. A considerable number 204 

ofmetabolomic studies have reported a positive association between abnormal circulating 205 

concentrations of lipid derivatives and T2DM progression. Although not necessarily consistent with 206 

prediabetes with respect to saturation, higher concentrations of long-chain (i.e., oleic, palmitic) and 207 

lower concentrations of medium-chain FFAs (i.e., caproate, pelargonate, 10-undecenoate) are a 208 

characteristic lipid signature among individuals with T2DM [41, 43, 45, 57]. Using GC-MS analysis, 209 

Han et al. demonstrated that primarily esterified fatty acids (EFA) are decreased in patients with 210 

T2DM, while non-esterified fatty acids (NEFA) are increased. This occurs even when including the 211 

variability of groups with different stages of diabetic nephropathy, suggesting a combination of 212 

lipotoxicity and toxicology repair mechanism [47]. Applying a lipidomic approach, Ståhlman et al. 213 

characterized the lipid composition of ApoB-containing lipoproteins isolated from control, 214 

normolipidemic, and dyslipidemic individuals with T2DM [58]. Significant increases in PC 16:0-215 

20:3 (in VLDL and LDL) and PC 18:0-20:3 (in LDL) were detected in normolipidemic T2DM 216 

compared with control individuals. These alterationsweremore pronounced in the dyslipidemic 217 

T2DM group, which also had a relatively increased amount of PC 16:0-16:1. Similarly, significant 218 

increases in CE 16:1 (in VLDL and LDL) and CE 20:3 (in LDL) were detected in lipoproteins from 219 



dyslipidemic T2DM participants. Furthermore, levels of palmitic acid (C16:0) in VLDL and LDL 220 

TAG correlated positively with IR [58]. Abnormal circulating levels of distinct subclasses of 221 

phospholipids, including PC, lysoPC, phosphatidylinositol (PI), PE, lysoPE, SM, PG, and 222 

sphingosine-1-phosphate (Table 1), have also been identified bymetabolomic approaches and were 223 

considered potential biomarkers of the diabetic dyslipidemia [48, 49, 53]. Ceramides, another 224 

important class of bioactive lipids, have recently garnered attention due their pathophysiological 225 

relevance in the development of IR and impaired glycemic control [59]; therefore, ceramide 226 

concentrations are significantly deregulated in T2DM [37]. A research focused on acylcarnitines 227 

(AcylCN) and their byproducts has generated insights into the dysregulation of fatty acid oxidation 228 

associated with T2DM. Variations in the levels of AcylCN, mostly from short to medium chains, 229 

have been detected by applying targeted metabolomic analyses to T2DM before its onset, there is 230 

great demand for reliable, predictive biomarkers. Targeted metabolomic studies have increasingly 231 

aided in the development of novel biomarkers in large prospective studies [16, 60••, 61, 62]. 232 

Consistent with previous observations in individuals with IR, Rhee et al. observed a characteristic 233 

association between carbon number and bond content that was predictive of developing T2DM. 234 

Specifically, TAG with a lower carbon number and double bond content were associated with an 235 

increased odds ratio (OR) for diabetic subjects, while TAG with a higher carbon number and double 236 

bond content were associated with an OR of less than one. Moreover, the inverse relationship between 237 

diabetes risk, carbon number, and double bond content persisted after multivariable adjustment for 238 

lysoPC, PC, and possibly lysophosphatidylethanolamines (lysoPE), but not for cholesterol esters 239 

(CE) [16]. In another but complementary study, Wang et al. carried out two parallel and independent 240 

studies based on the same sample population. These authors discovered two novel metabolic 241 

signatures for the prediction of T2DM [60••, 62]. In the first study, higher levels in a panel of five 242 

amino acids (isoleucine, leucine, phenylalanine, tyrosine, and valine) showed a strong association 243 

with future development of diabetes. Moreover, a combination of three amino acids (isoleucine, 244 

tyrosine, and phenylalanine) was shown to be a better predictor of future diabetes than all five amino 245 

acids; individuals in the top quartile of this 3-amino acid score had a five- to sevenfold higher risk of 246 

developing new-onset diabetes compared with individuals in the lowest quartile [60••]. These results, 247 



with the exception of a nonsignificance of isoleucine, were replicated by the same authors in the 248 

Malmö Diet and Cancer (MDC) study [60••]. Later, Wang et al. reported that the odds of developing 249 

T2DM were increased fourfold for individuals in the higher quartile of plasma 2-aminoadipic acid 250 

(2-AAA) concentrations over the 12-year follow-up period, relative to those in the lowest quartile. 251 

These results were replicated in the MDC study and were confirmed in a heterogeneous cohort from 252 

the FHS-Offspring study (n=1561) [62]. Additionally, fasting concentrations of 2- AAAwere 253 

moderately correlated with fasting insulin, HOMAIR, HOMA of β cell function, and OGTT. 254 

However, concentrations of 2-AAA were poorly correlated with the previous set of five amino acids 255 

associated with future diabetes risk, suggesting that these biomarkers are regulated by distinct 256 

pathophysiological pathways [62]. More recently, Floegel et al. confirmed that dysfunctional levels 257 

of lipid-related metabolites and amino acids are potent biomarkers for future T2DM prediction [61]. 258 

In the EPIC-Potsdam study, researchers identified 14 metabolites that were independently and 259 

significantly associated with T2DM risk. They used a PCA to identify 2 factors which included 260 

different metabolites. Metabolite factor 1, consisting of primarily acyl-alkyl-PCs, sphingomyelins 261 

(SM), and lysoPC, was associated with a significant 69 % reduced risk of T2DM when comparing 262 

extreme quintiles of metabolite factors. Conversely, metabolite factor 2, consisting of diacyl- PCs, 263 

BCAA and aromatic amino acids, propionylcarnitine, and hexose, was associated with a significantly 264 

greater risk of T2DM. Remarkably, when these metabolites were added to classical models using 265 

recognized risk factors of T2DM, discrimination was slightly but significantly improved [61].  266 

Nutritional Interventions in Metabolomics Biomarkers of T2DM Pharmacological and lifestyle 267 

interventions have a significant impact on T2DMpatients [63]. Among lifestyle factors, diet is a 268 

strong modulator of health status [64]. Diets rich in whole grains, fruits, vegetables, legumes, and 269 

nuts combined with moderate consumption of alcohol and lower in refined grains, red or processed 270 

meats, and sugar-sweetened beverages have been shown to reduce the risk of diabetes and also 271 

improve glycemic control and blood lipids in patients with diabetes [65••, 66, 67]. A recent systematic 272 

review and meta-analysis of dietary T2DM management approaches has highlighted that low-273 

carbohydrate, low-glycemic index (GI), Mediterranean (MedDiet), and high-protein diets effectively 274 

improve various markers of cardiovascular risk [68]. These diets successfully reduced HbA1c, 275 



stimulated weight loss, and increased HDL concentrations in people with diabetes. These studies 276 

suggest that dietary patterns should be considered in the overall strategy of diabetes management 277 

[68]. The MedDiet has received particular attention due to its demonstrated efficacy in preventing 278 

CVD [69••], in addition to its association with reduced incidence of metabolic syndrome, prediabetes 279 

[70], and T2DM [71]. Salas-Salvadó et al. recently showed a positive effect of MedDiet on T2DM 280 

prevention, comparing two types of MedDiet and using a low-fat diet as a control in subjects with 281 

high CVD risk [72, 73]. In an interventional study, the authors discovered that without energy 282 

restrictions, MedDiet enriched with either extra-virgin olive oil (EVOO) or mixed nuts reduced the 283 

risk of T2DM [72]. By assessing the efficacy of long-term adherence to MedDiet (median follow-up, 284 

4.1 years), the authors found that the EVOO MedDiet group exhibited a lower incidence of T2DM 285 

compared to the nut-enriched MedDiet or control diet [73]. In 2011, several diet-quality scores 286 

(Healthy Eating Index [HEI], the alternative HEI [aHEI], the alternative Mediterranean Diet (aMED), 287 

and the Dietary Approaches to Stop Hypertension [DASH]) were studied to be associated with 288 

incident T2DM in the Health Professionals Follow-Up Study [66]. They observed that three scores 289 

(aHEI, aMED, and DASH) were significantly related with a decreased risk of T2DM[66]. Recently, 290 

the BInterAct Consortium studied the association between aHEI and DASH scores and three reduced 291 

rank regression (RRR)-derived dietary pattern scores from different studies (the American Nurses’ 292 

Health Study, German EPICPotsdam study, and the British Whitehall II study, respectively) with 293 

T2DM^ [67]. Only adherence to these RRR-derived dietary pattern scores decreased type 2 diabetes 294 

risk in the EPIC-InterAct Study [67]. It is noteworthy to comment that adherence to these scores were 295 

represented by high intake of plant-derived foods and low intake of red and processed meat and sugar-296 

sweetened beverages [66, 67]. In this line, alkylresorcinol has been described as a valid biomarker 297 

for a Nordic diet (ND) which is rich in whole-grain cereals [74]. The alkylresorcinol C17:0/C21:0 298 

ratio has been inversely related with increased IS [75]. There has been moderate-grade evidence that 299 

the intake of whole-grains protected against T2DM [76]. Otherwise, further studies are required for 300 

examining associations between ND and its characteristic foods and T2DM [76, 77]. In recent years, 301 

metabolomics has been widely applied to interventional studies to identify variations in human 302 

metabolic profiling in response to food [78–83]; however, this approach has rarely been applied to 303 



the assessment of the effect of foods on particular pathologic states [84–86]. For instance, regular 304 

consumption of cocoa powder decreased the levels of endogenous metabolites related tometabolic 305 

disorders, such as carnitine metabolites and tyrosine sulfate [86]. However, the impact of dietary 306 

interventions such as MedDiet on the metabolome of T2DM subjects has not been well characterized. 307 

Future studies are warranted to develop novel biomarkers in response to diet challenges. This could 308 

establish appropriate dietary therapeutic strategies to improve the life course of T2DM patients. 309 

Conclusions 310 

Metabolomics is a rapidly growing field to identify novel biomarkers for different stages of T2DM. 311 

In the face of the current diabetes epidemic, future research should consider the relevance of novel 312 

biomarkers for the prediction and diagnosis of T2DM and the elucidation of disease pathways 313 

implicated in this disease. Metabolomic approaches have identified distinct classes of metabolites as 314 

potential biomarkers for different stages of T2DM. Several studies have demonstrated that the 315 

metabolism of carbohydrates, lipids, and amino acids are considerably altered in the prediabetic state 316 

and at different stages of T2DM progression. The identification of intermediate metabolites included 317 

in glycolysis, gluconeogenesis, the tricarboxylic acid cycle, lipolysis, and proteolysis have provided 318 

evidence for this metabolic dysfunction. Due to the scarcity of information on the effects of lifestyle 319 

changes on metabolomic biomarkers, more effort should be directed in expanding our knowledge to 320 

the metabolic modulations caused by dietary patterns in T2DM patients. Lifestyle interventions have 321 

a significant impact on diabetes prevention and control through modeling peripheral classical 322 

biomarkers of T2DM; therefore, future studies should aim to develop novel biomarkers that are 323 

sensitive to food challenge. This could establish appropriate dietary strategies to help improve the 324 

life course of T2DM patients. 325 
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FIGURES 584 

 585 

Fig. 1 Summary of metabolic networks affected in T2DM according to the presence of metabolites 586 

in urine (top orange bar) and serum/plasma (lower blue bar)*. *Networks listed were obtained by an 587 

Enrichment Analysis inMetaCoreTM (Genego, St. Joseph, MI) and ordered according to the major 588 

metabolic pathways involved. Figure includes metabolites listed in Table 1 separated by urine and 589 

serum/plasma and their direction. A figure with the full list of metabolic networks resulting from 590 

MetaCoreTM is available in the supplementary material 591 
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