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12 ABSTRACT

13 Halophilic bacteria are considered a great source of new strains producing novel exopolymers 

14 with functional properties. In this work we isolated ten halophilic strains producing exopolymers 

15 from different hypersaline environments in Morocco. Phenotypic characterization showed that 

16 the strains were moderately halophilic, mesophilic and neutrophilic with the ability to produce 

17 some hydrolytic enzymes. Strains identification based on 16S rRNA gene sequences comparison 

18 showed that nine strains, designed as N1, N2, N5, N7, N8, N9, N10, N11 and N12 belong to 

19 Halomonas genus and one strain, designed as N4, to Marinobacter genus. The majority of the 

20 strains showed high levels of exopolymer production. The study of emulsifying and antioxidant 

21 activities revealed that all the polymers have an interesting emulsifying and antioxidant activities 

22 with the polymer from Marinobacter sp. N4 forming the highest and most stable emulsions and 

23 exhibiting the best antioxidant activity  in comparison with other exopolymers produced by 

24 Halomonas strains. The obtained results demonstrate the great potential of exopolymers from 

25 halophilic bacteria to be applied as emulsifying and antioxidant agents in food, cosmetics and oil 

26 industries.  

27 Keywords: Halophilic bacteria, exopolymer, antioxidant activity, emulsifying activity.
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29 1. Introduction

30 Halophilic bacteria are microorganisms that inhabit hypersaline environments like salt mines, 

31 salt pans and marine ecosystems. They have adapted to this kind of biotopes by developing 

32 various strategies in order to survive the osmotic stress induced by high salt concentration  

33 (Gunde-Cimerman et al., 2018; Barozzi et al., 2018).

34 In the last decade this type of extreme microorganisms has gained a lot of attention from the 

35 research community as a source of new biomolecules that have interesting biotechnological 

36 applications and that can compete with chemical products (Enache et al., 2015).  In fact, 

37 halophilic bacteria can be used for open and continuous fermentation process due to their ability 

38 to grow at high salt concentrations which minimize the cost of production (Tan et al., 2011; Yin 

39 et al., 2015). In addition, these bacteria can be cultivated using recycled sea water which make 

40 them one of the suitable platform strains that can be used in the next generation industrial 

41 biotechnology where an economy of energy and water is needed (Chen and Jiang, 2018). 

42 Microbial exopolymers are a group of high molecular weight molecules that can have various 

43 applications in different industrial fields. They provide many advantages over other types of 

44 polymers such as safety, biodegradability and sustainable production (Rehm, 2010). The research 

45 for new bacteria producing exopolymers with challenging properties has become the aim of 

46 many research papers because a number of industries try to use natural polymers in their 

47 combinations in order to follow the new customers tendency of using biological and natural 

48 products (Poli et al., 2010; Finore et al., 2014; Hussain et al., 2017).

49 Among the multiple applications of exopolymers, emulsifying and antioxidant activities are 

50 two important properties that are suitable for application in food and cosmetic industries since 

51 this type of productions need natural emulsifying agents to stabilize their mixtures and 

52 antioxidants to protect their products from oxidation (Poli et al., 2010; Carocho et al., 2018; 

53 Yildiz and Karatas, 2018). Antioxidants are also much needed in pharmaceutical industry to be 

54 applied as radical scavengers to protect the body from free radicals that can cause different 

55 chronic diseases (Carocho et al., 2018).
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56 In this work we focus on the isolation of exopolymer producing halophilic bacteria from 

57 different hypersaline environments in Morocco and on the study of the emulsifying and 

58 antioxidant activities of the produced polymers.

59 2. Material and methods

60 2.1 Sample collection

61 Four natural hypersaline environments in Morocco where chosen for this study. Samples of 

62 soil, wetland and water were collected from a saltern and natural saline soil situated in douar 

63 Marigha (Ouirgane, Al Haouz province), natural saline soils in doaur Hjar Melaghi and douar 

64 Halhal (Ouezzane province) and from salt mine in Oued Amlil (Taza province) (Figure 1).

65 2.2 Culture media and strains isolation

66 The samples were diluted in 5% (w/v) sea salts solution, transferred to plates containing MY 

67 agar medium (Moraine and Rogovin, 1966) supplemented with different concentrations of sea 

68 salts solution (1, 2, 3, 5, 7.5, 10, 15, 20, 25 and 30% w/v) (Rodriguez-Valera et al., 1981) and 

69 incubated at 37ºC for 7 days. Exopolymer producing bacteria were selected based on the mucoid 

70 aspect of their colonies. Selected strains were transferred to new plates of the same medium and 

71 stored aerobically at 4ºC and as glycerol solution 20% at -80ºC. 

72 2.3 Phenotypic characterization

73 Salt tolerance was determined using solid MY medium at different sea salts concentration 0–

74 30% (w/v). Growth at different pH 5–10 and different temperatures 4–45ºC was studied on solid 

75 MY medium supplemented with 5% (w/v) sea salts solution. Other phenotypic characteristics 

76 were studied using the methods previously described (Ventosa Ucero et al., 1982; Quesada et al., 

77 1983; Mata et al., 2002). Susceptibility to antibiotics was tested according to the method 

78 described by Bauer et al. (1966).

79 2.4 Strains identification 

80 DNA extraction, PCR amplification, and sequencing of the 16S rRNA gene were performed 

81 using previously described methods (Miñana-Galbis et al., 2007). Pairwise sequences similarity 

82 values between the obtained 16S rRNA sequences and reference sequences were calculated by 
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83 the GenBank database obtained from the National Centre of Biotechnology Information database 

84 using the BLAST search. Phylogenetic analyses were made using the MEGA software version 6 

85 using neighbor joining method with bootstrap values based on 1000 replications.

86 2.5 Exopolymers production and determination of total carbohydrates contents

87 The production was carried out on the complex media MY supplemented with 5% (w/v) sea 

88 salt solution. The cultures were incubated for 7 days at 30ºC with orbital shaking at 100 rpm. The 

89 extraction of exopolymers was done as follows: the culture was centrifuged at 7.000 rpm for 1 h; 

90 the polymer was then precipitated from cell-free supernatant with three volumes of cold ethanol 

91 96% (v/v) and kept at 4ºC for 24 h. The precipitated polymer was then recuperated by 

92 centrifugation at 7.000 rpm for 10 min, rinsed with water, centrifuged at 7.000 rpm for 1 h, 

93 lyophilized and finally weighted. The total content of carbohydrates in the polymers was 

94 estimated following the phenol-sulphuric acid method modified by Chaplin (Dubois et al., 1956; 

95 Chaplin, 1982), using glucose as standard.

96 2.6 Emulsifying activity of exopolymers

97 Emulsifying activity was studied following the procedure previously described (Cooper and 

98 Goldenberg, 1987). Briefly, mixtures of equal volumes of various hydrophobic substrates and 

99 exopolymers solutions (0.5% w/v) in distilled water were vortexed for 2 min and allowed to 

100 stand for 24 h. Emulsifying activity was expressed as the percentage of the total height occupied 

101 by the emulsion after 24 h. The hydrophobic substrates tested were sunflower (commercial 

102 brand), paraffin oil and diesel. Tween 80 and xanthan gum were used as controls.

103 2.7 Antioxidant assays

104 2.7.1 Total antioxidant assay

105 Total antioxidant activity was determined by the method of Prieto et al. (1999). The 

106 antioxidant activity is revealed when the polymer reduces Mo (VI) to Mo (V) and a green 

107 phosphate/Mo (V) complex at acid pH is formed. Exopolymers solutions at 2.5 mg/ml were 

108 mixed with reagent solution (0.6 M sulfuric acid, 28 mM sodium phosphate and 4 mM 

109 ammonium molybdate) and incubated at 95ºC for 90 min. After the mixture had cooled to room 

110 temperature, the absorbance of each solution was measured at 695 nm against a control. L-



6

111 ascorbic acid was used as standard. The antioxidant activity was expressed as ascorbic acid 

112 equivalent.

113 2.7.2 DPPH free radical Scavenging 

114 The capacity of scavenging DPPH free radical was studied following the method of Zhang et 

115 al. (2013). Briefly, 2 ml ethanolic DPPH radical solution (0.05 mM) was mixed with 1 ml of 

116 exopolymers solutions at concentration of 2.5 mg/ml. After mixing vigorously, the mixture was 

117 incubated in the dark for 30 min at room temperature. The blanks contained only ethanol and the 

118 controls included deionized water and DPPH solution. L-ascorbic acid was used as standard. The 

119 absorbance of the samples was measured in triplicate at 517 nm after centrifugation at 8.000 rpm 

120 for 10 min. The scavenging ability was defined as: Scavenging activity (%) = [1 − (Asample − 

121 Ablank)/Acontrol] × 100.

122 3. Results and discussion

123 3.1 Phenotypic characterization

124 After processing all the samples, a total of 193 halophilic strains were isolated. Ten colonies 

125 were selected on the basis of their distinctive morphology and their mucoid aspect that indicated 

126 the capacity of exopolymer production.

127 The isolated strains were short rods, Gram-negative moderately halophilic bacteria (Table 1). 

128 They grew optimally at 5–10% (w/v) of total salt. No growth was observed at concentrations 

129 under 2–3% or higher than 20% with the exception of one isolate that grew at concentration up 

130 to 25%. The strains were catalase- and oxidase- positive, neutrophilic and mesophilic bacteria 

131 that grew at pH from 6 to 8 and temperature between 20 to 37 ºC with the exception of some 

132 isolates that showed growth at 4 and 40 ºC and pH up to 9. Some isolates have shown their 

133 ability to produce hydrolytic enzymes (lipase, gelatinase and tyrosinase) which demonstrates 

134 their potential for other biotechnological applications as source of hydrolytic enzymes (Ali 

135 Amoozegar et al., 2007; Beygmoradi and Homaei, 2017; Menasria et al., 2018).

136 As shown in Table 1, all the strains were susceptible to amoxicilline/clavulanic acid, 

137 ceftriaxone, norfloxacin, polymixin B, rifampicin, chloramphenicol, ciprofloxacin and 

138 gentamycin and resistant to oxacillin, with the exception of strain N12 that showed an 
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139 intermediate response. Other antibiotics had different response depending on the strain. 

140 Resistance to antibiotics can be attributed to many factors. A recent study of halophilic bacteria 

141 resistance to antibiotics has reported that two drug resistant strains that belong to Halomonas and 

142 Marinobacter genera contain both plasmids and efflux pumps which are considered as the most 

143 plausible mechanism that can be conferring them resistance to antibiotics (Shinde and Thombre, 

144 2016).

145 3.2 Strains identification 

146 The comparison of 16S rRNA gene sequence of the isolates with reference sequences 

147 revealed that strains belong to two genera: Halomonas genus (Halomonadaceae family) and 

148 Marinobacter genus (Alteromonadaceae family) with 99% similarity to the closely related 

149 species.  The phylogenetic tree (Figure 2) showed the high species diversity of the Halomonas 

150 genus and its domination in number of bacterial isolates: H. stenophila (6 isolates), H. rifensis (1 

151 isolate), H. Ventosae (1 isolate) and H. koreensis (1 isolate) whereas the only Marinobacter 

152 isolate was affiliated to M. adhaerens. These results are in concordance with other research 

153 papers that focused on the extensive research of new exopolysaccharide producing halophilic 

154 bacteria from hypersalins environments in Spain and Morocco and resulted in the isolation and 

155 description of several strains belonging to the Halomonas genus (Bouchotroch et al., 2001; 

156 Martínez-Checa et al., 2005; Llamas et al., 2011; Amjres et al., 2011).

157 Even though our isolates share a high similarity with the type strains previously described, 

158 16S rRNA is a highly conserved sequence within the Halomonas family species and closely 

159 related species cannot be distinguished (de la Haba et al., 2012). Thus, our strains are considered 

160 new isolates with a great potential to be producing novel exopolymers. 

161 3.3 Exopolymers production and total carbohydrates content

162 The results of exopolymers production by the isolated strains when grown in MY medium 

163 are shown in Table 2. The highest yield was obtained from strain N8 which produced 5.82 g/l. 

164 Other strains have shown good yields varying from 1.285 to 5.438 g/l with the exception of 

165 strains N1 and N4 that produced the lowest quantities (0.55 and 0.498 g/l, respectively). 
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166 Generally, our isolates produced high quantities of exopolymers in comparison with other 

167 halophilic closely related strains like H. ventosae Al12T and Al16 that excreted 0.2835 and 

168 0.2895 g/l respectively and H. anticariensis strains FP35T and FP36 with about 0.2965 and 

169 0.4995 g/l respectively (Mata et al., 2006). Strains N8, N9 and N10 were good exopolymer 

170 producers (>5 g/l)  and better than H. almeriensis M8T (1.7 g/l), H. stenophila HK30 (3.89 g/l) 

171 and H. nitroreducens WB1 (<1.4 g/l) (Llamas et al., 2012; Amjres et al., 2015; Chikkanna et al., 

172 2018), however, they didn’t reach the level of production of H. xianhensis SUR308 which 

173 produced 1.7 g/l when grown in malt extract–yeast extract medium supplemented with 2.5% 

174 NaCl, 0.5% casein hydrolysate and 3% glucose (Biswas et al., 2015).

175   The carbohydrates content of the produced exopolymers varies from a strain to another 

176 (Table 2). Strains N1, N4, N5 and N7 produced exopolymers with low carbohydrates fraction 

177 varying from 17.42 to 18.88 % (w/w), while strains N2, N8, N9, N10, N11 and N12 produced 

178 polymers rich with carbohydrates ranging between 25.71 and 48.68% (w/w). Exopolymers are 

179 known to be composed mostly of carbohydrates; however, the presence of other organic fractions 

180 such as of uronic acids, proteins, amino acids, ester-linked substituents and pyruvate ketals have 

181 been reported (Raj et al., 2018). 

182 3.4 Emulsifying activity

183 The emulsifying activity of all the polymers at a concentration of 0.5% (w/v) against three 

184 different hydrophobic compounds, namely cosmetic oil, food oil and hydrocarbon is shown in 

185 Table 3. All the polymers showed an interesting emulsifying activity against the three different 

186 hydrophobic phases.

187 The exopolymers from members of Halomonas genus were able to produce better emulsion 

188 than Tween 80 in the case of paraffin oil, with the exception of the exopolymer from strain N1 

189 that produced a lower emulsion. The exopolymer produced by strain N4 gave the best results 

190 among all the biopolymers studied in the present work. It exhibited high emulsifying activity 

191 against the three hydrophobic substrates. The obtained emulsions were fairly very stable after 24 

192 h. The polymer´s emulsifying behavior was better than xanthan gum in the case of diesel oil and 

193 better than the chemical control Tween 80 in the case of paraffin oil. 
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194 Halophilic bacteria are a great source of exopolymers with emulsifying activity. Many 

195 studies have demonstrated the potential of some exopolysaccharides produced from halophilic 

196 bacteria to be used as emulsifying agent  (Mata et al., 2008; Llamas et al., 2012; Amjres et al., 

197 2015; Chikkanna et al., 2018), however, to the best to our knowledge, this is the first time that an 

198 exopolymer from Marinobacter genus has been studied for its application as emulsifier agent.

199 The results obtained in this study prove the potential application of these biopolymers and 

200 specially the one produced by Marinobacter sp. N4 in food, cosmetics and oil industries as 

201 biological emulsifying agents with the multiple advantages they offer over other chemical 

202 products such as safety, biodegradation and stable cost and supply (Gugliandolo et al., 2014; 

203 Hussain et al., 2017).

204 3.5 Antioxidant activity

205 3.5.1 Total antioxidant activity

206 The total antioxidant activity based on the reduction of Mo (VI) to Mo (V) by the 

207 exopolymers and subsequent formation of a green phosphate Mo (V) complex at acidic pH is 

208 shown in Figure 3. The results showed that all the exopolymers exhibited an antioxidant activity 

209 and were able to reduce Mo (VI) to Mo (V). The highest activity was obtained with the polymer 

210 produced by Marinobacter sp. N4 which was equivalent to 68.94 µg/ml of ascorbic acid at a 

211 concentration of 2.5 mg/ml. 

212 Among the strains of Halomonas genus, the polymer from the isolate N5 exhibited the best 

213 activity where 2.5 mg/ml was equivalent to 27 µg/ml of ascorbic acid, whereas the polymer from 

214 isolate N1 gave the lowest equivalence value of 14 µg/ml of ascorbic acid. 

215 Generally, all the exopolymers had low equivalence values of ascorbic acid which means that 

216 they have moderate reduction ability. A similar study of an exopolysaccharide from a halophilic 

217 bacteria Labrenzia sp. has also reported low equivalence values of ascorbic acid (Priyanka et al., 

218 2014).The total antioxidant activities obtained in the present study were higher compared to the 

219 polymer produced by the extremely halophilic archaea Haloterrigena turkmenica (5mg/ml EPS 

220 equivalents 2 µg/ml of ascorbic acid) (Squillaci et al., 2016). The obtained data demonstrate the 

221 ability of the polymers to change the oxidation state of molecules which is one of the 

222 mechanisms responsible for free radical neutralization (Lü et al., 2010).  
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223 3.5.2 DPPH free radical scavenging

224 DPPH free radical scavenging ability of the exopolymers is shown in Figure 4. All the 

225 polymers were able to exert a scavenging activity; however, some of them were more efficient 

226 than others. The exopolymer produced by Halomonas sp. N10 exhibited a more powerful 

227 activity than other Halomonas exopolymers with an activity of 33.85%. Whereas, the 

228 exopolymer produced by Marinobacter sp. N4 was the most effective among all the tested 

229 polymers with an activity of 72.75%; which is higher than the activity obtained by several 

230 exopolymers produced from the halophilic bacterium H. nitroreducens (<70%) (Chikkanna et al., 

231 2018) and archaeon Haloterrigena turkmenica (<40%) (Squillaci et al., 2016) when tested at the 

232 same concentration. The scavenging activity was even better than that of the polymer produced 

233 by non halophilc bacteria Lactobacillus plantarum (72% at 4mg/ml) (Wang et al., 2017). 

234 The antioxidant activity of these exopolymers may be due to their content in some functional 

235 groups such as sulfate that could be playing an important role in scavenging and chelation 

236 reactions (Qi et al., 2006; Rocha De Souza et al., 2007; Priyanka et al., 2014).

237 Lipid oxidation is a major problem that causes the loss of food quality. It also can cause the 

238 formation of potentially toxic reaction products, such as carcinogenic or inflammation-inducing 

239 substances. Thus, the control of lipid oxidation in oil-in-water emulsion is considered a major 

240 challenge because some emulsifiers can accelerate the process of lipids oxidation (McClements 

241 and Gumus, 2016). However, our exopolymers have shown their ability to exhibit both 

242 emulsifying and antioxidants activities which proves their potential to be used as emulsifiers that 

243 can prevent lipid oxidation in food industry.

244 Conclusion

245 In this work, we isolated and identified 10 halophilic strains that produce exopolymers with 

246 antioxidant and emulsifying activities. The majority of the isolates yielded high levels of 

247 exopolymer. The polymer from Marinobacter sp. N4 was the most efficient among all the 

248 polymers in emulsifying different mixtures of water and hydrophobic substrates and maintaining 

249 stable emulsions. Furthermore, it had the best total antioxidant activity and was the most 

250 powerful in scavenging DPPH free radicals which prove its potential to be applied in food, 

251 cosmetics and oil industries as safe, natural and biodegradable antioxidant an emulsifying agent. 
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252 However, its yield is still inadequate for wide applications in industrial sectors. Further studies 

253 should be carried on in order to get a higher production through optimization of culture 

254 conditions and control of growth parameters in a fermenter.
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263 Tables:

264 Table 1: Salt, pH and temperature ranges for growth, biochemical characteristics and 

265 susceptibility to antibiotics of the isolated strains.

N1 N2 N4 N5 N7 N8 N9 N10 N11 N12

Salt range (% w/v) 2-15 2-25 2-20 2-20 3-20 3-20 2-20 2-20 3-20 2-20

pH range 6-8 6-9 6-9 6-8 6-8 6-8 6-8 6-8 6-8 6-9

Temperature range (°C) 15-40 10-37 4-40 15-37 15-37 15-37 15-37 15-37 15-37 15-37

Hydrolysis of:

Gelatin + – – + – – – – – –

Starch – – – – – – – – – –

Casein – – – – – – – – – –

Tween 20 + – + – + + – – – +

Tween 80 – – + – – – – – – –

DNA – – – – – – – – – –

Tyrosine + – – – + + – – – +

Lecithin – – + – – – – – – –

Urea + – – – – – – – – –

Oxidase + + + + + + + + + +

Catalase + + + + + + + + + +

Nitrate reduction – + + + + + + + + +

Nitrite reduction – + – – – – – – + –

Acid from glucose – – – – – – – – – –

VP/RM – – – – – – – – – –

Indole production – – – – – – – – – –

Nitrate respiration – + – – – – – – – –

Growth on MacConkey agar – + – – – – – – – –

Growth on cetrimide agar – – – – – – – – – –

Susceptibility to antibiotics:

Amoxicillin/clavulanic acid 

[30 µg]
S S S S S S S S S S

Ampicillin [10 µg] I S S S S S S S I S

Ceftriaxone [30 µg] S S S S S S S S S S

Doxycycline hydrochloride 

[30 µg]
R R S R R S S S S S

Norfloxacin [10 µg] S S S S S S S S S S

Oxacillin [5 µg] R R R R R R R R R I

Penicillin G [6 µg] R S S S S S S S R S

Polymixin B [300 µg] S S S S S S S S S S

Rifampicin [30 µg] S S S S S S S S S S

Spectinomycin [100 µg] R S S S S S S S S S
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Cefuroxime [30 µg] R R R R R I I I R S

Chloromphenicol [30 µg] S S S S S S S S S S

Ciprofloxacin [5 µg] S S S S S S S S S S

Gentamycin [30 µg] S S S S S S S S S S

Pristinamycin [15 µg] I I I R S S S S S S

266

267

268 Table 2: Yield in exopolymers and exopolymers carbohydrates contents

Strains Yield in exopolymer g/l Exopolymer carbohydrates content % (w/w)

N1 0.55 17.86

N2 2.726 48.68

N4 0.498 17.64

N5 1.285 17.42

N7 3.839 18.88

N8 5.82 37.26

N9 5.026 29.03

N10 5.438 25.71

N11 2.571 39.56

N12 4.448 39.94

269

270

271

272 Table 3: Emulsifying activity of the exopolymers produced by the isolated strains

Emulsifying activity %ª
Hydrophobic 

substrate N1 N2 N4 N5 N7 N8 N9 N10 N11 N12 Tween 80 Xanthan

Paraffin oil 18.23 39.72 52.89 39.65 29.45 32.88 45.65 29.45 32.79 40.54 23.6 87.9

Sunflower oil 26.18 31.36 56.28 38.41 30.3 30.07 33.33 23.83 26.84 27.57 56 62.6

Diesel oil 21.21 27.36 58.66 28.99 37.73 28.9 25.72 30.76 10.16 11.49 68 56.06

273 ª Expressed as the percentage of the total height occupied by the oil–water emulsion after 24 h; 

274 0.5% w/v exopolymer and xanthan gum or the chemical surfactants was used as emulsifier. Each 

275 value represents the average of three measurements.

276
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277 Figure captions:

278 Figure 1: Sampling locations map of the studied hypersalins environments. 1. Douar El Halhal, 

279 Ouezzane province; 2. Douar Hjar Melaghi, Ouezzane province; 3. Oued Amlil, Taza province; 

280 4. Douar Marigha, Ouirgane, Al Haouz province. 

281 Figure 2: Phylogenetic tree showing relationship between the studied isolates and closely related 

282 species. The tree is based on neighbor joining algorithm. Bar: 2% sequence divergence. 

283 Bootstrap values (expressed as percentages of 1000 replications) greater than 70% are shown at 

284 the branch points.

285 Figure 3: Total antioxidant activity of the exopolymers synthesized by the isolated strains.

286 Figure 4: DPPH free radical scavenging activity of the exopolymers synthesized by the isolated 

287 strains.
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288

289 Figure 1: Sampling locations map of the studied hypersalins environments. 1. Douar El Halhal, 

290 Ouezzane province; 2. Douar Hjar Melaghi, Ouezzane province; 3. Oued Amlil, Taza province; 

291 4. Douar Marigha, Ouirgane, Al Haouz province. 
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293 Figure 2: Phylogenetic tree showing relationship between the studied isolates and closely related 

294 species. The tree is based on neighbor joining algorithm. Bar: 2% sequence divergence. 

295 Bootstrap values (expressed as percentages of 1000 replications) greater than 70% are shown at 

296 the branch points.

297

298



17

299
 N4  N5 N9 N10 N11 N12 N8 N2 N7 N1

0

10

20

30

40

50

60

70

80
C

o
n

ce
n

tr
a
ti

o
n

 (
A

sc
o
rb

ic
 a

ci
d

 e
q

u
iv

a
le

n
ce

 

µ
g
/m

l)

300 Figure 3: Total antioxidant activity of the exopolymers synthesized by the isolated strains.
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303 Figure 4: DPPH free radical scavenging activity of the exopolymers synthesized by the isolated 
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