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In this study, we aimed to investigate the difficulties highly math-anxious individuals

(HMA) may face when having to estimate a number’s position in a number line task.

Twenty-four HMA and 24 low math-anxiety (LMA) individuals were presented with four

lines with endpoints 0–100, 0–1,000, 0–100,000, and 267–367 on a computer monitor on

which they had tomark the correct position of target numbers using themouse. Although

no differences were found between groups in the frequency of their best-fit model, which

was linear for all lines, the analysis of slopes and intercepts for the linear model showed

that the two groups differed in performance on the less familiar lines (267–367 and

0–100,000). Lower values for the slope and higher values for the intercept were found in
the HMA group, suggesting that they tended to overestimate small numbers and

underestimate large numbers on these non-familiar lines. Percentage absolute error

analyses confirmed that HMA individuals were less accurate than their LMA counterparts

on these lines, although no group differences were found in response time. These results

indicate that math anxiety is related to worse performance only in the less familiar and

more difficult number line tasks. Therefore, our data challenge the idea that HMA

individuals might have less precise numerical representations and support the anxiety–
complexity effect posited by Ashcraft and colleagues.

Math anxiety, defined as ‘feelings of tension and anxiety that interfere with the

manipulation of numbers and the solving of mathematical problems in a wide variety of

ordinary life and academic situations’ (Richardson & Suinn, 1972, p. 551), is a subject of

increasing interest, as shown by the large number of reviews on this topic published in
recent years (e.g. Chang&Beilock, 2016;Dowker, Sarkar, & Looi, 2016; Foley et al., 2017;

Su�arez-Pellicioni, N�u~nez-Pe~na, & Colom�e, 2016). This interest is fuelled by the fact that

math anxiety is a global phenomenonwith a high prevalence. According to the 2012 PISA

report (Organization for Economic Co-operation and Development (OCDE), 2013), on

average 30% of 15-year-old students from OECD countries reported feeling incapable or

*Correspondence should be addressed to Mar�ıa Isabel N�u~nez-Pe~na, Department of Social Psychology and Quantitative
Psychology, Faculty of Psychology, University of Barcelona, Passeig Vall d’Hebron, 171, 08035 Barcelona, Spain
(email: inunez@ub.edu).
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nervous when solving a math problem and 59% reported being worried about the

difficulty of math classes. Highly math-anxious (hereinafter, HMA) individuals have lower

levels of math performance than their low math-anxiety (hereinafter, LMA) peers

(Ashcraft & Krause, 2007). They often avoid mathematical activities and are poorly
represented in the science, technology, engineering, and math (STEM) fields, where

developed countries require well-prepared citizens.

In this context, an increasing number of studies have been devoted to identifying the

cognitive factors thatmight play a role in the difficulties experienced byHMAwhen facing

math activities. Such knowledge would be useful for designing math-anxiety prevention

programmes or interventions that could help HMA individuals to overcome these

difficulties. Three main proposals have been put forward to date: namely that HMAmight

(1) have fewerworkingmemory resources, (2) a less precise representation ofmagnitude,
or (3) an inhibition/attentional-control deficit (Hopko, Mcneil, Gleason, & Rabalais, 2002;

Su�arez-Pellicioni et al., 2014)4 . Given that this study aims to discriminate between the first

two proposals, we will now describe them briefly. First, Ashcraft, Kirk, & Hopko, (2000;

Ashcraft & Kirk, 2001; Ashcraft & Krause, 2007) suggested that math anxiety causes a

decrease in working memory capacity (WM)when HMA individuals are performing math

tasks. Ashcraft and Faust (1994) found that HMA and LMA individuals performed similarly

in overlearned simple addition and multiplication tasks but that differences emerged in

complex additions. They proposed the anxiety–complexity effect, a worsening in HMA
individuals’ performance when the numerical task becomes more complex (Faust,

Ashcraft, & Fleck, 1996). Ashcraft and colleagues suggested that HMA memory resources

could be occupied by math anxiety-related ruminations; this would be particularly

relevant in complex tasks, in which HMA participants would not have enough WM

resources to perform the task properly. Thus, math anxiety would act as a secondary task

in a WM dual task, hindering the performance in the main mathematical task the more it

required working memory resources.

Second, individuals with high math anxiety might suffer from a low-level numerical
deficit, specifically a deficit in their numerical magnitude representation, which would

compromise their performance in more complex math tasks. Maloney, Risko, Ansari, and

Fugelsang (2010) reported that individuals with highmath anxiety performedworse than

their LMA peers in a task as simple as enumerating from five to nine objects. A year later,

Maloney, Ansari, and Fugelsang (2011) found that HMA individuals showed a larger

numerical distance effect in a comparison task on two-one-digit Arabic numbers; that is,

HMA were slower than their LMA counterparts as the distance between numbers was

reduced (convergent psychophysiological evidence was reported in N�u~nez-Pe~na &
Su�arez-Pellicioni, 2014). Consistent with this second proposal, Lindskog, Winman, and

Poom (2017) claimed that HMA individuals have a poorer approximate number system

(ANS) or pre-verbal number representation than their LMA peers. However, not all

previous studies support this hypothesis. Dietrich,Huber,Moeller, andKlein (2015) failed

to findmath-anxiety effects in a dot comparison task. Furthermore, despite replicating the

larger distance effect for HMA participants in a symbolic comparison, they attributed it to

decisional processes rather than the acuity of magnitude representation. Last, Colom�e
(2018) found no differences between HMA and LMA participants in dot comparison,
Arabic digit comparison, or a counting Stroop task. On this basis, further studies are

required to confirm the hypothesis that math-anxious individuals have a less precise

magnitude representation. The aim of this study was to test this hypothesis in relation to

the one proposed by Ashcraft and colleagues.
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A task widely used to study the mental representation of number magnitude is the

number line estimation task (hereinafter, NLT). In this task, participants are shown a line

with the beginning and endpoints marked with numbers (e.g. 0–100) and are asked to

indicate the position of a number on this line by marking the appropriate location on it.
Number line task performance is a reliable predictor of actual and future numerical

competencies (Booth & Siegler, 2008; Link, Nuerk, & Moeller, 2014; Sasanguie, Defever,

Van den Bussche, & Reynvoet, 2011; Sasanguie, G€obel, Moll, Smets, & Reynvoet, 2013)

and correlates with performance on other numerical estimation and magnitude

comparison tasks (Crollen & No€el, 2015; Laski & Siegler, 2007; Sasanguie, De Smedt,

Defever, & Reynvoet, 2012). Therefore, it has been suggested that the observed mapping

in the NLT reflects the underlying mental representation of numbers (Booth & Siegler,

2006; Siegler&Booth, 2004; Siegler&Opfer, 2003) and canbe used to identify deficits in it
(Siegler & Booth, 2005). Developmental studies have shown a representational change

from a logarithmic representation of number magnitude to a linear representation (the

log-to-linear shift) with increasing age and experience (Booth & Siegler, 2006; Siegler &

Booth, 2004; Siegler & Opfer, 2003). Young children initially respond by spacing smaller

numbers further apart than larger numbers (logarithmic representation), but, between

second (for the 0–100 range) and fourth grade (for the 0–1,000 range), their number

placements become increasingly linear, with equal spacing between values (Booth &

Siegler, 2006).
Nevertheless, recent studies have cast some doubts overwhether the log-to-linear shift

found in NLT is caused by a developmental change in the representation of numerical

magnitude (Barth & Paladino, 2011; Hurst, Leigh Monahan, Heller, & Cordes, 2014;

Slusser, Santiago, & Barth, 2013). According to Barth and Paladino (2011), the NLT can

mainly be viewed as a proportion estimation task,where reference points can be used. For

example, tomark the position of 30 on a 0–100 line, an estimate of the size of 30 relative to

the total size of 100 is needed. Thus, the task requires the ability to recall the proper

magnitudes associated with the relevant numerals, and its outcome will depend on the
biases involved in estimating the part and the whole magnitudes and connecting the two.

Therefore, performance on this task is not just a signature of the underlying

representation of number but could also be a measure of the ability to make proportion

computations across the range of values presented, as well as using anchor points such as

the central value, to facilitate the estimation. To study whether proportional judgements

can explain performance in NLT, Barth and Paladino (2011) proposed fitting a proportion

estimation model to the data. This was the cyclical power model (CPM) by Hollands and

Dyre (2000), adapted from Spence’s power models (Figure 1; Spence, 1990). In their
experiments, Barth and Paladino fitted two variants of theCPM to children’s performance:

a one-cycle powermodel that predicts that individuals judge the size of the given numeral

comparing the given number to both endpoints and a two-cycle power model that

predicts that both endpoints and the middle point act as points of reference. They found

that the two-cycle proportion judgement model provided the best explanation for their

data on 7-year-old children, whereas the one-cyclemodel provided the better explanation

for their 5-year-olds’ estimates. Most importantly, it also provided a better fit than that of a

linear or logarithmic model. Sullivan, Juhasz, Slattery, and Barth (2011) added further
support to this interpretation by reporting that adults show preferential fixation on the

mid-point of the linewhen engaging in aNLT, suggesting that theymight create landmarks

throughout the line, such as the halfway point. However, whether NLT performance can

be understood simply as an indicator of the precision of mental representation of
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numerical magnitudes or also stems from the ability to perform proportion judgements
remains under debate.1

Although traditionally NLT has involved number lines with standard (i.e. multiple of

10) endpoints (e.g. 0–100 or 0–1,000), recent studies have used less familiar ranges in an

attempt to investigate which factors determine the participants’ response pattern. Hurst

et al. (2014) compared adults’ performance in number line tasks with non-standard

endpoints (endpoints 1,639 and 2,897) and with standard endpoints with similar

magnitudes (2,000–3,000) or numerical range (0–1,258). All tasks involving standard

endpoints resulted in a linear response, but data from the lines with non-standard
endpoints were better fit by a logarithmic model. Hurst et al. (2014) suggested that

performance in the NLT might depend on the fluency with the relative ordering of all the

values in the range as well as the facility to identify standard anchors such as the sequence

mid-point: Less familiar sequences or sequences with less familiar endpoints might be

more cognitively demanding, leading toworse performance. In a similar vein, when using

number line tasks with standard endpoints (0–1,000) and non-standard endpoints (a line

with endpoints 364 and 1,364), Laski and Dulaney (2015) reported that although the

linear function accounted for a greater amount of variance in adults’ median estimates
than the logarithmic function on both number lines, the logarithmic function fit much

better on the non-standard number line than on the standard number line. They also
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Figure 1. Example of some number line estimations predicted by the proportion estimation models.

Lines represent the estimated position as a function of the presented number. (A) Estimation patterns

predicted by the one-cycle model (equivalent to the power model of Spence, 1990), where participants

would estimate the position of the number by taking both extremes of the line as reference points. The

three lines correspond to three different b values, that is the exponent that determines the power

function relating the estimated magnitude to the actual magnitude: for b< 1, the smaller the b, the larger
the bias, while when b = 1, x = y. (B) Estimation pattern predicted by the two-cycle model (Hollands &

Dyre, 2000), where participants would also use the centre of the line as a reference point. Lines

correspond to the same b values used in A.

1 In both cases, performance for HMA participants might be impaired: Simms, Clayton, Cragg, Gilmore, and Johnson (2016)
showed that proportional reasoning requires both good number knowledge and visuo-spatial skills that allow the participant to
judge the scale of the line and divide the space into segments. Recent evidence (e.g. Ferguson,Maloney, Fugelsang, & Risko, 2015)
indicates that HMA might perform worse than their LMA peers on tests in small-scale spatial skills.
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reported that estimates were less accurate on the non-standard line. These authors

concluded that ‘individuals possessmultiple representations of numericalmagnitude that

may be simultaneously activated in estimation tasks and they have a tendency to increase

their weighting of the logarithmic representation when confronted with difficult
numerical tasks’ (Laski & Dulaney, 2015, p. 1040). This would be the case for number

lines with non-standard endpoints: They would prevent the use of well-known anchors

and require more complex calculations, implying a higher cognitive load.

In this study, we investigated for the first time the ability of individuals with high and

lowmath anxiety to estimate number positions on a line. Number lines of different ranges,

from more to less familiar, were used here to determine whether group differences in

patterns of estimations depended on the difficulty of the task: (1) two familiar number

lines with standard (power of 10) endpoints (0–100 and 0–1,000; hereinafter, 100 and
1,000 lines); (2) a non-familiar number line with standard endpoints (0–100,000;
hereinafter 100,000 line)2; and (3) a non-familiar number line with non-standard

endpoints (267–367; hereinafter 367 line). Using NLT with different endpoints, we

wanted to shed light on whether HMA individuals’ math difficulties are better explained

by the fact that they suffer from a low-level numerical deficit (as proposed byMaloney and

colleagues) or that they devote their WM resources to their anxious reaction, not having

enough available resources to perform complex math tasks properly (as proposed by

Ashcraft and colleagues). A different pattern of results was expected according to each
proposal. If HMA individuals suffer from a low-level numerical deficit (i.e. a less precise

representation of numericalmagnitude;Maloney et al., 2010, 2011;N�u~nez-Pe~na&Su�arez-
Pellicioni, 2014), we would expect them to perform worse than their LMA peers on the

four lines, because access to the numerical magnitude representationwould be needed in

all cases. However, if HMA individuals’ anxious reaction depletes their WM resources,

leaving insufficient resources available to perform the task properly (Ashcraft & Kirk,

2001; Ashcraft & Krause, 2007; Ashcraft et al., 2000), we would expect them to have

more difficulties in non-familiar number line tasks (the anxiety–complexity effect),
because unfamiliar lines are expected to be more cognitively demanding (Hurst et al.,

2014; Laski & Dulaney, 2015).

In addition to the results from NLT, two further sets of data were collected. At the end

of the experiment, participants had to rate howwell they believed they had performed on

each task, in order to obtain a measure of self-perceived level of task difficulty or self-

efficacy. Participants also performed a control task to measure their motor precision to

rule out the possibility that group differences in performance in the NLT were due to this

component.

Methods

Participants

Forty-eight psychology students took part in this experiment and were divided into two

equally sized groups of high and low math anxiety. Participants were selected from a
larger sample of 581 students from the University of Barcelona who were assessed for

math anxiety and trait anxiety (see Materials) within the framework of a longer project.

2 In this case, we understand non-familiar in the sense of less frequently encountered or used because of the largemagnitude of the
numbers involved; Dehaene andMehler (1992) compared the frequency distribution of numbers in different languages and found
a regular decrease in frequency with magnitude.
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Highly math-anxious participants (HMA) scored over the third quartile on the shortened

Mathematics Anxiety Rating Scale (sMARS) (Alexander & Martray, 1989), while their low

math-anxiety peers (LMA) scored below the first quartile. Despite differing in math

anxiety (t(46) = 22.97, p < .001, d = 6.63), both groups were equivalent in age
(t(46) = 1.71, p < .095), trait anxiety (t(46) = .00, p = 1), and gender distribution

(v2(1) = 2.18, p < .13). Formore detailed information about the two groups, see Table 1.

Material

Screening phase

To form groups, a large sample of undergraduate students was assessed using the

following two tests. Data were collected in classroom settings as part of a voluntary

activity at the University of Barcelona.

Shortened Mathematics Anxiety Rating Scale (sMARS) (Alexander & Martray,

1989). The sMARS is a 25-item version of the Math Anxiety Rating Scale (MARS)

(Richardson&Suinn, 1972). This instrumentmeasures anxiety bypresenting 25 situations

thatmay causemath anxiety (e.g. Thinking about themath exam Iwill have next week).

The respondent indicates the level of anxiety associated with the item using a five-point

Likert scale ranging from 1 (no anxiety) to 5 (high anxiety). The sum of the item scores

provides the total score for the instrument, which ranges from 25 to 125. In this study, we

used the Spanish version of the sMARS (N�u~nez-Pe~na, Su�arez-Pellicioni, Guilera, &
Mercad�e-Carranza, 2013). The scores for the Spanish version of the sMARS have shown

strong internal consistency (Cronbach’s alpha = .94) and high 7-week test–retest
reliability (intra-class correlation coefficient = .72).

State-Trait Anxiety Inventory (STAI) (Spielberger, Gorsuch, Lushene, Vagg, & Jacobs,

1983). The STAI is a 40-item scale used to measure state (STAI-S) and trait (STAI-T)

anxiety, with 20 items in each. Only the STAI-T subscale, which measures a more general
and relatively stable tendency to respond with anxiety, was used in this study. This

subscale comprises 20 statements describing different emotions, and for each item,

respondents use a four-point Likert scale (ranging from 0: almost never to 3: almost

always) to indicate how they feel ‘in general’. Good to excellent internal consistency

(Cronbach’s alpha = .95), adequate 30-day test–retest reliability with high-school

Table 1. Means and standard error of the mean (SEM; in brackets) for age, math anxiety, and trait

anxiety, for the LMA and HMA groups. Number of women in each group is also given

LMA HMA

Age 19.92 (.25) 20.92 (.53)

Math anxiety 42.38 (1.28) 85.79 (1.39)

Trait anxiety 17.25 (1.71) 17.25 (1.47)

Number of women 16 22

Note.Math anxiety measured using the sMARS (Alexander &Martray, 1986)5 ; trait anxiety measured using

the trait subscale of the STAI (Spielberger et al., 1983).
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students (r = .75), and 20-day test–retest reliability with college students (r = .86) have

been reported for the Spanish version of this subscale (Spielberger, Gorsuch, & Lushene,

2008).

Experimental phase

Participants were asked to estimate the position of numbers on four number lines with

different endpoints (0–100; 0–1,000; 0–100,000; and 267–367). Lines were centrally

displayed in grey on a black screen and took up 90% of the screen width and 4% of its

height. We used a 19-inch, square (4:3) CRT monitor of 85 Hz and 1,024 9 768 pixels

resolution. Endpoints were identified by the corresponding numbers, which were

displayed just below the lines in white, Courier New 18 characters. The number to locate
(target) appeared at the left top of the screen (white, Courier New, 25 underlined).

Twenty-four targets were selected for each line (see Appendix). In the case of the

0–1,000 and 0–100,000 lines, the stimuli were the same as in Slusser et al. (2013)with the

exception of 60,000, whichwas replaced by 61,305 because the former could be easier to

estimate on this line. For the 0–100 line, we used the same targets as Booth and Siegler

(2006). Targets for the 267–367 line were created by adding 267 to the 0–100 targets.

The control task used the same line as the NLT. A thin (2% of the screen width) red

vertical strip was placed within the line. The distance between the strip and the initial
cursor position ranged from 5% to 95% of the line length. Nineteen distances were

presented bymanipulating the difference between the strip and initial cursor positions at

intervals of 5. Each distancewas presented twice: In one case, the cursor had to bemoved

towards the right, and in the other, it had to be moved to the left.

Procedure

Each participant performed the number line estimation task for each of the four line
ranges. All trials within the same line rangewere blocked, and the order of the ranges was

counterbalanced across participants. Testing for each line began with four training trials.

Targets appearing in these trials were not used in the test phase. After training, two blocks

of experimental trials were presented with a half-minute pause in between. Participants

had to decide where the target was located on the number line by placing the mouse

cursor over the desired position and clicking the left button of the mouse. The initial

position of the cursor varied randomly in each trial. The twenty-four targets for each line

were randomly presented and appeared once within each block.
Each trial had the following structure. First, an asterisk appeared centred on the screen

for 500 ms. After a blank interval of 100 ms, the number line and the target to be located

were presented. They remained on the screen until the participant responded or for a

maximum of 6,000 ms. A 500-ms interval was left between trials. The latency and the

position at which the participant placed the cursor were recorded for each trial.

After the number line estimation blocks, participantswere asked toperformanew task

to control for theirmotor abilitywhen using themouse. In this task, a grey line like the one

used in the previous task was displayed and a red vertical strip was placed within it.
Participants had tomove themouse cursor and click on the red stripwith the left button of

the mouse. Each participant performed 38 trials, which were presented in random order.

Each trial started with a fixation point that appeared centred on the screen for 500 ms.

After 100 ms of blank interstimuli interval, the black line and the red stripwere displayed.

They disappearedwith the participant’s response or after amaximumof 4,000 ms if there
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was no response. Lastly, an interval of 500 ms was left between trials, during which no

stimuluswas presented. The latency andfinal position of the cursorwere recorded in each

trial.

After that, participants were asked to complete a short questionnaire in which they
had to rate their ownperformance for eachof the lines on a seven-point Likert scale,with 1

being ‘not good at all’ and 7 being ‘very good’.

Data analysis

Several analyses were performed in this study. Firstly, we were interested in determining
whether therewas a significant difference in the type of number-to-linemapping between

anxiety groups (HMA vs. LMA). For this, we calculated the goodness of fit of four different

models (linear, logarithmic, one-cycle power, or two-cycle power) on the basis of the

Akaike information criterion (Akaike, 1973, 1974) corrected for small samples (AICc,

Hurvich & Tsai, 1989). The best model was identified as that with the lowest AICc value

among the candidates for each participant and line range. Then, we performed a chi-

square test for independence by line range, to determine whether the frequency of

participants whose estimations were best explained by each model differed between
groups.

Secondly, three othermeasureswere analysed as follows: percentage of absolute error

(PAE; i.e. the accuracy of participants’ estimation), response times (RT), and self-reported

level of efficacy (answers to the questionnaire). ANOVAs6 were performed for each

measure separately, taking Line (100, 1,000, 100,000, and 367) as the within-subject

factor and Group (HMA and LMA) as the between-subjects factors. The Greenhouse–
Geisser epsilon (e) correction for sphericity departures (Geisser&Greenhouse, 1958)was

used in ANOVAs whenever necessary. The F value, the uncorrected degrees of freedom,
the probability level following correction, the e value (when appropriate), and the gp

2

effect size index are presented. Post-hoc comparisons were performed bymeans of t-tests

(either for independent or repeated measures depending on the factor analysed), and the

Hochberg approachwas used to control for the increase in type I error (Keselman, 1998).

The t-value, the degrees of freedom, the p-value, and Cohen’s d index for effect size were

calculated. Only significant effects (p ≤ .05) are reported.

Finally, differences between groups in RT and accuracy in the control task were

studied by means of independent t-tests.

Results

Model adjustment

Figure 2 shows the median estimates as a function of their corresponding unbiased

number, pooled across participants within each group, with each panel containing the
responses for one of the four lines (100, 1,000, 100,000, and 367). The black line in each

panel shows how an unbiased mapping would appear. Deviations from this diagonal line

represent estimation errors. This figure shows that both groups are highly accurate and

have a high degree of linearity for the familiar lines, but that their estimations are less

accurate for the non-familiar ones. The figure for the 367 line also shows differences

between groups in the slope and intercept of the linear model.

A chi-square test for independence was carried out by line to study whether the

frequency of the best-fitting model was related to math anxiety. The logarithmic model
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was discarded because none of the participants fitted this model best. The results showed

no relation between group and best-fitting model for any line (all p > .05). To determine
whether there was a model that fit the data best for each line, we performed chi-square

tests and found differences between best-fitting model frequencies for the four lines

(v2(2) = 35.37, p < .001; v2(2) = 27.87, p < .001; v2(2) = 12.12, p = .002; and

v2(2) = 4.08, p = .043, for the 100, 1,000, 100,000, and 367 lines, respectively). To

further investigate these differences, paired comparisonswere performedbymeans of the

binomial distribution. Importantly, the linearmodelwas amore frequent best fit than both

cycle models for the 100, 1,000, and 100,000 lines (see Table 2). For the 367 line, the

linear model fit was also more frequent than the two-cycle model and tended to be more
frequent than the one-cycle model. Finally 7, when both cycle models were compared, no

difference was found between the frequencies of best-fit model (all p > .05), except for

the 367 line, where the one-cycle power model was a more frequent best-fit than the

two-cycle power model.
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Figure 2. Median estimated position of the numbers presented in the experiment, as a function of their

unbiased position. Each of the four panels depicts the data for one of the number lines that were used.

Medians are shown for both anxiety groups (HMA and LMA). Each corresponding line shows the fit

provided by the best-fittingmodel, which is linear in all cases for group estimates. Black identity lines show

unbiased estimations.
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Although the above analysis showed that the linear model was the best fit for all lines,

visual inspection of Figure 2 indicated potential differences between groups and lines

with regard to their parameters in this model. We therefore decided to study possible

differences between groups in terms of their linear fit and compared the slope and

intercept values of participants’ linear models by means of independent t-tests.3 There

were no differences between groups for the familiar lines; however, differences emerged

for the non-familiar ones. For the 367 line, the slope was larger for the LMA than for the

HMA group (t(46) = 2.54, p = .015, d = .73) and the intercept was smaller for the LMA
than for the HMA group (t(46) = 2.69, p = .010, d = .78). As for the 100,000 line, the

slope was larger for the LMA than for the HMA group (t(46) = 3.93, p < .001, d = 1.13).

Due to the fact that groups had interceptswith different signs in the 100,000 line, absolute

values of deviations from 0 were calculated for each participant and group differences

were studied by means of independent t-tests. Groups did not differ in their intercept

deviations in the 100,000 line.

We then performed analyses to examine how much the slope and the intercept

deviated from the perfect linear mapping (i.e. slope = 1 and intercept = 0) in each of the
groups in the non-familiar lines. Results revealed that the slopes differed significantly from

1 for the 367 line in both groups (t(23) = 5.09, p < .001, d = 1.04 for the LMA group and t

(23) = 7.43, p < .001, d = 1.52 for the HMA group) and for the 100,000 line in the HMA

group (t(23) = �4.82, p < .001, d = .98). As for the intercepts, the analysis of their

deviations from 0 revealed significant differences in the 367 line for the LMA

(t(23) = 5.52, p < .001, d = 1.13) and the HMA groups (t(23) = 7.58, p < .001,

d = 1.55). As for the 100,000 line, differences were significant for the LMA group (t

(23) = 3.96, p = .001, d = .81) and marginal for the HMA group (t(23) = 1.72, p = .098,
d = .35). Table 3 shows mean and standard errors of the mean for the slopes and

intercepts for each group for the four lines.

Percentage absolute error (PAE)

As we saw above, the fact that data fit a linear model means that participants’ estimates

were linearly spread along the number line, but this does not necessarily mean that they

had answered flawlessly (Simms et al., 2016). Therefore, we decided to calculate the

Table 2. Paired comparisons of frequencies for the best-fit model in the four lines. Frequencies (freq)

for each model for every line and probability (p) associated with each comparison are given

Comparison

100 line 1,000 line 100,000 line 367 line

Freq p Freq p Freq p Freq p

Linear 35 <.001 33 .001 27 .002 31 .059

One cycle 10 10 8 17

Linear 35 <.001 33 <.001 27 .038 31 <.001
Two cycle 3 5 13 0

One cycle 10 .092 10 .302 13 .383 17 <.001
Two cycle 3 5 8 0

3 This analysis was also performed only with participants whose best fit was linear for each line. The results showed the same
pattern, although some differences were only marginally significant (intercept in the 100,000 line and slope in the 367 line).
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medians of PAE per participant for each line as ameasure of estimation accuracy. Medians
were used rather than means to minimize the effect of outliers. PAE was calculated using

the formula by Siegler and Booth (2004) as the absolute distance between the actual and

estimated positions of numbers on the line divided by the scale of the line multiplied by

100:

PAE ¼ j estimated position� actual position j
scale of the line

� 100

For example, if a participant was asked to estimate the position of 39 on a 0–100
number line and placed the mark at the position of 30 on the line, the PAE would be
(|39 � 30|/100) 9 100 or 9%.

The overall ANOVA revealed that themain effects of Line (F(3,138) = 52.26, p < .001,

e = .53, gp
2 = .55) and Group (F(1,46) = 12.25, p = .001, gp

2 = .21), as well as the

interaction Line 9 Group (F(3,138) = 5.27, p = .011, e = .53, gp
2 = .10), were statisti-

cally significant. To study this interaction in more detail, two separate analyses were

performed. First, groups were compared for each line by means of independent t-tests,

and second, the effect of Line was analysed for each group by means of ANOVA, taking

Line as the within-subject factor. The first analysis showed that HMA were less accurate
than their LMA peers for both the 100,000 line (t(46) = 2.42, p = .019, d = .70) and the

367 line (t(46) = 3.28, p = .002, d = .95). In the second analysis, the effect of Line was

significant in both groups: F(3,69) = 14.70, p < .001, e = .50, gp
2 = .39 for LMA and

F(3,69) = 43.3, p < .001, e = .56, gp
2 = .65 for HMA. Paired contrasts showed that the

LMA group was less accurate on the 367 line than the other three lines (t(23) = 4.29,

p < .001, d = .88; t(23) = 4.23, p < .001, d = .86; and t(23) = 3.90, p = .001, d = .80,

for the comparisons between the 367 line and the 100, 1,000, and 100,000 lines,

respectively). Importantly, for the HMA group, these differences emerged not only in the
comparisons between the 367 line and the 100 line (t(23) = 7.36, p < .001,d = 1.50), the

1,000 line (t(23) = 7.82, p < .001, d = 1.60), and the 100,000 line (t(23) = 6.45,

p = .001, d = 1.32), showing lower PAE in the former than their LMA counterparts, but

also in the comparisons between the 100,000 line and the two familiar lines (t(23) = 2.8,

p = .01, d = .57; and t(23) = 2.45, p = .022, d = .50, for the comparisons between the

100,000 line and the 100 and 1,000 lines, respectively). Means of PAE and standard errors

of the mean for each group for the four lines are given in Table 4.

Response time (RT)

ANOVA of medians of RT showed a significant effect of Line (F(3,138) = 6.55, p < .001,

gp
2 = .12). Neither the effect ofGroup nor the interaction Line 9 Groupwas significant.

Table 3. Means and standard error of the mean (in brackets) for slopes and intercepts for the LMA and

HMA groups for the four lines

100 line 1,000 line 100,000 line 367 line

Slope Intercept Slope Intercept Slope Intercept Slope Intercept

LMA 1.04 (.01) �4.02 (.49) 1.00 (.01) �30.65 (4.14) .99 (.01) �2,259 (571) .87 (.02) 39.93 (7.23)

HMA 1.05 (.01) �5.01 (.63) .97 (.02) �21.38 (10.44) .89 (.02) 2,884 (1,675) .78 (.03) 72.22 (9.53)

Note. LMA: low math-anxiety group; HMA: high math-anxiety group.
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Paired comparisons between lines showed that RT was slower for the 367 line

(mean = 2725.9 ms, SEM = 105.5 ms) than the other three lines: t(47) = 24.38,

p < .001, d = .72; t(47) = 3.22, p = .002, d = .41; and t(47) = 3.47, p = .001, d = .41,

for the comparisons between the 367line and the 100 (mean = 2483.1 ms,
SEM = 102.4 ms), 1,000 (mean = 2517.8 ms, SEM = 120.9 ms), and 100,000 lines

(mean = 2504.3 ms, SEM = 109.2 ms), respectively.

Self-reported level of efficacy

The overall ANOVA on the participants’ scores in the questionnaire revealed a significant

effect of Line (F(3,138) = 95.25, p < .001, e = .87, gp
2 = .67) andGroup (F(1,46) = 22.8,

p < .001, gp
2 = .33). Importantly, the interaction Line 9 Group (F(3,138) = 2.83, p =

.048, e = .87, gp
2 = .06) was also significant. To study this interaction in more detail, two

separate analyses were performed, like those described in the PAE analysis section. First,

independent t-tests for each line showed that HMA individuals self-reported a worse

performance than their LMA peers for the four lines (t(46) = 3.17, p = .003, d = .92, for

the 100 line; t(46) = 5.75, p < .001, d = 1.66 for the 1,000 line; t(46) = 3.79, p < .001,

d = 1.09 for the 100,000 line; and t(46) = 2.27, p = .028, d = .66, for the 367 line).

Second, when differences between lines in the self-reported level of efficacy were

studied separately in each group, the results showed that the Line effect was significant in
both the LMA (F(3,69) = 47.44, p < .001, gp

2 = .67) and the HMA (F(3,69) = 50.64,

p < .001, gp
2 = .69) groups. Paired contrasts in each group showed that for LMA

individuals, all the comparisons were significant. They self-reported (1) worse perfor-

mance for the 367 line than the other three lines (t(23) = 9.16, p < .001, d = 1.87;

t(23) = 8.90, p < .001, d = 1.81; and t(23) = 3.70, p = .001, d = .76 for the comparison

with 100, 1,000, and 100,000 lines, respectively); (2) worse performance for the 100,000

line than the 1,000 line (t(23) = 6.07, p < .001, d = 1.24) and the 100 line (t(23) = 5.94,

p < .001, d = 1.21); and (3) worse performance for the 1,000 line than the 100 line
(t(23) = 2.09, p = .047, d = .430). For HMA individuals, the results were similar to those

described for their LMA counterparts, with the exception of the fact that no differences

were found when the two unfamiliar lines (100,000 and 367) were compared. As for the

other comparisons in this group, all of themwere significant (all p-values <.001). Means of

self-reported level of performance and standard errors of the mean for each group for the

four lines are given in Table 5.

Response time and accuracy in the control task

Medians of RT and accuracy in the control task for each individual were calculated, and

group differences were studied bymeans of independent t-tests. Accuracywas calculated

for each participant as the number of trials in which the mouse click was made on the

Table 4. Means of PAE and standard error of the mean (in brackets) for the LMA and HMA groups for

the four lines

100 line 1,000 line 100,000 line 367 line

LMA 3.2 (.2) 3.1 (.2) 3.4 (.4) 5.5 (.5)

HMA 3.6 (.2) 3.8 (.2) 4.5 (.4) 8.2 (.6)

Note. LMA: low math-anxiety group; HMA: high math-anxiety group.
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actual red mark shown on the screen. There were no group differences either in RT

(t(46) = .7, p = .49) or accuracy (t(46) = .89, p = .41).

Discussion

In the present study, the estimatesmade by individualswith high and lowmath anxiety for

several number line tasks were examined to deepen our knowledge on the cognitive

factors that might underlie the difficulties HMA individuals face when dealing with

numerical tasks. More specifically, we contrasted two proposals: On the one hand,

Maloney and collaborators (Maloney et al., 2010, 2011; see also N�u~nez-Pe~na & Su�arez-
Pellicioni, 2014) suggested that HMA individuals suffer from a low-level numerical deficit,

specifically a less precisemagnitude representation, that compromises their performance
in any task requiring access to this representation. On the other hand, Ashcraft and Kirk

(2001; Ashcraft & Krause, 2007; Ashcraft et al., 2000) claimed that intrusive thoughts

related to their math anxiety would consume necessary working memory resources,

preventing HMA individuals from performing numerical tasks properly. The effects of

math anxiety would be particularly clear in difficult tasks with high cognitive load. Four

number lines differing in their familiarity were selected to investigate whether HMA and

LMA individuals’ performance depended on the complexity of the task: two familiar

number lines with standard endpoints (100 and 1,000 lines), a non-familiar number line
with standard endpoints (100,000 line), and a non-familiar number linewith non-standard

endpoints (367 line). Moreover, different measures were analysed for each line (best-fit

model, response time, PAE, and self-reported level of performance) to obtain a greater

understanding about possible differences between groups for each number line.

In the present study, best-fit model and PAE analyses showed that HMA and LMA

individuals performed similarly in a NLTwith familiar lines, but that the former group had

difficulties when facing more cognitively demanding tasks (i.e. non-familiar lines). The

linear model provided a better explanation of performance than the logarithmic or cycle
powermodels (one or twocycles) in both groups for the 100, 1,000, and 100,000 lines and

also a better explanation than the two-cycle power model and tended towards a better

explanation than the one-cycle powermodel in the 367 line. However, a detailed appraisal

of the slope and intercept for the linear model showed group differences for the less

familiar lines. Although intercepts in both groups differed from the perfect value 0 in the

367 line, suggesting that both groups overestimated all the values (the intercepts were

positive in both groups), the intercept value was larger for the HMA group. As for the

slopes, highly math-anxious individuals had lower values than their LMA counterparts for
the 100,000 and 367 lines. These results suggest that the HMA overestimated the small

numbers and underestimated the large numbers on these non-familiar lines compared to

their LMA peers.

Table 5. Means of self-reported level of performance and standard error of the mean (in brackets) for

the LMA and HMA groups for the four lines

100 line 1,000 line 100,000 line 367 line

LMA 5.96 (.14) 5.58 (.14) 4.29 (.26) 3.37 (.31)

HMA 5.25 (.17) 4.00 (.23) 2.92 (.25) 2.50 (.23)

Note. LMA: low math-anxiety group; HMA: high math-anxiety group.
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PAE analyses gave similar results. Again, group differences were only found for the

non-familiar lines (100,000 and 367 lines), HMA individuals being less accurate than their

LMA peers. Moreover, whereas both groups were less accurate on the non-familiar

number line with non-standard endpoints (367 line) than the other three number lines,
the HMA individuals were also less accurate on the other non-familiar line (100,000 line)

than the familiar ones. These results are consistent with those reported by Laski and

Dulaney (2015), who observed less accurate estimates for their 364–1,364 non-standard

endpoint line. It is important to highlight that althoughmotor precision is a relevant ability

in terms of performing number line tasks accurately, in our study, the absence of

differences between groups in both response time and accuracy in the control task allows

us to rule out the possibility that our PAE group differences were due to differences in

motor skills between groups.
The fact that the two groups did not differ in the familiar NLT challenges the proposal

put forward by Maloney et al. (2010, 2011). According to these authors, HMA individuals

have a less precise magnitude representation; so in the present study, we expected them

to have more trouble even with the more familiar lines; it is worth remembering that

Maloney et al. found math-anxiety effects even in the 1–9 range. However, this pattern

was not observed in the present study and HMA and LMA participants showed identical

behaviour on the 100 and 1,000 lines. Although their performance differed on the 367

line, these numbers are included within the 0–1,000 line, and so the fact that the HMA
group was less precise in their estimations cannot be attributed to a deficit in their

magnitude representation. Lastly, even if we consider it more plausible that a complexity

effect also explains the performance of HMA participants on the 100,000 line, we cannot

entirely rule out the possibility that their failure on this number line was due to a worse

representation of the larger magnitudes. Nevertheless, this possibility would also diverge

from Maloney et al.’s proposal, as they posited a less precise representation of even the

smallest numbers for the HMA group.

This raises the question of how to explainMaloney et al.’s results. These authors based
their proposal on the fact that HMA individuals showed a larger distance effect than their

LMA peers in symbolic number comparison tasks. This effect is usually taken as an

indicator of the precision of the numerical magnitude representation, with better

representations showing smaller distance effects. However, some researchers (Van

Opstal, Gevers, De Moor, & Verguts, 2008; Verguts, Fias, & Stevens, 2005) have proposed

an alternative explanation for distance effects measured in symbolic number comparison

tasks, claiming that these effects may be located at a decisional level. According to these

authors, connections between the numerical stimuli and the response (e.g. ‘is larger
than’) increase monotonically. Close stimuli have similar connection weights to the

response nodes and will activate the responses ‘smaller than’ and ‘larger than’ to a similar

degree, causing competition and a delay in the responses. Dietrich et al. (2015) used this

alternative proposal to explainwhy they found a larger distance effect forHMA individuals

than for their LMA counterparts in a symbolic comparison task, but failed to find group

differences in the non-symbolic task (where the ANS is needed).

Although Lindskog et al. (2017) found an interaction between math anxiety and

distance effect in a non-symbolic dot comparison task, it is worth remembering that in
their experiment, the dot sets to be compared were presented in an intermixedway. This

apparently small difference in the experimental design means an increase in processing

demands (Price, Palmer, Battista & Ansari, 2012)8 that might have particularly hampered

the performance of HMA participants. Although this possibility remains a hypothesis, it

would support the anxiety–complexity effect (Faust et al., 1996).
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In general, the above-described results show that the difference between the

performance of HMA and LMA participants increases when the task becomes more

difficult or complex. These results are consistent with the anxiety–complexity effect

reported by Ashcraft and Faust (1994), who found that HMA and LMA individuals
performed similarly in simple addition and multiplication tasks but that differences

between groups emerged in complex additions and mixed arithmetic operations. In the

present study, dealingwith a linewith non-standardpoints (367 line) proved to be difficult

for all participants, who had to calculate proportions from numbers not ending in 0 and

hence, that were less easy to manipulate. However, HMAs’ performance was particularly

impaired. Ashcraft andKirk (2001) claimed that the effects ofmath anxiety arise due to the

WM load imposed by the intrusive thoughts. Given that Hurst et al. (2014) suggested that

less familiar endpoints would be more cognitively demanding, our results fit neatly with
Ashcraft et al.’s prediction that the burden of WM resources would be particularly

detrimental in the more complex tasks. We will come back to this hypothesis below and

discuss some potential limitations of our study.

As for the 100,000 line, the difficulty came from the unfamiliarity with the largest

numbers. Hurst et al. (2014) also claimed that properly responding depended upon the

fluency with the values in that range. As larger numbers are less frequently encountered

than the smallest ones (Dehaene & Mehler, 1992), they were probably less easy to

manipulate. This lack of experience was probably increased in HMA participants, who
tend to avoid numerical situations because of their condition.

Other results of the present study are worth discussing. First, we found that HMA

individuals self-reported a worse performance than their LMA peers for all NLTs. This

result is consistent with other studies that have reported that HMA individuals have a low

perceived math self-efficacy and distrust their potential to do math tasks successfully

(Hembree, 1990;Meece,Wigfield, & Eccles, 1990). This low assessment of theirmath self-

efficacy is a factor that plays an important role in their avoidance ofmath-related situations

and math courses (Ashcraft, Krause, & Hopko, 2007). It probably affects learning
motivations and attitudes about math, interfering with the acquisition of mathematics-

related competence. However, crucially, the present study has shown that HMA

individuals’ perception of their self-efficacy does not correspond totally with the reality,

because, in fact, they performed as well as their LMA peers on themore familiar lines (100

and 1,000).

Second,we return our attention to the best-fitmodel analyses. They revealed that there

was no relation between the model with better fit to participants’ estimates (linear,

logarithmic, one-cycle power, and two-cycle power) and group. Moreover, the linear
model provided a better explanation of performance inHMAand LMA individuals than the

logarithmic or cycle power models (one or two cycles) for the 100, 1,000, and 100,000

lines (for the 367 line, the linear model was also a better fit than the two-cycle model and

tended to be better than the one-cycle model). A more linear fit on NLT correlates

positivelywithmath achievement (Ashcraft &Moore, 2012 9; Booth& Siegler, 2006), and it

is a reliable predictor of actual and future numerical competencies (Booth& Siegler, 2008;

Link et al., 2014; Sasanguie et al., 2011, 2013). Furthermore, it is usually considered an

indicator of amore sophisticatedway of processing to estimate positions inNLT andmore
support for accurate estimations (e.g. Cohen & Sarnecka, 2014; Slusser et al., 2013).

However, the present study showed that linear estimation of magnitudes does not

necessarily mean a perfect match between the value being judged and the estimate of its

value. This will only happen when the slope equals one and the intercept equals zero.

Slopes and intercepts were analysed and the results showed differences between groups,
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the HMA group showing lower values for the linear models’ slopes and higher values for

the linear models’ intercepts than their LMA counterparts for the non-familiar lines.

Furthermore, differences from the perfect linear mapping for slopes and intercepts were

also found.Wepropose that linear adjustments for estimates inNLT should be interpreted
carefully and should be accompanied by slope and intercept analyses.

To conclude, we should mention a few limitations of our study. First of all, we have

suggested that the worse performance of HMA individuals is better explained by the

hypothesis that their WM resources are reduced by the presence of intrusive thoughts.

However, testing the effects of math anxiety and WM load on cognitive reflection

questions involving numbers, Morsanyi, Busdraghi, and Primi (2014) found that both

were associated with poorer performance, but that their effects did not interact. More

importantly, math anxiety, but not WM, was also related to reduced latencies and self-
confidence in one’s own efficiency. Morsanyi et al. (2014) concluded that even if math

anxiety might reduce cognitive reflection by diminishing the working memory resources

available, WM load alone could not explain their results and proposed that faster

responses and low confidence might also have contributed. We also found lower self-

confidence in our participants, although it was generalized to all number lines.

Furthermore, even if our participants’ latencies were not faster than those of their LMA

peers, the fact that they tended to answer as fast as their counterparts at the cost of

providing less precise responses might be interpreted as an attempt to escape the
mathematical context (local avoidance effect, Ashcraft & Ridley, 2005), which might

have hindered their performance.

Second, we did not control our participants’ arithmetical abilities. Given that it is

currently under debate whether NLT performance only indicates the precision of mental

representation of numerical magnitudes, or also stems from the ability to perform

proportion judgements, we cannot completely rule out the possibility that group

differences were partly caused by HMAs’ poorer capacity for performing the proportion

calculations required.
Last, as we did not measure math anxiety during the task, we cannot be sure that

positioning numbers in a number line caused math anxiety in our participants.

Nevertheless, given that math anxiety has been found to affect simpler tasks such as

one-digit comparison (Maloney et al., 2011) and that HMA react differently even in front

of math-related words (Su�arez-Pellicioni, N�u~nez-Pe~na, & Colom�e, 2015), it seems

improbable that the current task did not trigger anxiety.

Summarizing, further research must be conducted before we can conclusively

attribute the worse performance of highly math-anxious individuals in number line tasks
to the burden of WM caused by their ruminations. However, our findings clearly rule out

the possibility that HMA individuals have a less precise representation of even the smallest

magnitudes. Therefore, our results help to broaden our understanding of the cognitive

correlates of math anxiety and open the door to other studies that might expand our

knowledge of the reasons why math-anxious individuals are particularly impaired in

complex tasks.
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Appendix : Target numbers presented for the four lines

100 line 1,000 line 100,000 line 367 line

4 8 870 271

6 15 1,522 273

8 25 2,609 275

12 56 5,652 279

14 109 10,870 281

17 154 15,435 284

18 237 23,696 285

21 290 29,022 288

24 338 33,805 291

25 388 38,478 292

29 430 43,043 296

39 467 46,739 306

42 517 51,739 309

48 560 56,087 315

52 599 61,305 319

57 650 65,217 324

61 696 69,783 328

64 761 76,087 331

72 839 83,913 339

79 889 88,913 346

81 939 93,913 348

84 980 98,043 351

90 989 98,913 357

96 993 99,348 363
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