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Abstract  

Numerical comparison tasks are widely used to study the mental representation of 

numerical magnitude. In the present study, event-related brain potentials (ERPs) were 

recorded while 26 high math-anxious (HMA) and 27 low math-anxious (LMA) individuals 

performed a numerical comparison task, our aim being to examine whether HMA 

individuals present a poorer mental representation of numerical magnitude than do their 

LMA peers. Participants were presented with pairs of single-digit Arabic numbers and were 

asked to decide which one had the larger numerical magnitude. The size of the numbers and 

the distance between them were manipulated in order to study the size and the distance 

effects. The results showed that HMA individuals were slower than their LMA peers but 

did not differ in hit rate, suggesting that in order to gain accuracy the HMA group lost 

speed. Moreover, both distance and size effects were larger for the HMA group. As for 

ERPs, results showed that the ERP distance effect had larger amplitude for both the size 

and distance effects in the HMA group than among their LMA counterparts. Since this 

component has been taken as a marker of the processing of numerical magnitude, this result 

suggests that HMA individuals have a less precise representation of numerical magnitude, 

which could explain their poorer performance in mathematical tasks.  

 

 

Key Words: math anxiety; distance effect; size effect; ERPs; numerical number line 
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1. INTRODUCTION 

The task of comparing a pair of numbers is subject to two highly robust phenomena, the 

distance effect and the size effect, which were first described in Moyer and Landauer's 

(1967) seminal paper. The distance effect refers to the fact that it is easier to compare two 

numbers (i.e., telling which is the largest or the smallest) if they are far apart than if they 

are close (e.g., a comparison of 1 and 9 will be faster and less error prone than a 

comparison of 8 and 9). The size effect refers to the fact that a comparison of two numbers 

which are equated for numerical distance is more difficult for large numbers than for small 

numbers (e.g., a comparison of 8 and 9 will be slower and more error prone than a 

comparison of 1 and 2). Both effects occur with numbers presented in Arabic format 

(Dehaene, Dupoux, & Mehler, 1990), verbal format (Koechlin, Naccache, Block, & 

Dehaene, 1999), and nonsymbolic format (Buckley & Gillman, 1974), and they have been 

observed in humans, even early in childhood (Duncan & McFarland, 1980), as well as in 

animals (Dehaene & Changeux, 1993).  

The distance and size effects are attributed to the access to the mental number line along 

which the numerical magnitudes are represented. To account for the distance effect it has 

been suggested that close magnitudes are represented in the mental number line with 

overlapping distributions of activation and, therefore, they are more difficult to discriminate 

than are distant magnitudes (Restle, 1970; Libertus & Brannon, 2010). The activation 

pattern of each numerical magnitude is proposed to follow a Gaussian distribution that 

peaks at the target magnitude and decreases with increasing distance from the target. Thus, 

magnitudes that are numerically closer to each other will have more representational 

overlap than will magnitudes that are numerically farther apart, and, as a consequence, the 

former will produce slower and less accurate responses than will the latter. To account for 
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the size effect it has been suggested that large numbers are represented in the mental 

number line more vaguely than are small numbers and, hence, it is more difficult to 

discriminate between larger numbers than between smaller numbers when the numerical 

distance between them is equal (Antell & Keating, 1983; Strauss & Curtis, 1981). In other 

words, the standard deviation of the Gaussian distribution of each magnitude increases as 

number size increases and, therefore, the activation distributions overlap more for larger 

numerical magnitudes than for smaller ones. Since the distance and size effects are related 

to the access to the numerical magnitude representation in the mental number line, they 

have usually been used as a behavioral measure of the precision of numerical estimation. 

Recently, Maloney, Ansari, and Fugelsang (2011) studied the precision of numerical 

estimation in high and low math-anxious individuals. Math anxiety is defined as a negative 

reaction to math and to mathematical situations that is negatively related to math 

achievement or competence (Ashcraft & Ridley, 2005). In their Experiment 1, Maloney et 

al. (2011) used a number comparison task with a fixed standard (i.e., telling whether a 

single-digit Arabic number was larger or smaller than 5), while in their Experiment 2 they 

used a simultaneous number comparison task (i.e., telling which of two single-digit Arabic 

numbers presented simultaneously had larger numerical magnitude). In both experiments 

they found that the distance effect was greater for the high math-anxious group than for the 

low math-anxious group (this effect was found for response time but not for accuracy), 

leading them to conclude that high math-anxious individuals suffer from a low-level 

numerical deficit that compromises the development of more complex mathematical skills 

(see also, Maloney, Risko, Ansari, & Fugelsang, 2010). This conclusion is based on the fact 

that the size of the distance effect is related to differences in math achievement: the smaller 

the distance effect, the higher the level of mathematical skill (De Smedt, Verschaffel, & 
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Ghesquière, 2009; Holloway & Ansari, 2009). Maloney et al.’s results are important 

because they cast some doubts on the explanation proposed by Ashcraft and colleagues 

(e.g., Ashcraft & Kirk, 2001; Ashcraft, Kirk, & Hopko, 1998; Ashcraft & Krause, 2007) for 

why math anxiety affects math performance.  

According to Ashcraft and colleagues, math anxiety consumes working memory 

resources and, as a consequence, reduces the resources necessary to solve complex math 

problems (i.e., those that require working memory resources in order to be performed). 

Ashcraft and colleagues’ proposal is based on two premises. First, math anxiety is related to 

performance in complex arithmetical problems (e.g., multi-digit additions that require 

working memory resources in order to be solved) but not to performance in simple 

arithmetical problems (e.g., single-digit additions) (anxiety-complexity effect; Ashcraft & 

Faust, 1994). And second, in accordance with the theory of Eysenck and Calvo (Eysenck, 

1992, 1997; Eysenck & Calvo, 1992), anxiety produces intrusive thinking that consumes 

working memory resources. Thus, if math-anxious individuals are presented with 

mathematical problems that require working memory resources in order to be performed, 

they will have fewer working memory resources available because some of them will be 

occupied with intrusive thinking generated by their high level of anxiety, the consequence 

being that their performance on these problems will be poorer. Distinguishing between the 

proposal of Maloney and colleagues (i.e., basic numerical deficit in math-anxious 

individuals) and that of Ashcraft and colleagues (i.e., anxiety affecting working memory 

through intrusive thinking) is relevant because understanding the cognitive determinants of 

math anxiety is necessary in order to design appropriate interventions that can prevent math 

anxiety effects on math performance.  
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The present study was designed to investigate the number magnitude representation in 

high and low math-anxious individuals. It differed from previous investigations in two 

ways. First, the size effect, in addition to the distance effect, was studied. Second, we used 

event-related brain potentials (ERPs) to address the question of whether high and low math-

anxious individuals differ in their processing of numerical magnitude, such that the former 

show a deficit in the approximate calculation system, as Maloney et al. (2011) have 

suggested. 

Recent research has reported a link between the distance effect and neurophysiological 

signatures revealed through ERPs. First, a positive peak, with latency around 200 ms post-

stimulus and maximum amplitude over posterior electrode sites, has been reported in 

comparison tasks with a fixed standard (e.g., compare the presented number with 5: 

Dehaene, 1996; Temple & Posner, 1998; Libertus, Woldorff, & Brannon, 2007; compare 

the number with 15: Turconi, 2004; or compare the number with 65: Pinel, Dehaene, 

Rivière, & LeBihan, 2001). This component, known as P2p, is sensitive to the distance 

between the two numbers to be compared: the smaller the distance, the greater the 

positivity. It has been reported in both symbolic (Arabic numerals and written number 

words: Dehaene, 1996; Libertus et al., 2007; Temple & Posner, 1998) and nonsymbolic 

comparison tasks (dot patterns: Dehaene, 1996; Libertus et al., 2007; Smets, Gebuis, & 

Reynvoet, 2013; Temple & Posner, 1998), as well as in passive viewing tasks in an 

adaptation context (Hyde & Spelke, 2008, 2012; Hyde & Wood, 2011). Second, in 

simultaneous number comparison tasks (i.e., telling which of two simultaneously presented 

numbers has the larger numerical magnitude), a positive peak with latency around 200 ms 

post-stimulus has also been found This ERP distance effect also shows greater positivity 

when the distance between the two numbers to be compared decreases. However, its scalp 
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distribution is less clear than that of the P2p. There are reports of an ERP distance effect 

with diffuse topography (Szűcs & Soltész, 2008) or with a fronto-central distribution 

(Szűcs & Soltész, 2007). The link between the distance effect and these early ERP 

components makes them good markers of approximate numerical magnitude processing 

(Hyde & Wood, 2011), and they could be useful instruments for shedding more light on 

whether math anxiety is related to a deficit in elementary numerical cognition. 

In the present study, high and low math-anxious individuals were asked to perform a 

simultaneous comparison task. They were presented with pairs of single-digit Arabic 

numerals and were required to decide which number had the larger magnitude. The size of 

the numbers and the numerical distance between them were manipulated in order to study 

the size and distance effects. The simultaneous comparison task was used instead of the 

‘comparison with five’ task because the latter would only have allowed us to study the 

distance effect. Moreover, there are two more reasons to prefer the simultaneous 

comparison task. First, according to Maloney el al. (2011) it is possible that the 

‘comparison with five’ task requires more working memory resources than the 

simultaneous comparison task, which would make it difficult to rule out the possibility that 

working memory plays a role in the results. Second, Maloney, Risko, Preston, Ansari, and 

Fugelsang (2010) demonstrated that whereas the symbolic simultaneous comparison task is 

reliable in response time, the ‘comparison with five’ task is not (as for errors, reliability 

indexes were marginally significant in both tasks).  

In the present study, groups were formed in such a way that they differed in math 

anxiety but not in trait anxiety, thereby ruling out the possibility that the latter factor might 

account for any differences between groups. Behavioral and electrophysiological measures 

were recorded. Based on previous studies our predictions were as follows. In terms of 
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response time, if math-anxious individuals have a less precise representation of magnitude 

they should present not only a larger distance effect than do their low math-anxious peers 

(as previously reported by Maloney et al., 2011) but also a larger size effect. We did not 

expect differences between groups in hit rate. As for ERPs, if math anxious individuals 

have a less precise representation of magnitude they should show a larger ERP distance 

effect than do their low math-anxious peers. We also sought to examine whether a similar 

ERP effect would be found for the size effect. 

 

2. METHODS 

2.1 Participants 

Fifty-three healthy volunteers were tested in this study, 26 with a high level of math anxiety 

and 27 with a low level. They were selected from among a sample of 629 students from the 

University of Barcelona who were assessed for math anxiety, trait anxiety, and arithmetic 

ability (see Material).  

The low math-anxious group (henceforth, LMA) comprised 27 participants (age 

range = 19-31, mean = 21.59, SEM = .63) who scored below the first quartile on the 

Shortened Mathematics Anxiety Rating Scale (sMARS) (Alexander & Martray, 1989) 

(score range = 30-56, mean = 44.26, SEM = 1.38). The high math-anxious group 

(henceforth, HMA) comprised 26 participants (age range = 19-25, mean = 20.92, 

SEM = .30) who scored above the third quartile on the sMARS (score range = 75-102, 

mean = 85.08, SEM = 1.25). More detailed information about the two groups is shown in 

Table 1.  

Groups differed in math anxiety (t(51) = 21.805, p < .001) but not in trait anxiety 

(t(51) = 1.252, p = .216), age (t(51) = .938, p = .353), years of formal education 
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(t(51) = .022, p = .983), gender distribution1 (χ² = 3.592, p = .058), handedness (χ² = 1.165, 

p = .280), or ethnicity (χ² = 1.058, p = .304). Groups did not differ in arithmetic ability 

when the number of correctly solved operations over the total number of operations 

attempted by the participant on the Addition test from the French kit was taken as an 

indicator of math ability (t(30) = .658, p = .515). However, differences between groups 

were found when the number of correctly solved operations over the total number of 

operations included in the Addition test was used (t(30) = 2.093, p = .046). 

All had normal or corrected-to-normal visual acuity and they did not report any history 

of neurological or psychiatric disorders. Participants were naïve as to the purposes of the 

study. 

INSERT TABLE 1 ABOUT HERE 

 

Participants were paid for their participation and gave written informed consent before 

the experiment. The experimental protocol was approved by the Ethics Committee of the 

University of Barcelona and was in accordance with the Code of Ethics of the World 

Medical Association (Declaration of Helsinki). 

 

2.2. Material 

Groups were formed according to the participants´ scores on the following tests: 

                                                 
1 An additional analysis showed that men and women did not differ in either the distance effect (t(51) = .474, 
p = .638) or the size effect (t(51) = .742, p = .462 ), both measured in terms of response time; therefore, 
gender cannot explain the differences we found between the two math-anxious groups. It is worth mentioning 
that although females usually report higher levels of math anxiety than do males, this result contrasts with the 
fact that female students typically obtain similar, or only slightly lower, levels of achievement in mathematics 
relative to their male peers. As stated by Goetz, Bieg, Lüdtke, Pekrun, and Hall (2013), girls’ competence 
beliefs could be partly responsible for their higher levels of reported math anxiety. In other words, females 
may not experience greater anxiety than males, but they may tend to overestimate their level of math anxiety. 
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Shortened Mathematics Anxiety Rating Scale (sMARS) (Alexander & Martray, 1989). 

The sMARS is a 25-item version of the Math Anxiety Rating Scale (MARS) (Richardson 

& Suinn, 1972). This instrument measures anxiety by presenting respondents with 25 

situations which may cause math anxiety (e.g., Being given a homework assignment of 

many difficult problems which is due the next class meeting). Respondents indicate the 

level of anxiety associated with the item on a five-point Likert scale from 1 (no anxiety) to 

5 (high anxiety). The sum of the item scores provides the total score for the instrument, 

which ranges from 25 to 125. In the present study, we used the Spanish version of the 

sMARS (Núñez-Peña, Suárez-Pellicioni, Guilera, & Mercadé-Carranza, 2013), whose 

scores have shown strong internal consistency (Cronbach’s alpha = .94) and high 7-week 

test-retest reliability (intra-class correlation coefficient = .72). 

State-Trait Anxiety Inventory (STAI) (Spielberger, Gorsuch, Lushene, Vagg, & Jacobs, 

1983). The STAI is a 40-item scale used to measure state (STAI-S) and trait (STAI-T) 

anxiety. This study only considered the STAI-T score, which reflects a more general and 

relatively stable tendency to respond with anxiety. This subscale includes 20 statements 

describing different emotions, and respondents must answer by considering how they feel 

“in general”. Items are answered on a four-point Likert scale, from 0 (almost never) to 3 

(almost always). Good to excellent internal consistency (Cronbach´s alpha = .95), adequate 

30-day test-retest reliability with high school students (r = .75), and 20-day test-retest 

reliability with college students (r = .86) have been reported for the Spanish version of this 

subscale (Spielberger, Gorsuch, & Lushene, 2008).  

Addition test from the French kit (French, Ekstrom, & Price, 1963). This test consists of 

60 additions involving three numbers of either one or two digits (e.g., 6 + 67 + 38), 

presented vertically. Participants were asked to solve the additions as fast and as accurately 
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as possible during a 2-min period. Two measures of participants’ arithmetical ability were 

calculated. First, the number of correctly solved operations over the total number of 

operations attempted by the participant (i.e., a measure of precision) and, second, the 

number of correctly solved operations over the total number of operations in the test (i.e., a 

measure of speed).  

A number comparison task was presented to each participant during the recording 

session. The stimuli consisted of a pair of numbers shown simultaneously at the center of a 

computer screen. The number size effect was studied by the pairs “1  2” (small size) and “8  

9” (large size), while the distance effect was studied using the pairs “1  8” and “2  9” 

(distance 7) and “8  9” (distance 1). These pairs were chosen in order to be as extreme as 

possible over single-digit numbers. Numbers were presented in font size 60 (Courier New) 

and subtended view angles of 1.03° (horizontally) and 1.43° (vertically). There were two 

instances for all number pairs (e.g., “1  2” and “2  1”) and all pairs were presented an equal 

number of times.  

 

2.3 Procedure 

Participants were tested individually. Upon entering the experimental room they completed 

standard procedures concerning informed consent, along with a demographics 

questionnaire enquiring about their age, ethnicity, gender, and number of years of formal 

education. EEG/EOG sensor electrodes were then attached and the participant was given 

detailed task instructions. Next, participants were seated 100 cm away from the computer 

screen in an electrically-shielded, sound-attenuating recording chamber. The experimental 

session began with a training period of 16 trials. The training trials were only used to 

familiarize the participants with the task, and they were not included in the statistical 
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analysis. The experiment, including electrode placement and practice and recording 

sessions, lasted about an hour.  

The task for participants consisted in indicating the number of larger numerical 

magnitude by pressing the left or right button of the mouse, depending on the side of the 

screen in which the number of larger numerical magnitude had appeared. For example, for 

the pair of numbers “1 2”, participants had to click the right button of the mouse, given that 

the number of greatest numerical magnitude (in this case, 2) appeared on the right side of 

the screen. Participants were encouraged to respond as fast as possible. Each trial began 

with a fixation sign (an asterisk) shown for 500 ms. After a 300 ms pause a pair of numbers 

were shown for 300 ms, this being followed by a 700 ms black screen (maximum response 

windows of 1000 ms)2. Each trial was followed by a variable inter-trial interval ranging 

from 600 to 1100 ms. The recording session consisted of four blocks of 40 stimuli (total of 

160 trials) and there was a 1-minute pause between blocks. Trials were randomly presented 

to each participant.  

The presentation of stimuli and the collection of behavioral data were controlled by E-

Prime 2.0 software (Psychology Software Tools Inc., Sharpsburg, PA, USA). 

 

2.4. Electrophysiological recording 

The EEG was recorded using ANT hardware and software (B.V., Enschede, The 

Netherlands) from 64 electrodes positioned according to the extended 10/20 system, as well 

as two electrodes on the right and left mastoids, all mounted in a commercial WaveGuard 

                                                 
2 Means of percentages of timeouts across conditions were 0.37 (SEM = 0.17) for small size, 0.61 (SEM = 
0.29) for large size and 0.32 (SEM = 0.14) for distance 7 conditions. There were no difference between 
conditions on the amount of percentages of timeouts, F(2,104) = 1.26, p = .28.  
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EEG Cap (Eemagine Medical Imaging Solutions GmbH. ANT Advanced Neuro 

Technology). EEG channels were continuously digitized at a rate of 512 Hz by an ANT 

amplifier (B.V., Enschede, The Netherlands). A band-pass filter was set from 0.16 to 30 

Hz, and electrode impedance was kept below 5 kΩ. The horizontal and vertical 

electrooculogram was recorded with electrodes placed at the outer canthus and below the 

right eye respectively. The common reference electrode was placed on the tip of the nose 

and ground was located at AFz. 

 

2.5. Data analysis 

Analyses were performed separately for the size effect and the distance effect. In order 

to study the size effect we first analyzed response time (RT) for correctly solved trials and 

the percentage of correct responses with analyses of variances (ANOVAs), taking Size 

(small, large) as the within-subject factor and Group (LMA, HMA) as the between-subjects 

factor. For RT analysis the recursive outlier removal procedure (Van Selst & Jolicoeur, 

1994) was used in order to control for the effects of outliers. ERP data were then analyzed. 

Two ERP averages were calculated per participant: one for small number trials and one for 

large number trials. The averages were constructed from -200 ms to 600 ms epochs relative 

to stimulus onset. Trials with voltages exceeding 20 standard deviations in the EOG 

electrodes and ± 100 µV in the remaining electrodes were excluded from the ERP average. 

Ocular artifacts were identified and corrected with the eye-movement correction algorithm 

used in the EEprobe program (ANT, The Netherlands). Three participants were excluded 

from the analysis due to technical problems. An ANOVA was performed on the ERP mean 

amplitude in the 200-250 ms window in order to study the size effect. Analysis was 

performed at nine electrodes (F3, Fz, F4, C3, Cz, C4, P3, Pz, P4), taking Size (small, large), 
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Frontality (frontal, central, parietal), and Laterality (three levels from left to right) as 

within-subject factors and Group (LMA, HMA) as the between-subjects factor. In the 

ANOVAs the F value, the uncorrected degrees of freedom, the probability level following 

correction, the ε value (when appropriate), and the ηp
2  effect size index are given. 

Whenever an interaction reached significance, simple effect analyses were performed and 

the Hochberg approach was used to control for the increase in Type I error (Keselman, 

1998). Only significant effects (p ≤ .05) are reported. 

As for the distance effect, the analysis performed was identical to that described for the 

size effect, except that the within-subject factor in the ANOVAs was Distance (distance 1, 

distance 7) rather than Size. Only the large number trials (i.e., “8 9”) were used for distance 

1 in order to avoid confusing the distance effect with the size effect. 

 

3. DATA ANALYSIS AND RESULTS 

3.1. Size effect  

3.1.1 Behavioral data 

Regarding response times, trials with small numbers were solved faster (344 ms) than 

were those with large numbers (380 ms), F(1,51) = 51.498, p < .001, ηp
2 = .502, thereby 

showing the well-known size effect. Moreover, HMA individuals were slower (376 ms) 

than their LMA counterparts (348 ms), F(1,51) = 4.419, p = .041, ηp
2 = .080. The Size x 

Group interaction was marginally significant, F(1,51) = 3.531, p = .066, ηp
2 = .065, 

showing that the size effect (large-small difference) was larger in the HMA group (46 ms) 

than in the LMA group (26 ms), t(51) = 1.879, p = .066.  
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Regarding the percentage of correct responses, more hits were made in trials with small 

numbers (94%) than in those with large numbers (76%), F(1,51) = 150.852, p < .001, 

ηp
2 = .747. Neither the main effect of Group nor the Size x Group interaction reached 

significance. Means and standard errors for response time and hit rate for the small and 

large size conditions in the LMA and HMA groups are given in Table 2. 

 

INSERT TABLE 2 ABOUT HERE 

 

3.1.2. Event-related potentials  

Figure 1A shows difference waves (large-small number trials) for the HMA and LMA 

groups at Fz, Cz, and Pz. It can be seen that the size effect elicits a positive wave peaking in 

the 200-250 ms window, with larger amplitude in the HMA group than in the LMA group 

at Fz and Cz. Scalp topographic maps in Figure 1B show the size effect on brain activity in 

the 200-250 ms window for both groups. This figure reveals that the positive component is 

larger at fronto-central positions in the HMA group as compared with the LMA group. 

Topographic maps were plotted using the EEProbe 3.1 program (ANT Software BV, 

Enschede, The Netherlands). 

 

INSERT FIGURE 1 ABOUT HERE 

 

The main effect of Size (F(1,48) = 26.031, p < .001, ηp
2 = .352) and, more interestingly,  

the Size x Group x Frontality interaction (F(2,96) = 4.235, p = .033, ε = .659, ηp
2 = .081) 

were statistically significant. Separate ANOVAs were performed at frontal, central, and 
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parietal sites in order to study this interaction in more detail, taking Size and Laterality as 

within-subject factors and Group as the between-subjects factor. The main effect of Size 

reached significance at frontal (F(1,48) = 26.652, p < .001, ηp
2 = .357), central 

(F(1,48) = 27.877, p < .001, ηp
2 = .367), and parietal sites (F(1,48) = 13.356, p = .001, 

ηp
2 = .218), showing that the amplitude was more positive for large number trials than for 

small number trials (2.32 µV vs. .97 µV at frontal sites; 2.08 µV vs. .51 µV at central sites; 

and 1.77 µV vs. .64 µV at parietal sites). The Size x Group interaction was significant at 

frontal sites (F(1,48) = 7.549, p = .008, ηp
2 = .136) and marginally significant at central 

sites (F(1,48) = 3.324, p = .075, ηp
2 = .065). In order to study these interactions separate 

ANOVAs were performed for each group, taking Size and Laterality as within-subject 

factors. Results showed that whereas voltage was more positive for large number than for 

small number trials in both groups at central (F(1,24) = 33.383, p < .001, ηp
2 = .582 and 

F(1,24) = 4.801, p = .038, ηp
2 = .167 for HMA and LMA, respectively) and parietal sites 

(F(1,24) = 5.115, p = .033, ηp
2 = .178 and F(1,48) = 8.471, p = .008, ηp

2 = .261 for LMA 

and HMA, respectively), this difference was only significant for the HMA group at frontal 

sites (F(1,24) = 45.843, p < .001, ηp
2 = .656). 

When the size effect (large-small difference) was analyzed taking Frontality and 

Laterality as within-subject factors and Group as the between-subjects factor, the Group x 

Frontality interaction was significant (F(2,96) = 4.235, p = .033, ε = .659, ηp
2 = .081). The 

size effect was analyzed for each level of frontality, taking Laterality as the within-subject 

factor and Group as the between-subjects factor. The Group effect was significant at frontal 

sites (F(1,48) = 7.549, p = .008, ηp
2 = .136), the size effect being higher in HMA 

individuals than in LMA individuals (2.08 µV vs. .63 µV, respectively). At central sites the 
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Group effect was close to significance (F(1,48) = 3.324, p = .075, ηp
2 = .065), showing a 

similar pattern to that reported for frontal sites (2.12 µV vs. 1.03 µV for HMA and LMA 

individuals, respectively).  

 

3.2. Distance effect  

3.2.1. Behavioral data 

As for response time, distance-1 trials were solved slower (380 ms) than were distance-7 

trials (333 ms), F(1,51) = 74.302, p < .001, ηp
2 = .593, thereby showing the well-known 

distance effect. Moreover, HMA individuals were slower (370 ms) than their LMA 

counterparts (343 ms), F(1,51) = 4.639, p = .036, ηp
2 = .083. The Distance x Group 

interaction was marginally significant, F(1,51) = 3.812, p = .056, ηp
2 = .070, showing that 

the distance effect (distance 1–distance 7 difference) was larger in the HMA group (58 ms) 

than in the LMA group (37 ms), t(51) = 1.952, p = .056. 

Regarding the percentage of correct responses, more hits were made in distance-7 trials 

(96%) than in distance-1 trials (76%), F(1,51) = 150.852, p < .001, ηp
2 = .747. Neither the 

main effect of Group nor the Size x Group interaction reached significance. Means and 

standard errors for response time and hit rate for the distance-1 and distance-7 conditions in 

the LMA and HMA groups are given in Table 3. 

 

INSERT TABLE 3 ABOUT HERE 

 

 

3.2.2. Event-related potentials 
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Figure 2A shows difference waves (distance 1-distance 7) for the HMA and LMA 

groups at Fz, Cz, and Pz. This figure reveals a positive wave peaking at about 200-250 ms 

post-stimulus that has larger amplitude in HMA individuals than in their LMA peers. 

Topographic maps in Figure 2B show the distance effect on brain activity in the 200-250 

ms window for both groups. It can be seen that the HMA group shows greater positivity at 

fronto-central positions than do their LMA counterparts. 

 

INSERT FIGURE 2 ABOUT HERE 

 

The overall ANOVA revealed that the interactions Distance x Group (F(1,48) = 12.388, 

p = .001, ηp
2 = .205) and Distance x Group x Laterality (F(2,96) = 4.277, p = .021, 

ε = .888, ηp
2 = .082) were statistically significant. In order to study these interactions in 

more detail, separate ANOVAs were performed at right, central, and left positions, taking 

Distance and Frontality as within-subject factors and Group as the between-subjects factor. 

The Distance x Group interaction was significant at all the positions analyzed 

(F(1,48) = 8.972, p = .004, ηp
2 = .157 at right positions; F(1,48) = 14.584, p < .001, 

ηp
2 = .233 at left positions; and F(1,48) = 12.066, p = .001, ηp

2 = .201 at central positions). 

Separate ANOVAs for each group, taking Distance and Laterality as within-subject factors, 

revealed that voltage was more positive for distance-1 than for distance-7 only for HMA 

individuals at left (F(1,24) = 18.879, p < .001, ηp
2 = .440; 1.44 µV vs. 4.42 µV for 

distance-7 and distance-1, respectively), right (F(1,24) = 17.178, p < .001, ηp
2 = .417; 1.69 

µV vs. 2.69 µV for distance-7 and distance-1, respectively), and central positions, 
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(F(1,24) = 17.830, p < .001, ηp
2 = .426; 1.4 µV vs. 2.69 µV for distance-7 and distance-1, 

respectively). 

When the distance effect (distance 1-distance 7 differences) was analyzed by means of 

an ANOVA, taking Frontality and Laterality as within-subject factors and Group as the 

between-subjects factor, the Group effect (F(1,48) = 12.388, p = .001, ηp
2 = .205) and the 

Group x Laterality interaction (F(2,96) = 4.277, p = .021, ε = .888, ηp
2 = .082) were 

significant. To study this interaction in more detail, separate ANOVAs were performed for 

each level of laterality, taking Frontality as the within-subject factor and Group as the 

between-subjects factor. Results showed that voltage was more positive for HMA 

individuals than for their LMA counterparts at left (F(1,48) = 14.584, p < .001, ηp
2 = .233; 

-.69 µV vs. .98 µV for LMA and HMA, respectively), right (F(1,48) = 8.972, p = .004, 

ηp
2 = .157; -.24 µV vs. .1.01 µV for LMA and HMA, respectively), and central positions 

(F(1,48) = 12.066, p = .001, ηp
2 = .201; -.46 µV vs. 1.25 µV for LMA and HMA, 

respectively).  

 

4. DISCUSSION 

Our central aim in this study was to examine whether high math-anxious individuals 

present a poorer mental representation of numerical magnitude than do their low math-

anxious counterparts. To this end, ERPs were recorded while HMA and LMA individuals 

performed a number comparison task, with the numerical distance and size effects being 

analyzed. These effects were used to address the research question because they provide 

measures for indexing the representation of numerical magnitude, both behaviorally and 
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psychophysiologically. Consequently, they are especially useful in terms of shedding more 

light on whether math anxiety is related to a deficit in elementary numerical cognition.  

As for behavioral measures, our results confirmed our predictions. HMA individuals 

were slower than their LMA peers, although the groups did not differ in hit rate. The same 

result was reported in the study by Maloney et al. (2011) and demonstrates that to achieve 

the level of accuracy shown by the LMA group, HMA individuals need to become slower 

in their responses3. This result agrees with what we found in the analysis of data from the 

Addition test from the French kit, which showed that groups did not differ in the number of 

correctly solved operations over the total number of operations attempted by each 

participant, but they did differ when we analyzed the number of correctly solved operations 

over the total number of operations included in the test. Therefore, the two groups did not 

differ in the precision of their responses, but HMA participants solved fewer operations 

than did their LMA counterparts in the 2-minute period of time they had available. The 

results of the present experiment also provide converging evidence for the fact that math 

anxiety effects can be found even in very basic numerical processing tasks (e.g., a 

numerical comparison task), where working memory resources do not need to be employed. 

This questions the proposal of Ashcraft and colleagues (e.g., Ashcraft & Kirk, 2001; 

Ashcraft, Kirk, & Hopko, 1998; Ashcraft & Krause, 2007), as according to them “a math-

anxious individual’s performance in a math task would be expected to deteriorate to the 

extent that the task arouses anxiety, but only if the task depends on substantial working 

memory processing” (Ashcraft & Ridley, 2005, p. 322). As Maloney et al. (2011) 

suggested, a hybrid theory can best explain the relationship between high math anxiety and 

                                                 
3 Participants in the present experiment were faster than participants in Maloney et al.’s experiment (2011). 
This was probably due to the fact that we instructed them to respond quickly. This might also explain the high 
error rate we found.  
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a low level of math achievement. They suggested that high math-anxious individuals suffer 

from a low level numerical deficit that would be at the base of their difficulties with more 

complex mathematics. These math difficulties, in turn, would result in WM-demanding 

ruminations when they perform math tasks, which would exacerbate the initial difficulties 

they experienced. 

Our behavioral results also showed robust distance and size effects. First, response time 

increased and hit rate decreased when the distance between the two Arabic numerals to be 

compared increased. And second, when the distance between the two Arabic numerals was 

equal, response time was slower and accuracy decreased for larger numbers. Concerning 

the Distance x Group and Size x Group interactions, we not only reproduced the result 

reported by Maloney et al. (2011), finding a larger distance effect in the more anxious 

group, but also found a larger size effect in HMA than in LMA individuals. 

As for ERPs, a positive component of larger amplitude was found in HMA individuals 

as compared with their LMA counterparts. Interestingly, this component was found for both 

the numerical distance and size effects, suggesting that HMA individuals have a less 

precise representation of numerical magnitude in the mental number line than do their 

LMA peers. To our knowledge, this is the first time that this component has been studied in 

high and low math-anxious individuals, and it is also the first time that it has been linked to 

the size effect. In the present experiment, differences between groups in the ERP distance 

effect were found at fronto-central positions and not at posterior electrodes. Two 

explanations can be given for this. First, we used a simultaneous comparison task (i.e., 

telling which of two simultaneously presented numbers has the larger numerical 

magnitude) instead of the comparison task with a fixed standard, in which the P2p 

component has mainly been reported (Dehaene, 1996; Libertus et al., 2007; Pinel et al., 
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2001; Temple & Posner, 1998; Turconi, 2004). Some studies using a simultaneous 

comparison task have failed to find a clear parietal topography for the distance effect 

(Szűcs & Soltész, 2008; Szűcs & Soltész, 2007). Moreover, Szűcs and Csépe (2005), using 

an addition verification task in which the distance from the correct solution was 

manipulated (they presented either the correct solution or an incorrect one that deviated ±2 

or ±9 from the correct one), reported that “contrary to previous observations, the distance 

effect was not restricted to the parietal electrodes but it was seen over nearly all frontal, 

central and parietal electrodes” (p. 295). This discrepancy in the topography of the ERP 

distance effect is not surprising if we take into account that Maloney et al. (2010) did not 

find a significant correlation in response time between these two tasks (i.e., a symbolic 

lower/higher than 5 and a symbolic simultaneous comparison task), which suggests that the 

two tasks may rely on different mechanisms. Therefore, ERP generators may be different in 

these two tasks, and this would account for different scalp topographies.  

The second explanation for our results regarding the ERP distance effect is as follows. 

Szűcs, Soltész, Jármi, and Csépe (2007) used a simultaneous comparison task with children 

and adults and found that between 180 ms and 240 ms the topography of the distance effect 

differed in Grade 3 children relative to Grade 5 children and adults, in such a way that 

amplitudes were more positive frontally in the former. This effect is similar to the one we 

observed in the sense that the ERP distance effect of our high math-anxious individuals also 

differed from that of their low math-anxious peers at fronto-central positions. It is 

noteworthy that distance and size effects, both in response time and hit rate, are larger in 

children than in adults (Holloway & Ansari, 2009; Laski & Siegler, 2007; Sasanguie, De 

Smedt, Defever, & Reynvoet, 2012), suggesting that the mental number line becomes more 

precise with development. Further research is needed in order to study these similarities 
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between children and high math-anxious individuals when they are engaged in numerical 

comparison tasks.  

The results of the present experiment have important implications in terms of explaining 

why math anxiety is related to low performance in mathematical tasks. Two arguments can 

be put forward. First, according to the triple-code model of number processing (Dehaene, 

1997; Dehaene, Dehaene-Lambertz, & Cohen, 1998) there are three distinct systems of 

number representation: a quantity system, a verbal system, and a visual system. In the 

quantity system, nonverbal semantic representations of numbers are represented in a 

continuous line (the mental number line). This system deals with the size and distance 

relations between numbers (Brannon, 2006), and therefore it is engaged in numerical 

comparison tasks. This non-verbal representation of quantity is suggested to serve as a 

foundation for the construction of higher-order arithmetical and mathematical concepts. 

Thus, the worse representation of numerical quantity found in HMA individuals could 

explain their deficit in the foundations of higher mathematical abilities. Second, there is 

evidence that the size of the numerical distance effect is related to the level of proficiency 

in math tasks (De Smedt et al., 2009; Holloway & Ansari, 2009; Linsen, Verschaffel, 

Reynvoet, & De Smedt, 2014; Sasanguie, De Smedt, Defever, & Reynoet, 2012). De Smedt 

et al. (2009) found that more efficient math task solvers showed smaller distance effects 

(and therefore, their representation of numbers was more precise). Holloway and Ansari 

(2009) have demonstrated that the numerical distance effect decreases with age, suggesting 

that magnitude representation becomes increasingly more precise with increasing age (and, 

hence, with increasing formal mathematical education). Sasanguie et al. (2012) also 

observed an association between the distance effect and mathematics achievement in a 

symbolic number comparison task, which was strong in kindergarteners but reduced in 
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older children. Linsen et al. (2014) demonstrated that children who were faster in 

comparing two numbers were also faster in solving mental multi-digit subtractions. These 

results support the idea that a poor mental representation of number, as indexed by a large 

distance effect, is related to a low level of math ability. 

The results of the present study also have important implications in terms of how to 

design intervention programs to prevent and treat math anxiety (see also Maloney & 

Beilock, 2012, and Maloney, Schaeffer, & Beilock, 2013, for two reviews on this topic). As 

for prevention, if high math-anxious individuals suffer from a deficit of basic numerical 

understanding that prevents them from developing more complex mathematical skills, one 

way of avoiding this problem could be to focus more heavily on these basic numerical 

concepts in the first years of formal education. Educators should take this into account 

when developing their curricula so as to prevent their students from developing math 

anxiety. Another issue is how to help people that currently suffer from math anxiety. In 

other words, how might math anxiety be treated in individuals who have already developed 

it? In our view, it would be worthwhile developing intervention programs that include 

training in basic numerical concepts (such as the distance between numbers). The main 

objective of these programs would be to increase the precision of number representation in 

the mental number line for high math-anxious individuals by reducing the overlapping of 

mental representations of close numbers. It remains to be demonstrated, however, whether 

an intervention program of this kind would improve math achievement in HMA 

individuals. 

In sum, the current results demonstrate the relationship between math anxiety and the 

numerical distance and size effects, as indexed by behavioral and ERP measures. Our 

findings provide new support for a deficit in basic processing of numerical magnitude in 
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high math-anxious individuals, a deficit that involves the precision of their mental number 

line. These results have important implications for the teaching and remediation of math 

anxiety, suggesting that potentially useful intervention programs could be designed by 

focusing on improving the poor magnitude representation suffered by high math-anxious 

individuals.  
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Table 1. Means and standard errors of the mean (SEM; in brackets) for age, educational level, math anxiety, 

trait anxiety, and arithmetic ability, as well as frequencies for gender and hand dominance for the LMA 

and HMA groups. 

 Age Gender Dominance Education sMARS STAI-T Ability-1 Ability-2 

LMA 21.59 (.63) 67 96 13.48 (.66) 44.26 (1.38) 19.52 (1.87) .90 (.03) .24 (.02) 

HMA 20.92 (.30) 88 88 13.50 (.53) 85.08 (1.25) 23.08 (2.14) .88 (.02) .19 (.01) 

 

Note: LMA: low math-anxious; HMA: high math-anxious; Gender: percentage of women; Dominance: percentage 

of right-handed; Education: number of years of formal education from 12 years-old onwards. sMARS: Shortened Math 

Anxiety Rating Scale; STAI-T: Trait anxiety subscale from the STAI. Ability-1: arithmetic ability measured taking the 

number of correctly solved operations over “the total number of operations attempted by the participant” on the Addition 

test from the French kit (i.e., a measure of precision). Ability-2: arithmetic ability measured taking the number of correctly 

solved operations over “the total number of operations included in the Addition test” from the French kit (i.e., a measure 

of speed). 
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Table 2. Means and standard errors (in brackets) for response time (in ms) and hit rate (in %) for the small 

and large size conditions in the LMA and HMA groups. 

 Small size Large size 
 Response time  Hit rate Response time  Hit rate 

LMA 344 (7.9) 93 (1.2) 374 (11.8) 75 (2.5) 

HMA 365 (8.1) 94 (1.2) 407 (12.1) 77 (2.6) 
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Table 3. Means and standard errors (in brackets) for response time (in ms) and hit rate (in %) for the distance-

1 and distance-7 conditions in the LMA and HMA groups. 

 Distance 1 Distance 7 
 Response time  Hit rate Response time  Hit rate 

LMA 374 (11.8) 75 (2.5) 329 (6.5) 96 (0.9) 

HMA 407 (12.1) 77 (2.6) 347 (6.7) 95 (0.9) 
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CAPTIONS 

 

Figure 1. (A) Difference waves obtained after subtracting small number trial ERPs 

from large number trial ERPs in the LMA (thin line) and HMA (thick line) groups at Fz, 

Cz, and Pz. (B) Spatial distribution of the size effect over all electrodes at the scalp surface 

in the LMA group (right) and the HMA group (left). Large minus small number trial 

voltage differences in the 200-250 ms window. 

Figure 2. (A) Difference waves obtained after subtracting distance-7 trial ERPs from 

distance-1 trial ERPs in the LMA (thin line) and HMA (thick line) groups at Fz, Cz, and 

Pz. (B) Spatial distribution of the distance effect over all electrodes at the scalp surface in 

the LMA group (right) and the HMA group (left). Distance-1 minus distance-7 trial voltage 

differences in the 200-250 ms window.  
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