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Abstract

We express the Lyubeznik numbers of the local ring of a complex isolated
singularity in terms of Betti numbers of the associated real link.

1. Introduction

Let A be a Noetherian local ring which contains a field. In [9], G. Lyubeznik intro-
duces a set of numerical invariants for A. The purpose of this note is to compute
these invariants when A is the local ring of an isolated singularity of a complex space
in terms of topological invariants attached to it, more precisely in terms of some of
the Betti numbers of the associated real link.

In order to introduce Lyubeznik’s numbers, we recall first some definitions: let
R be a commutative Noetherian ring, p ⊆ R a prime ideal, M a R-module and p ≥ 0
a positive integer. The p-th Bass number of a R-module M with respect to p is the
number

µp(p,M) := dimk(p) ExtpR(k(p),Mp)

1 Partially supported by the DGCYT, PB95-0274.
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where k(p) = Rp/pRp is the residue field at p and Mp denotes the localization of M
at p. Bass numbers were introduced in [1] and they describe the structure of the
minimal injective resolution of M . Namely, if 0 → M → I• is a minimal injective
resolution then the p-th term is of the form

Ip ∼= ⊕p∈SpecR

(
ER(R/p)⊕µp(p,M)

)

where ER(R/p) denotes the injective envelope of R/p in the category of R-modules.
We remark that, in general, Bass numbers are not necessarily finite. If R is a
Gorenstein ring, the Bass numbers of R describe the structure of the Cousin complex
of R (cf. [5, Chapter IV, §2]), since in this case it is a minimal injective resolution.
See [13], [14] for further details and results on these topics.

We recall as well that if I ⊆ R is an ideal, M a R-module and j ≥ 0 an integer,
then the j-th local cohomology module of M with supports on I is the R-module

Hj
I (M) := indlim k ExtjR(R/Ik,M).

Now we come to the definition of Lyubeznik’s numbers: let (A,mA) be a Noethe-
rian local ring which contains a field. Because of Cohen’s theorem there is an epi-
morphism of rings π : R → Â where R = k[[x1, . . . , xn]] is a ring of power series with
coefficients in a field k and Â is the completion of A with respect to the mA-adic
topology. Denote m ⊂ R the maximal ideal and set I = kerπ. Following: [9], for
given integers p ≥ 0 and i ≤ n put

λp,i(A) = µp(m, Hn−i
I (R)) = dim k ExtpR

(
k, (Hn−i

I (R))m

)
.

It is proved in [9] (see also [7] for the case char(k) = p > 0) that these numbers
are always finite and that they depend only on the ring A and not on the chosen
presentation of Â as a quotient of a power series ring. According to [9, (1.4) and
(3.4a)], the number λp,i(A) is equal to dim k HomR(k, Hp

m(Hn−i
I (R))). See [9, §4]

for further properties of these invariants and [15] for an algorithm which allows to
compute the numbers λp,i(R/I) from a set of generators for the ideal I. In this
paper we prove the following theorem:

Theorem
Let V denote a complex space with an isolated singularity at x ∈ V and of

pure dimension d ≥ 2 at x. Let A = OV,x and denote by Hi
{x}(V,C) the singular

cohomology groups of V with complex coefficients and support on {x}. Then one
has:

(a) λ0,i(A) = dimC Hi
{x}(V,C) for 1 ≤ i ≤ d− 1.

(b) λp,d(A) = dimC Hp+d
{x} (V,C) for 2 ≤ p ≤ d.

(c) All other λp,i(A) vanish.

If d = 1, all λp,i(A) vanish except λ1,1(A) which is equal 1.
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Remark 1. It follows from the theorem that the d− 1 numbers λ0,i (1 ≤ i ≤ d− 1)
determine all the others. Indeed, there is a compact real orientable (2d−1)-manifold
K(V,x) (the link of the singularity germ (V, x), see e.g. [3, Chapter I, §5]) such
that Hi

{x}(V,C) � H̃i−1(K(V,x),C), where H̃ denotes reduced cohomology. Then,
because of Poincaré duality applied to K(V,x), one has the relations λ0,i = λd−i+1,d

(2 ≤ i ≤ d− 1) , λ0,1 + 1 = λd,d.

Remark 2. It is pointed out in [9, p. 54] that statement (a) above follows from a theo-
rem of Ogus ([11, 2.3]) relating local cohomology and algebraic de Rham cohomology
and the comparison theorem between algebraic de Rham cohomology and singular
cohomology proved by Hartshorne in [6, IV.3.1]. The proof given here replaces these
arguments with the use of the theory of D-modules (in particular duality) and the
regularity property of the local cohomology (see e.g. [10, Chapter II]). When d = 2
the theorem follows also from the results of Walther in [14].

2. Proof of the theorem

From now on we fix k = C, λp,i will stand for λp,i(OV,x). For some n ≥ 1 we will have
OV,x = C{x1, . . . , xn}/Ic, where C{x1, . . . , xn} is the ring of germs at 0 ∈ Cn of
convergent power series and Ic ⊆ C{x1, . . . , xn} is an ideal. Set Rc = C{x1, . . . , xn},
mc ⊆ Rc its maximal ideal. Setting R = C[[x1, . . . , xn]], m = (x1, . . . , xn) ⊆ R and
I = IcR; it follows from the flatness of R over Rc and from [9, Lemma 3.1] that we
have:

λp,i = dimC HomR(C, Hp
m(Hn−i

I (R)))

= dimC HomR(C, Hp
mc

(Hn−i
Ic

(Rc)) ⊗Rc
R)

= dimC HomRc
(C, Hp

mc
(Hn−i

Ic
(Rc))) ,

Moreover, we can choose an open neighborhood of x in V (that we will denote by V

as well) and an embedding j : V ↪→ X in an open polydisk X ⊂ Cn sending x ∈ V

to 0 ∈ X such that if OX denotes the ring of analytic functions on X then

λp,i = dimC HomOX

(
C, Hp

[0](H
n−i
[V ] (OX))

)
.

(If Y ⊂ X is a closed analytic subset H∗
[Y ] will stand for the algebraic local cohomo-

logy with support on Y , thus in more algebraic terms H∗
[Y ] = H∗

IY
, where IY ⊂ OX

is the ideal of analytic functions vanishing on Y ).
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Denote by DX the ring of analytic differential operators on X (cf. e.g. [10,
Chapter I, §2]). Then, because Hp

[0](H
n−i
[V ] (OX)) is a coherent left DX -module sup-

ported only at 0 ∈ X one has (see e.g. [loc. cit., Chapter I, (2.3.1)]):

Hp
[0](H

n−i
[V ] (OX)) =

DX

DXm
⊕ · · · ⊕ DX

DXm
,

where DXm ⊂ DX is the left ideal generated by the coordinate functions x1, . . . , xn

(this follows also from the results in [9]). It is not difficult to see (e.g. using [9,
Proposition 2.3]) that the invariant λp,i is exactly the number of copies of DX/DXm

appearing in this decomposition. Therefore, if we denote by e(·) the multiplicity at
0 ∈ T ∗X of a DX -module (see [10, Chapter I, (2.4)]), we have

λp,i = e
(
Hp

[0](H
n−i
[V ] (OX))

)
.

Now we come to the proof of the theorem. Consider first the spectral sequence (see
e.g. [12, Theorem 11.38])

Ep,q
2 = Hp

[0](H
q
[V ](OX)) ⇒ Hp+q

[0] (OX) . (1)

Notice that Hp+q
[0] (OX) = 0 for p+q �= n and also Hq

[V ](OX) = 0 if q < codim(V,X) =
n − d or q > n. Moreover, since the singularity of V at x is isolated, the modules
Hq

[V ](OX) are supported at 0 for q �= n − d, thus Hp
[0](H

q
[V ](OX)) = 0 if p > 0 and

q �= n− d. Therefore λp,n−q = 0 in this range, and the only possibly non-zero terms
in this spectral sequence are those on the thick dots in the picture below:
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This implies that if d > 1 then λ0,d = λ1,d = 0 (actually this is a general fact) and
proves part (c) of the theorem.

In order to prove parts (a) and (b) we will use duality for D-modules. We
refer to [10] for details. If M is a holonomic left DX -module we denote M∗ =
HomOX

(ωX ,ExtnDX
(M,DX)) its dual. We denote by Db

h(DX) the derived category
of complexes of DX -modules with bounded and holonomic cohomology. We recall
that the duality functor (·)∗ defined above extends to a duality functor (·)∗ defined on
Db

h(DX). For Y ⊆ X a closed analytic subspace we denote RΓ[Y ](OX) ∈ Db
h(DX)

the derived functor of Γ[Y ](·) applied to OX (cf. [10, Chapter I, §6]). Finally, if
M ∈ Db

h(DX) we denote by Hs(M) its s-th cohomology module (so that we have
Hs

[Y ](OX) = Hs(RΓ[Y ](OX))).
From the definition of the duality functor it is easy to see that if M ∈ Db

h(DX)
then Hs(M)∗ � H−s(M∗). It follows that in our situation we have a Grothendieck
spectral sequence ([12, Theorem 11.38])

Ep,q
2 = Hp

[0]

(
(H−q

[V ](OX))∗
)

⇒ Hp+q
(
RΓ[0]((RΓ[V ](OX))∗)

)
. (2)

Notice that, applying the same considerations as for spectral sequence (1), the only
possibly non-zero terms of this sequence are those on the thick dots pictured below:

This implies that this sequence degenerates at the E2-term, thus

Hp
[0]

(
(H−q

[V ](OX))∗
)

= Hp+q
(
RΓ[0]((RΓ[V ](OX))∗)

)
. (3)

Let DR denote the de Rham functor RHomDX
(OX , ·)[dimX]. Notice that the

DX -module Hp+q(RΓ[0]((RΓ[V ](OX))∗)) is supported only at zero. Using this fact
and (3) above we have:

e
(
Hp

[0]((H
−q
[V ](OX))∗)

)
= e

(
Hp+q(RΓ[0]((RΓ[V ](OX))∗))

)

= dimC Hp+qDR
(
(RΓ[0]((RΓ[V ](OX))∗))

)
0
, (4)
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where the subscript 0 denotes the fiber at the origin. We want to compute now the
de Rham complex of RΓ[0]((RΓ[V ](OX))∗). If Y is a locally compact topological
space we denote by CY the constant sheaf C on the space Y (notice that for the
polydisk X we have DR(OX) = CX [n]). We denote by Db

c(CY ) the derived category
of the category of complexes of sheaves of complex vector spaces on Y with bounded
and constructible cohomology. We denote by DY : Db

c(CY ) → Db
c(CY ) the Verdier

duality functor (see e.g. [8, Chapter II and III] for details). If f : Z → Y is a
proper continuous map between locally compact topological spaces we denote by
f∗ : Db

c(CZ) → Db
c(CY ) (resp. by f−1 : Db

c(CY ) → Db
c(CZ)) the direct (resp.

inverse) image functor, and we set f ! = DZ · f−1 ·DY . Finally, if f : Z ↪→ Y is the
inclusion of a closed subspace and F ∈ Db

c(CY ) we set

RΓZ(F) = f∗ f
!(F).

We recall that in our situation, j : V ↪→ X denotes the inclusion map. Set k :
{x} ↪→ V the inclusion, i = j · k. From the regularity of OX as a DX -module and
the local duality theorem (commutation DXDR = DR·( )∗, see e.g. [10, Chapter II]),
we get

DR
(
RΓ[0](RΓ[V ](OX))∗

)

= RΓ{0}DR((RΓ[V ](OX))∗) by regularity of (RΓ[V ](OX))∗

= RΓ{0} DX DR(RΓ[V ](OX)) by local duality

= RΓ{0} DX RΓV (CX) by regularity of OX

= RΓ{0}j∗(CV [n])

where the last equality follows from the definition of RΓV , using that DX ·j∗ = j∗·DV

(j is proper) and also that DV ·DV = Id (see e.g. [8, Chapter III] for more details).
By the definition of RΓ{0} and [8, Proposition 3.1.9, (ii)] this complex is equal to
i∗k!CV [n] in Db

c(CX). It follows that we have:

DR
(
RΓ[0](RΓ[V ](OX))∗

)
0

= RΓ({x}, k! CV [n])

= RΓ(V, k∗ k! CV [n])

= RΓ(V,RΓ{x}(CV )[n])

= RΓ{x}(V,CV [n]) .

Thus, from this computation and (4) above we have

e
(
Hp

[0]((H
−q
[V ](OX))∗)

)
= dimC Hp+q

(
RΓ{x}(V,CV [n])

)
= dimC Hp+q+n

{x} (V,C) .
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If M is an holonomic DX -module, then one has e(M) = e(M∗). Therefore, if for
i < d we put q = n− i, we get

λ0,i = e
(
H0

[0](H
n−i
[V ] (OX))

)
= e

(
Hn−i

[V ] (OX)
)

= e
(
Hn−i

[V ] (OX)∗
)

= e
(
H0

[0]((H
n−i
[V ] (OX))∗)

)

= dimC Hi
{x}(V,C) ,

which proves part (a) of the theorem.
In order to prove part (b) we have to show that for p ≥ 2,

e
(
Hp

[0]((H
n−d
[V ] (OX))∗)

)
= e

(
Hp

[0](H
n−d
[V ] (OX))

)
.

Set K = H0
[0]((H

n−d
[V ] (OX))∗), L = (Hn−d

[V ] (OX))∗/K. On the one hand, since K is
supported only at 0, the long exact sequence obtained by applying H∗

[0] to

0 → K →
(
Hn−d

[V ] (OX)
)∗ → L → 0 (5)

gives
e
(
Hp

[0]((H
n−d
[V ] (OX))∗)

)
= e

(
Hp

[0](L)
)

for p ≥ 1 . (6)

On the other hand, the singularity (V, x) being isolated, the holonomic DX -module
L is the one introduced in [2, Proposition (8.5) and its proof] if d > 1. In particular
L is self-dual (i.e., L∗ ∼= L) and DRL is the intersection complex ICV (cf. [2,
Theorem 8.6]).
Thus, dualizing (5) and applying H∗

[0] again, we get

e
(
Hp

[0](H
n−d
[V ] (OX))

)
= e

(
Hp

[0](L)
)

for p ≥ 2 .

Together with (6), this equality gives the desired result for d ≥ 2. If d = 1 the
spectral sequence (1) degenerates already at the E2-term. From this fact follows
that all Lyubeznik numbers are zero except λ0,0 and λ1,1 which verify λ0,0+λ1,1 = 1.
But λ0,0 = dimC H0

{x}(V,C) = 0 and the claimed result follows. �
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