LA PROYECCIÓN PLANA GENERICA DE UNA RAMA DE CURVA ALABEADA

por

EDUARDO CASAS ALVERO

1. — INTRODUCCIÓN. Sea ɣ una rama de curva algebraica con origen en un punto ㅎ del espacio proyectivo complejo de dimensión tres, Ƿ3. A principios del presente siglo se admitía como resultado establecido la coincidencia de la composición de ɣ (i. e., las multiplicidades en ɣ de ㅎ y los sucesivos puntos infinitamente próximos a ㅎ en ɣ) con la de su proyección plana desde un punto genérico del espacio. Se debe a Zariski (?) la observación de que tal resultado es, en general, falso. Mostraré aquí cómo pueden caracterizarse las ramas de curva alabeada cuya composición coincide con la de su proyección plana desde un punto genérico.

2. — TRANSFORMACIONES CUADRÁTICAS. Serán de utilidad las llamadas transformaciones cuadráticas de primera especie con cónica fundamental degenerada: una tal transformación, sea ƪ, se obtiene refiriendo los planos de un segundo espacio proyectivo, Ƿ3', a las cuádricas del sistema lineal engendrado por cuatro cuádricas linealmente independientes que tienen en común una cónica Ƙ (cónica fundamental de ƪ) degenerada en dos rectas, y un punto Ȯ (centro de ƪ). Eligiendo los sistemas de referencia adecuados, las ecuaciones de la transformación son

\[x_0' = x_0x_3 \quad x_1' = x_1x_3 \quad x_2' = x_2x_3 \quad x_3' = x_1x_2 \]

El centro es (0,0,1) y la cónica fundamental es la \(x_3 = 0, x_1x_2 = 0 \). Diremos que el punto doble de Ƙ, \(q = (1,0,0,0) \), es el polo de la transformación. Se observa fácilmente que la transformación inversa,

T^{-1}, es del mismo tipo, sean O' y K' sus centro y cónica fundamental: al plano ω de K' le llamaremos plano fundamental de T. La transformación T presenta las siguientes propiedades, que pueden verificarse directamente a partir de la expresión analítica anterior (2).

a) Los puntos del plano fundamental son los puntos del primer entorno de O en P_3, correspondientes a las direcciones que parten de O.

b) Los planos por O se transforman en planos por O', de manera que T induce una proyectividad entre las radiaciones de planos de vértices O y O'.

c) Las superficies de orden n que contienen a O como punto μ-uplo, se transforman en superficies de orden $2n - \mu$ que cortan a ω en una curva de orden μ (cuyos puntos corresponden a las direcciones de las generatrices del cono tangente en O) y la cónica K contada $n - \mu$ veces.

d) Las rectas por el polo q de T se transforman en rectas por el polo q' de T^{-1}, de modo que entre las radiaciones de rectas de vértices q y q', se induce una transformación cuadrática ordinaria entre espacios proyectivos de dimensión dos, cuyos puntos fundamentales son la recta Oq y las dos rectas que componen K.

e) El polo de T^{-1} es el punto del plano fundamental de T correspondiente a la dirección de la recta que une el centro con el polo de T.

Todas las transformaciones que se utilicen en adelante se entenderán cuadráticas de primera especie, con cónica fundamental degenerada, salvo mención explícita en contra.

3. — LA DEMOSTRACIÓN DE ENRIQUES. Enriques, en el libro IV, capítulo IV, de la Teoría Geométrica delle Equazioni, ya citada, da una demostración, necesariamente errónea, de la coincidencia de las composiciones de una rama de curva alabeada γ y su proyección desde un punto genérico. Interesa analizar dicha demostración, porque en su mismo orden de ideas se conseguirá la caracterización de las ramas de curva cuya composición coincide con la de su proyección desde un punto genérico.

Sea γ una rama de curva alabeada con origen en un punto $p \in P_3$. Enriques considera una transformación T_1 con centro en p y cónica

(1) Véase también Enriques-Chisini, Teoria Geometrica delle equazioni, N. Lanichelli, Bologna, 1915-24, libro IV, cap. IV.
fundamental (degenerada en dos rectas) elegida genéricamente.
Sea \(\gamma_1 \) la transformada de \(\gamma \), cuyo origen será un punto \(p_1 \) del plano fundamental \(\omega_1 \) de \(T_1 \), punto del primer entorno de \(\hat{p} \) en \(\gamma \). Si \(q \) y \(q_1 \) son los polos de \(T_1 \) y \(T^{-1} \), sean \(\gamma' \) y \(\gamma'_1 \) las proyecciones de \(\gamma \) y \(\gamma_1 \) desde \(q \) y \(q_1 \), respectivamente. Según la propiedad \(d \) del \(\S \) 2, \(\gamma'_1 \) se obtiene de \(\gamma' \) por medio de una transformación cuadrática ordinaria entre planos, uno de cuyos puntos fundamentales es el origen \(\hat{p}' \) de \(\gamma' \), mientras los dos restantes han sido elegidos genéricamente: consecuentemente, el origen \(p_1' \) de \(\gamma'_1 \) es el punto del primer entorno de \(\hat{p}' \) en \(\gamma' \). La demostración prosigue ahora por inducción sobre el número de puntos múltiples sucesivos de \(\gamma' \): las composiciones de \(\gamma_1 \) y \(\gamma'_1 \) coinciden por hipótesis de inducción, con lo que también coinciden las de \(\gamma \) y \(\gamma' \). El punto débil de la demostración fue puesto en evidencia por Zariski (c. f. la cita de la introducción): a pesar de tomar \(q \) en posición general, no puede asegurarse que \(q_1 \) esté en posición general de \(\gamma_1 \), lo que impide aplicar la hipótesis de inducción a \(\gamma_1 \) y su proyección desde \(q_1 \).

A pesar de ello, efectuemos la transformación \(T_1 \) tomando como polo \(q \) un punto cualquiera del espacio no situado sobre la tangente a \(\gamma \) y como cónica fundamental, \(K_1 \), un par de rectas genéricas por \(q \). La hipótesis de que \(q \) no está sobre la tangente a \(\gamma \) permite asegurar que el origen \(\hat{p}_1 \) de \(\gamma_1 \) no coincide con \(q_1 \) (e, \(\S \) 2). Efectuemos una nueva transformación \(T_2 \) con centro en \(\hat{p}_1 \), polo en \(q_1 \) y cónica fundamental, \(K_2 \), compuesta por dos rectas genéricas por \(q_1 \). Sea \(\gamma_2 = T_2(\gamma_1) \), \(p_2 \) el origen de \(\gamma_2 \) y \(q_2 \) el polo de \(T_2^{-1} \). \(p_2 \) y \(q_2 \) son distintos si y sólo si la tangente a \(\gamma_1 \) no contiene a \(q_1 \); en este caso, podemos proseguir con una nueva transformación de centro \(p_2 \) y polo \(q_2 \); supongamos efectuadas de esta forma \(i + 1 \) transformaciones \(T_1, \ldots, T_{i+1} \); para cada \(j \), \(j \leq i + 1 \), el centro de \(T_j \) será el origen \(\hat{p}_{j-1} \) de \(\gamma_{j-1} \), su polo, el polo \(q_{j-1} \) de \(T_{j-1}^{-1} \), la cónica fundamental será un par de rectas genéricas por \(q_{j-1} \) y denotaremos por \(\gamma_j \) la transformada \(T_j(\gamma_{j-1}) \). En particular, suponemos que, para cada \(j < i + 1 \), \(\hat{p}_j \) y \(q_j \) son distintos, en caso contrario no podría efectuarse \(T_{j+1} \).

Para cada \(j \), \(j < i + 1 \), sea \(\gamma'_j \) la proyección de \(\gamma_j \) desde \(q_j \); cada \(\gamma'_j \) se obtiene de la precedente, \(\gamma'_{j-1} \), por medio de una transformación cuadrática ordinaria del plano, uno de cuyos puntos fundamentales es el origen \(\hat{p}_{j-1} \) de \(\gamma'_{j-1} \) mientras los dos restantes están en posición general. De este modo, así como los \(\hat{p}_1, \ldots, \hat{p}_i \) son los puntos en el primer, \(\ldots, \) iésimo entorno de \(\hat{p} \) en \(\gamma \), \(\hat{p}_1', \ldots, \hat{p}_i' \), orígenes de \(\gamma_1', \ldots,
γ′, son los puntos en el primer, …, iésimo entorno de p′ en γ′: quedan pues en evidencia parte de las composiciones de γ y γ′.

Por otra parte, cada γ′; para j < i, es proyección de γj desde un punto exterior a la tangente, puesto que, si pjqj es tangente a γj por ej. § 2. qj+1 = pj+1 contra la hipótesis si j < i. De este modo, para j < i, las multiplicidades de pj y p′j en γj y γ′j, respectivamente, coinciden. Las multiplicidades de pj y p′j coinciden si y sólo si la tangente a γj no coincide con pj,qj, es decir, si y sólo si pj+1 ≠ qj+1. que es el caso en que puede proseguirse con una nueva transformación, Ti+2, con centro en pj+1 y polo en qj+1. Tenemos

Proposición 1. Sea γ una rama de curva alabeada con origen en p, q un punto del espacio, exterior a la tangente a γ y γ′ la proyección plana de γ desde q. Las composiciones de γ y γ′ coinciden hasta el iésimo entorno si y sólo si pueden efectuarse transformaciones T1, …, Ti+1, centro y polo de T1 en p y q, respectivamente, de manera que si γi = T1(γi−1), γ0 = γ, pi es el origen de γi y qj el polo de Tj−1, Tj+1 tiene centro en pj, polo en qj y cónica fundamental compuesta por dos rectas genericas por qj.

Demostración. Abatamos de observar que, en la hipótesis de existencia de la sucesión de transformaciones, las composiciones coinciden hasta el iésimo entorno. Recíprocamente, de no poder completar la construcción hasta i + 2 transformaciones, se alcanzaría j, j < i + 2, para el que pj = qj, en cuyo caso p′j−1q′j−1 es tangente a γj−1 y con ello la multiplicidad de p′j−1 es superior a la de pj−1, con j − 1 ≤ i.

4. — **Puntos Semisatélites y Satélites.** Conviene recordar ahora como, entre los puntos infinitamente próximos a un punto p de p3, se distingue entre puntos libres, semisatélites y satélites (3). Sea p, un punto del s-ésimo entorno de p en p3, precedido por los puntos p1, …, ps−1 del primer, …, (s − 1)-entorno de p. Supónganos que p se ha obtenido tras efectuar s transformaciones cuadráticas de primera especie, T1, …, Ts, con cónica fundamental degenerada y centros respectivos p1, …, ps−1; para cada i, sea νi el plano fundamental de Ti:

(3) Véase E. Casas, La noción de satelitismo en el espacio, Actas de las IV Jornadas matemáticas hispano-francesas (Jaca, 1977).
a) \(\hat{p}_i \) es libre si no existe \(i, \ 0 < i < s, \) tal que
\[
\hat{p}_{i+1} \in T_{i+1}(\omega_i), \quad \hat{p}_{i+2} \in T_{i+2} T_{i+1}(\omega_i), \ldots, \quad \hat{p}_s \in T_s \ldots T_{i+1}(\omega_i) \quad (1)
\]

b) Si \(\hat{p}_i \) no es libre, sea \(i \) el menor entero para el que se verifican relaciones del tipo de las (1): \(\hat{p}_i \) es semisatélite si no existe \(j, \ i < j < s, \) con
\[
\hat{p}_{j-1} \in T_{j-1}(\omega_j), \quad \hat{p}_{j+1} \in T_{j+1} T_{j+1}(\omega_j), \ldots, \quad \hat{p}_s \in T_s \ldots T_{j+1}(\omega_j) \quad (2)
\]

c) \(\hat{p}_i \) será satélite si no es libre ni semisatélite, es decir, si existen \(i, \) \(j, \) con \(0 < i < j < s, \) de manera que se verifiquen (1) y (2).

No hay posibilidad de que, simultáneamente a (1) y (2) se verifique un tercer grupo de relaciones
\[
\hat{p}_{i-1} \in T_{i-1}(\omega_i), \quad \hat{p}_{i+1} \in T_{i+1} T_{i-1}(\omega_i), \ldots, \quad \hat{p}_s \in T_s \ldots T_{i+1}(\omega_i)
\]
para un tercer \(t, \ 0 < t < s, \) \(t \neq i, \ t \neq j. \)

Los puntos en el primer entorno de \(\hat{p} \) son todos libres. Si \(\hat{p}_i \) es un punto en el \(s \)-ésimo entorno de \(\hat{p} \), los puntos del primer entorno de \(\hat{p}_i \) aparecen en el plano fundamental de una transformación centrada en \(\hat{p}_i \), presentando las siguientes configuraciones:

Si \(\hat{p}_i \) es libre, en su primer entorno aparece una recta de puntos semisatélites, siendo libres los restantes.

Si \(\hat{p}_i \) es semisatélite, en su primer entorno aparecen dos rectas cuyos puntos son semisatélites, a excepción del común que es satélite; los restantes puntos son libres.

Si \(\hat{p}_i \) es satélite, en su primer entorno está determinado un triángulo cuyos vértices son puntos satélites, los puntos de los lados son semisatélites y los restantes puntos del plano son libres.

Los puntos libres, semisatélites y satélites pueden caracterizarse, independientemente de las transformaciones utilizadas en la definición, de la siguiente forma: sea \(\hat{p}_i \) en el \(s \)-ésimo entorno de \(\hat{p} \), precedido por \(\hat{p}_1, \ldots, \hat{p}_{i-1} \); designemos por \(\gamma \) una rama de curva con origen en \(\hat{p} \) que contenga a \(\hat{p}_i \) y sean \(\mu = \mu_0, \mu_1, \ldots, \mu_{i-1} \) las multiplicidades de \(\hat{p}, \hat{p}_1, \ldots, \hat{p}_{i-1} \) en \(\gamma \):

\begin{itemize}
 \item[a)] Si \(\hat{p}_i \) no es libre, existe \(i, \ 0 < i < s, \) de modo que, cualquiera que sea \(\gamma, \mu_{i-1} > \mu_i, \ldots, \mu_{i-1}. \) Recíprocamente, si se tiene una tal desigualdad para una sola rama \(\gamma, \hat{p}_i \) no es libre.
 \item[b)] Si \(\hat{p}_i \) es satélite, existen \(i, \ j, \ 0 < i < j < s, \) de manera que, cualquiera que sea \(\gamma, \mu_{i-1} > \mu_i + \ldots + \mu_{i-1}, \mu_{j-1} > \mu_j + \ldots + \mu_{j-1}. \) Recíprocamente también, si se dan dichas desigualdades para una sola rama \(\gamma, \hat{p}_i \) es satélite.
Los enteros \(i, j \) que aparecen en la caracterización, corresponden a sus homónimos en la definición anterior.

Se observa inmediatamente que cada vez que sobre una rama aparece un descenso de multiplicidad, de un punto al sucesivo, aparecen uno o más puntos semisatélites. En particular, sobre una rama singular aparecen siempre puntos semisatélites, pudiendo aparecer o no puntos satélites.

5. — PUNTOS SEGUIDORES DE SATÉLITES. No basta con la distinción entre puntos libres, semisatélites y satélites para caracterizar las ramas de curva cuya composición coincide con la de su proyección genérica. Caracterizaremos ahora a determinados puntos semisatélites que tomarán el nombre de seguidores de satélites.

Conviene advertir en primer lugar que si \(\bar{p}_i \) es un punto del \(s \)-ésimo entorno de \(\bar{p} \), al considerar los puntos del primer entorno de \(\bar{p}_i \) como los puntos del plano fundamental \(\omega_{s+1} \) de una transformación centrada en \(\bar{p}_i \), el primer entorno de \(\bar{p}_i \) adquiere una estructura de plano proyectivo que tiene carácter intrínseco, i. e., independiente de las transformaciones utilizadas. En efecto, los puntos de \(\omega_{s+1} \) están en correspondencia biyectiva con las clases de ramas de curva, con origen en \(\bar{p} \) y que contienen a \(\bar{p}_i \), que definen intrínsecamente los puntos del primer entorno de \(\bar{p}_i \) (\(^4\)); cada recta de \(\omega_{s+1} \) está formada por los puntos del primer entorno de \(\bar{p}_i \) en una superficie por \(\bar{p} \) que contiene a \(\bar{p}_i \), como punto simple y recíprocamente, el primer entorno de \(\bar{p}_i \) en una tal superficie es una recta de \(\omega_{s+1} \). De esta forma, el hecho de que tres puntos de \(\omega_{s+1} \) estén alineados tiene un sentido intrínseco al considerarlos como puntos del primer entorno de \(\bar{p}_i \); cada superficie por \(\bar{p} \) que contiene a \(\bar{p}_i \) como punto simple, al contener a dos de ellos, contiene al tercero. De aquí que, si \(\bar{p}_i \) se alcanza por otras transformaciones y se construye su primer entorno mediante una transformación de plano fundamental \(\omega'_{s+1} \), se tenga una proyectividad entre \(\omega_{s+1} \) y \(\omega'_{s+1} \) por la que se corresponden los puntos que representan un mismo punto infinitamente próximo a \(\bar{p} \).

Sea ahora \(\bar{p}_{s-1} \) un punto no libre en el \((s - 1)\)-entorno de \(\bar{p} \); en el primer entorno de \(\bar{p}_{s-1} \) aparecen uno o tres puntos satélites; sea \(\bar{p}_s \) un punto no satélite del primer entorno de \(\bar{p}_{s-1} \) y \(q_i \) uno de

los puntos satélites de dicho entorno: diremos que el punto \(h_{r+1} \) del primer entorno de \(p_r \), correspondiente a la dirección de la recta \(p_r q_r \), es un punto seguidor del satélite \(q_r \). Definiendo inductivamente, si \(h_r \) es seguidor del satélite \(q_r \), en el primer entorno de \(p_{r-1} \), sea \(p_r \) un punto cualquiera del primer entorno de \(p_{r-1} \), distinto de \(h_r \): el punto \(h_{r+1} \), del primer entorno de \(p_r \), que corresponde a la dirección de la recta \(p_r h_r \), se dirá también seguidor del satélite \(q_r \).

El carácter intrínseco de la noción de seguidor de satélite se sigue del de la noción de punto satélite y de la anterior observación acerca de la estructura canónica de plano proyectivo del primer entorno de cada punto infinitamente próximo a \(p \). De hecho \(h_{r+1} \) viene caracterizado por ser el punto del primer entorno de \(p_r \) común a todas las superficies por \(p \) que contienen a \(p_{r-1} \) como punto simple, a \(p_r \) y a \(q_r \); asimismo, \(h_{r+1} \) es el punto del primer entorno de \(p_r \) común a todas las superficies por \(p \) que tienen a \(p_{r-1} \) como punto simple y contienen a \(h_r \) y \(p_r \).

Se observa que los seguidores de satélites son siempre puntos no libres, puesto que provienen de una dirección contenida en un plano fundamental: pueden ser puntos satélites cuando \(p_r \) o \(p_r \) no son libres), en cuyo caso dejaremos de llamarles seguidores de satélite.

Interesa aquí el caso de un grupo de puntos sucesivos \(p_{r+1}, \ldots, p_{r+j} \), donde \(p_{r+1} \) es semisatélite precedido por puntos libres y ninguno de los restantes puntos es satélite o seguidor de satélite. En tales condiciones, en el primer entorno de cada \(p_{r+t} \), \(1 \leq t \leq j \) hay un solo punto seguidor de satélite que es satélite sí y sólo si \(p_{r+t} \) es semisatélite.

6. — El teorema de caracterización. Sea \(\gamma \) una rama de curva alabeada, singular y con origen en \(p \), \(\mu (>1) \) la multiplicidad de \(p \) en \(\gamma \). Sucedan a \(p \) sobre \(\gamma \) un número finito (posiblemente nulo) de puntos de multiplicidad \(\mu \), sean \(p_1, \ldots, p_{r-1} \), a los que sucederá \(p_r \) de multiplicidad \(\mu' < \mu \). Por lo enunciado en el § 4, \(p_1, \ldots, p_r \) son puntos libres a los que sucede el primer punto semisatélite de \(\gamma \), \(p_{r+1} \).

Proposición 2. La composición de \(\gamma \) y la de su proyección desde un punto genérico \(q \) del espacio, coinciden hasta el \(r \)-ésimo entorno.

Demostración. Probaremos que la proyección de \(\gamma \) desde un punto genérico de una recta no apoyada en la tangente a \(\gamma \) presenta composición coincidente con la de \(\gamma \) hasta el \(r \)-ésimo entorno. Sea \(R \)
una recta no apoyada en la tangente: elijamos una referencia pro-
yectiva de vértices A_0, A_1, A_2, A_3 con $A_0 = p$, A_2 y A_3 ele-
gidos sobre R y A_1 no coplano con los anteriores. Si x_0, x_1, x_2, x_3 son
las coordenadas homogéneas en tal referencia, sean coordenadas
afines con origen en p, $x = x_1/x_0$, $y = x_2/x_0$, $z = x_3/x_0$. El plano
$x = 0$ no contiene a la tangente a $γ$ y corta por ello a $γ$ con mul-
tiplicidad $μ$: podemos tomar $t = \sqrt{x}$ como parámetro y $γ$ admite
una representación mediante series de potencias de la forma

\[
x = t^a
\]

\[
y = a_1 t^b + a_2 t^{2b} + \ldots + a_{r-1} t^{(r-1)b} + a_r t^{r-1n+μ′} + \ldots
\]

\[
z = b_1 t^b + b_2 t^{2b} + \ldots + b_{r-1} t^{(r-1)b} + b_r t^{r-1n+μ′} + \ldots
\]

con uno, por lo menos, de los coeficientes a_r, b_r, no nulo: en efecto
por hipótesis, efectuando sucesivas transformaciones del tipo $(x, y, z) \rightarrow (x, y/x, z/x)$, situando cada vez el origen de coordenadas en el ori-
gen de la rama, deben obtenerse $r - 1$ puntos $μ$-uplos seguidos de
un punto $μ′$-uplo; ello obliga a que en las expresiones $γ(t)$, $z(t)$ no
aparezcan otros términos que los de grado divisible por $μ$, hasta
el de grado $(r - 1) μ + μ′$, el cual debe aparecer efectivamente
en una de las dos series por lo menos. Proyectando ahora $γ$ desde
$(0,0,x,1)$ sobre el plano $z = 0$, se observa directamente, a la vista
de la representación en serie de la proyección, que esta presenta
$r - 1$ puntos $μ$-uplos sucediendo al origen, seguidos de un punto
$μ′$-uplo si $a_r - x b_r ≠ 0$.

Conviene observar ahora que, si para una rama $γ$ puede efe-
tuar una sucesión de transformaciones como la descrita en la pro-
posición 1, de forma que llegue a superarse el primer punto semi-
satélite, las posiciones de los polos q_i quedan determinadas, inde-
pendientemente de la elección del primer polo q.

Proposición 3. Sea $γ$ una rama de curva alabeada con origen en
p, supongamos que entre los puntos p_1, \ldots, p_{i-1}, del primer, $\ldots, (i - 1)$-
esimo entorno de p en $γ$, no se halla ningún punto satélite pero si algún
punto semisatélite. Supongamos también que ha sido posible efectuar
una sucesión de transformaciones T_{1}, \ldots, T_i, como la descrita en la
proposición 1, independientemente de la elección del polo q de T_1, el
polo de T_{i-1}, q_i, adopta una posición bien determinada: q_i es el pun-
to satélite o seguidor de satélite del primer entorno de p_{i-1}, según que p_{i-1}
sea, respectivamente, semisatélite o libre.
DEMONSTRACIÓN. Cualquiera que sea i, $i > 1$, el polo q_i de T_{i-1} no es libre, puesto que al corresponder a la dirección de la recta $q_{i-1} p_{i-1}$ contenida en el plano fundamental ω_{i-1} de T_i, $q_i \in T_i(\omega_{i-1})$.

Supongamos que p_{i-1} es semisatélite: si p_{i-2} es libre, deberá ser $p_{i-1} \in T_{i-1}(\omega_{i-2})$, de ahí que, siendo, como hemos señalado, $q_{i-1} \in T_{i-1}(\omega_{i-2})$, la recta $p_{i-1} q_{i-1}$ sea la de puntos semisatélites del primer entorno de p_{i-2}, a cuya dirección corresponde el punto satélite del primer entorno de p_{i-1}: de $p_{i-1} q_{i-1} \in T_{i-1}(\omega_{i-2})$ se tiene $q_i \in T_i T_{i-1}(\omega_{i-2})$ además de $q_i \in T_i(\omega_{i-1})$. Si p_{i-2} es semisatélite, haciendo inducción sobre el número de puntos que separam a p_{i-1} de su más inmediato antecedente libre, podemos suponer probado que q_{i-1} es el punto satélite del primer entorno de p_{i-2}: con ello la recta $p_{i-1} q_{i-1}$ es la recta de semisatélites del primer entorno de p_{i-2} que contiene a p_{i-1}, recta a cuya dirección corresponde, por T_i, el punto satélite del primer entorno de p_{i-1}.

Supongamos ahora que p_{i-1} es libre: si p_{i-2} es semisatélite, q_{i-1} es, por lo ya demostrado, el satélite del primer entorno de p_{i-2}: el punto q_i, que corresponde a la dirección de la recta $p_{i-1} q_{i-1}$, será, por definición, el seguidor de satélite del primer entorno de p_{i-1}. Si p_{i-2} es libre, por inducción sobre el número de puntos que separam a p_{i-1} de su más inmediato antecedente semisatélite, podemos suponer probado que q_{i-1} es el seguidor de satélite del primer entorno de p_{i-2}; de aquí, por la misma definición, q_i, correspondiente a la dirección de $p_{i-1} q_{i-1}$, es el seguidor de satélite del primer entorno de p_{i-1}.

Estamos ya en condiciones de obtener la caracterización de las ramas de curva alabeada cuya composición coincide con la de su proyección plana desde un punto genérico q.

TEOREMA. Sea γ una rama de curva alabeada con origen en un punto p del espacio proyectivo complejo de dimensión tres. La composición de γ coincide con la de su proyección plana desde un punto genérico del espacio si y sólo si γ no contiene puntos satélites ni puntos seguidores de satélites.

DEMONSTRACIÓN. Obviamente, si γ es no singular, su composición coincide con la de su proyección desde un punto genérico y, por otra parte, todos los puntos de γ son libres, de manera que no puede contener puntos satélites o seguidores de satélites. Bastará pues considerar el caso de las ramas singulares, que viene tratado en el siguiente.
LEMA. Sea y una rama de curva alabeada singular, con origen en un punto p. Sea p_1, \ldots, p_r el grupo de puntos libres que suceden a p en y; p_{r+1} será el primer punto semisatélite de y. Sea q un punto genérico del espacio y y' la proyección plana de y desde q. Las composiciones de y y y' coinciden hasta r-ésimo entorno; la condición necesaria y suficiente para que coincidan hasta el $(r+j)$-ésimo entorno, es que y no contenga puntos satélites ni seguidores de satélites hasta el entorno $r + j + 1$.

DEMOSTRACIÓN. La proposición 2 asegura que las composiciones de y y y' coinciden hasta el r-ésimo entorno; por la proposición 1, pueden efectuarse transformaciones T_1, \ldots, T_{r+2} en las condiciones de dicha proposición y con el polo de T_1 en q. Si tenemos en cuenta que p_{r+1} es semisatélite y aplicamos la proposición 3, el polo q_{r+2} de T_{r+2} es el satélite del primer entorno de p_{r+1}. Sea p_{r+2} el punto que sigue a p_{r+1} en y'; la posibilidad de efectuar T_{r+3}, con centro en p_{r+2} y polo en q_{r+2}, equivalente a la coincidencia de composiciones hasta el $(r+1)$-entorno, por la proposición 1, equivale a $p_{r+2} \neq q_{r+2}$, es decir a que p_{r+2} no sea satélite, que es la condición del enunciado para $j = 1$ (no cabe la posibilidad de que p_{r+2} sea seguidor de satélite ni de que ninguno de los puntos que le preceden sea satélite ni seguidor de satélite). Sea $j > 1$ y supongamos, por inducción, probado el enunciado hasta $j - 1$: si las composiciones coinciden hasta el entorno $r + j$, por la proposición 1, habrá sido posible efectuar transformaciones hasta T_{r+j+2}, con lo que, en particular, $p_{r+j+1} \neq q_{r+j+1}$. Por otra parte, las composiciones coinciden hasta el entorno $r + j - 1$, aplicando la hipótesis de inducción, ninguno de los puntos hasta p_{r+j} es satélite o seguidor de satélite; podemos aplicar la proposición 3 para $i = r + j - 1$: q_{r+j-1} será el satélite del primer entorno de p_{r+i} si este es semisatélite, o el seguidor de satélite de dicho entorno si p_{r+i} es libre; dado que $p_{r+i-1} \neq q_{r+i-1}$ y que en el primer entorno de p_{r+i} hay un solo satélite o un solo seguidor de satélite, p_{r+i+1} no puede ser satélite ni seguidor de satélite. Recíprocamente, supongamos que y no contiene satélites ni seguidores de satélites hasta el punto p_{r+i+1}; por la hipótesis de inducción, las composiciones coinciden hasta el entorno $r + j - 1$ y, por la proposición 1, se han podido efectuar T_1, \ldots, T_{r+j+1}; si aplicamos la proposición 3 para $i = r + j + 1$, obtenemos que q_{r+i+1} es satélite o seguidor de satélite (según sea p_{r+i} semisatélite o libre), por lo tanto $q_{r+i+1} \neq \ldots$
p_{r+j+1} en virtud de la hipótesis, es posible efectuar T_{r+j+2} y, aplicando de nuevo la proposición 1, las composiciones coinciden hasta el entorno $r+j$.

Departamento de Geometría y Topología
Facultad de Matemáticas
Universidad de Barcelona