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Abstract

Real data studies emphasized situations where the classical independence
assumption between the frequency and the severity of claims does not hold
in the collective model. Therefore, there is an increasing interest in defining
models that capture this dependence. In this paper, we introduce such a
model based on Sarmanov’s bivariate distribution, which has the ability of
joining different types of marginals in flexible dependence structures. More
precisely, we join the claims frequency and the average severity by means
of this distribution. We also suggest a maximum likelihood estimation
procedure to estimate the parameters and illustrate it both on simulated and
real data.
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1 Introduction

When modeling aggregate claims with the classical collective model, the usual assumption is that
claim frequency and severity are independent, an assumption which facilitates the corresponding
computations. In practice, however, claim frequency and severity tend to be dependent, albeit
minimally. For example, in auto insurance data, some negative or positive dependence could
be found; on one hand, a high frequency can be associated with an urban driving area where
the costs are low or, on the other hand, the same high frequency can be associated with daily
journeys on secondary roads where accident costs are usually higher. Another example is found in
health insurance data, where the dependence between frequency and severity is usually positive.
Furthermore, the sample estimation of the dependence between these two variables is not easy to
measure; classical correlation coefficient can provide distorted results that can be affected by a
few events. For all these reasons, recently, there is an increasing interest in exploring models that
account the dependence between frequency and severity. In this sense, two different approaches
can be distinguished: on one hand, a model is defined for the average claim size distribution using
the number of claims as covariate (see Frees and Wang, 2006; Gschl68] and Czado, 2007; Frees
et al., 2011; Garrido et al., 2016; Valdez et al., 2018); as a second approach, the frequency and
severity (or average severity) components are related through a copula (see Erhardt and Czado,
2012; Czado et al., 2012; Krdmer et al., 2013; Hua, 2015; Lee and Shi, 2019; Oh et al., 2019; Shi
etal., 2015).

In this paper, as in Czado et al. (2012), we introduce dependence between the number of claims
and the corresponding average claim size. Nevertheless, in contrast to these authors, who modeled
this dependence by a Gaussian copula, we assume a Sarmanov dependence between the frequency
and the average severity. As Czado et al. (2012) did, to estimate the parameters we propose a
maximization by parts of the log-likelihood function, but given our bounded parametric space, to
optimize each part we use the optim() function of R and validate our algorithm with a simulation
study.

Due to its ability to join different marginals in flexible dependence structures, Sarmanov’s mul-
tivariate distribution recently gained a lot of attention in the actuarial literature in several aspects,
like: modeling continuous claim sizes (see Bahraoui et al., 2015); modeling discrete claim frequen-
cies (see Abdallah et al., 2016; Bolancé and Vernic, 2019); in the evaluation of ruin probabilities
(see, for example, Yang and Yuen, 2016; Guo et al., 2017) etc. In some of the just mentioned pa-
pers, the Sarmanov distribution has been fitted in its bivariate and trivariate forms to real insurance
data and it proved to provide a better fit than other distributions, including Copula ones.

In this paper, we make particular use of the special capacity of the Sarmanov distribution to join
marginals of different types, more precisely, one marginal will be of discrete type, corresponding to
the claim frequency, and a second marginal will be continuous, representing the average severity.
This flexibility, associated with combining various marginal distributions, allows us to propose
alternative models that mix a count data distribution for the frequency with a Gamma distribution
for the severity, as follows: Poisson-Gamma, Negative Binomial-Gamma, Zero Inflated Poisson-
Gamma and Zero Inflated Negative Binomial-Gamma compound distributions. We use the Gamma
distribution because it has flexibility and allows us to model a right skewed distribution and to
deduce closed type expressions for the main results of our models.

The proposed models take into account that a cost only exists if the claim frequency is 1 or
more. Therefore, they are specified in two parts: the first part corresponds to the probability of 0



frequency and severity, and the second part to the bivariate probability of frequency and severity
larger than 0.

A possible limitation of our compound Sarmanov-based distributions is that the dependency
is related to a bounded parameter, which in some cases does not allow fitting strong correlations.
However, our experience has shown that the correlation between the number and the amount of
claims is not very high - a correlation lower than 0.5 is common. For example, Czado et al.
(2012), using Mixed Copula models, estimated a correlation parameter equal to 0.1366; although
statistically significant, even lower correlations can be found. Specifically, we illustrate this using
a real data set consisting of a random sample of auto insurance policyholders.

The rest of the paper is organized as follows: in Section 2, we describe the proposed Sarmanov
distribution, its properties, particular cases and estimation procedure. In Section 3, we present the
results of a simulation study to evaluate the estimated parameters using a two parts log-likelihood
maximization. An application to a real data set containing auto insurance number and average cost
of claims is discussed in Section 4. Finally, we conclude in Section 5. The paper ends with an
appendix containing the proofs.

2 Collective model with dependent number and average size of
claims

We shall introduce dependence between the number of claims N and the corresponding average
claim size X of a portfolio or of a certain policy. Letting S denote the aggregate claims, clearly

S=NX. (1)

We let p denote the probability mass function (pmf) of N. In respect of the random variable (r.v.)
X, its distribution will have both an absolutely continuous component with probability density
function (pdf) denoted by fx and a probability mass at 0. Therefore, the distribution of S also has
a probability mass at 0 and a pdf that we denote by fs. We denote the cumulative distribution
function (cdf) of a r.v. by F indexed with the name of that r.v..

2.1 Sarmanov dependence

We assume a Sarmanov dependence between N and X as follows

0),n=x=0
(n) £ () (14+ @y (n) ¢ (x)), n>1,x>0
where f is a pdf, y and ¢ are bounded non-constant kernel functions and w € R. We call the pdf

(2) mixed because it joins the continuous pdf f and the discrete pmf p. Also, in order for (2) to
define a proper pdf, we impose the conditions

fxn(x,n) = { 1]; 2)

Y ympm) = [ 0@/ (0dx=0and 3)
n>1 R
l+oy(n)¢(x) > 0, forall n>1,x>0. 4



To simplify the writing, we denote by Y a r.v. having pdf f and representing X > 0. Letting

my = inf y(n),my = inf ¢ (x) ,M; = supy (n),my = sup¢ (x), condition (4) restricts @ to the
n>1 x>0 n>1 x>0
following interval

| 1 1 1
max < — ,— < ow<min{ — ,— . ®))
mymy M1M2 m1M2 M1m2
The following proposition presents the distributions of X, of S and conditional distributions. All
the proofs are given in the appendix.

Proposition 1. Under the Sarmanov dependence condition (2), it holds that
i) Pr(X=0) = p(0),
fx(x) = (1-p(0))f(x), x>0.

ii) Pr(X =0|N =n) = {(I)Z;) ,
Sxv=n (¥) = f)(I+0y(n)¢(x), x>0, n=1.

I,n=x=0

i) Pr(N =n|X =x) = { s (1 + @y ()9 (1) n =1, x>0

iv) Pr(s=0) = p(0),
56 = L2 () (1roymo(2)).s>o0

n>1 n

The first two moments of S are given in the following result; note that they are expressed in
terms of the r.v. Y.

Proposition 2. Under the Sarmanov dependence condition (2), the expected value and variance
of S are given respectively, by

ES = ENEY+oE[Ny(N)|E[Y¢(Y)],
VarS = E[V*]VarN + (EN)*VarY — B> [Ny (N)]E*[Y ¢ (V)]
+o (E[N*y (N)]E[Y?¢(Y)] —2EN E[Ny (N)] EY E[Y¢ (Y)]).
Proposition 3. The correlation coefficient of the pdf (2) is given by
OE [Ny (V]E[Y§ ()] +p(0)ENEY
v (1=p(0)) (VarY + p(0)E2[Y]) VarN
We propose to use exponential kernels. Regarding Sarmanov’s pdf in (2), we shall consider in
particular the exponential kernels satisfying condition (3). More precisely, ¢ (y) = e — % (y),
where .7y denotes the Laplace transform of the r.v. Y. Furthermore, we let v (n) = e 9 _k, and
to find k, we write

Yvmpt) = ¥ (k) p(n)

corr(X,N) =

(6)

n>1 n>1
- Zoe—ﬁnp(n) —p(0)—k (Zop(n) —p<0)>

= Zn(6)—p(0)—k(1—p(0)).
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n(8)—p(0)
1-p(0) -

because in the second formula of the pdf (2) we have n > 1

Imposing the condition expressed in (3), i.e. Y,>; ¥ (n)p(n) =0, we obtain k =

_ ,—n_ Zn(8)-p(0)
Therefore, Y (n) = e °" — 1—p(0)

(similar to a left truncation of N in 0).

2.2 Simulation from the collective model

To simulate values from the two parts bivariate Sarmanov distribution whose pdf is defined in (2),
we use the inversion method from the conditional cdf of X given N = n, which easily results from
(i) in Proposition 1 as

Fxin—0(0) = l’,
Fanea() = [ F0)(1+0y ()0 () dy

= B +ovm [ F0)90)drnz1 x>0 )

Hence, we simulate the value n from the distribution of N. If n = 0 then clearly x = 0; otherwise,
we generate an uniform U (0, 1) value u and solve the equation Fyy—, (x) = u for x. This yields
the generated pair (n,x).

2.3 Parameters estimation

Let (nl-7x,-)f(: | be arandom bivariate sample of the number and average amount of claims. Let 8 and
V be, respectively, the parameters vectors of the marginal distribution of N and of the continuous
marginal distribution of Y, while @ is the dependence parameter of Sarmanov’s distribution. Based
on (2), the log-likelihood function is

InL <(ni;xi),K=1;6;V;w> = Z Inp(0;0)+ Z [Inp(n;0)

{i:nj=x;=0} {i:ni>1,x;>0}
+Inf (xi;v) +In(1+ oy (n) ¢ (x;))]
— L ((ni)f.’il : 9) L ({xilx > 0,i=1,...K};v)

+ Y IWn(l+oyn)ox), (8)

{izni>1,x;>0}

where L <(n,)lK:1 ;6) is the likelihood function corresponding to the marginal r.v. N, while
L({xi|x; >0,i=1,...,K};Vv) is the one corresponding to Y.

Maximizing the log-likelihood expressed in (8) is very difficult, mainly for two reasons. The
first reason is because, given the limits of the dependency parameter @ that were defined in (5),
the parametric space is bounded. The second reason is due to the strong relationship that exists
between the dependence parameter and the marginal ones.

We also define )X | (0; v|w) to be the log-likelihood function corresponding to the marginal
parameters given the dependence parameter @ and, similarly, l(ﬂn)ﬁ),’i 1 (w|0; V) the log-likelihood
function of the dependence parameter given the marginal parameters 6,v. As in Bolancé and
Vernic (2019), we propose to determine the Maximum Likelihood Estimation (MLE) of the pa-
rameters in two phases. The first phase consists of maximising by parts the log-likelihood function
(an example in a similar context is in Czado et al., 2012). We describe the procedure below.
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Phase 1 Using MLE, find initial values for the parameters of the univariate marginal distributions.
The rest of the procedure in Phase 1 is divided into two steps:

Step 1 (iteration j) Given the parameters for the marginal distributions, find @’ within the
interval defined in (5) for this dependence parameter by maximizing the log-likelihood
K (w|6;V).

(”l axl i=1

Step 2 Given @’, obtain new values for the parameters of the marginal distributions by maxi-
mizing the log-likelihood function [, 1 (6;v|m).

Steps 1 and 2 are repeated until convergence. If the dependence parameter is located at an
extreme of the interval, recalculate these intervals using the parameters for marginals obtained in
Step 2.

Phase 2 Starting with the initial parameters estimated in Phase 1, perform full MLE.

Given our bounded parametric space, optimizations in the two phases were carried out using
the optim() function of R with the method L-BFGS-B (Byrd et al., 1995).

2.4 Particular cases
24.1 Counting distributions

We consider four different distributions for the r.v. number of claims, i.e., Poisson, zero inflated
Poisson, Negative Binomial and zero inflated Negative Binomial. Note that if N follows a certain
discrete distribution with support N and N follows the same distribution in the zero inflated form
with parameter 7 € (0, 1) (the probability of extra zeros), then the following relations hold

vy [ FHO-mPV=0)n=0
=) = { st

EN = (1-mEN,E[N*]=(1-n)E[N*], VarN = (1—x) (VarN + nE’N) ,
Ly(8) = m+(1—-m) 2 (8).

Assuming that N is Poisson distributed, N ~ Po(A), A > 0, we recall that
EN =VarN = 4, B [N?] = A+ 27, %y (8) = e °-1).

Then, when N is zero inflated Poisson distributed, N ~ ZIP (A, ), A > 0, m € (0,1), we easily
obtain that

Pr(N=n) = {(1 () ;?i_' ";1 ,
EN = (1-m)A,E[N } (1—m)A(A+1),VarN=(1-m)A (An+1),
(8 = m+(1- )l( 1),



If N is Negative Binomial distributed, N ~ NB(r,p), r >0, p € (0,1), then, with g = 1 — p,

I'(r+n)

Pr(N=n) = "
r(N =n) mr(r)pq,neN,
l r
EN = Q,E[Nﬂ=L;”]”,VarN:r—Z,$N(5):(L5) .
P p P 1 —ge~

Considering that N is zero inflated Negative Binomial distributed, N ~ ZINB(r,p), r > 0, p €
(0,1), m € (0,1), the above formulas yield

t+(l—m)p",n=0

Pr(N = = n) ,
W=n) { (1—m) S g, n> 1

rq(1+mrg)

EN = (l—n)%,]E[N]:(l—n)M VarN = (1 -m) ==,

p>

Ly(8) = m+(1-nm) (L)

1—ged

In the following proposition, we present formulas needed to evaluate the expected value and vari-
ance of S given in Proposition 2.

Proposition 4. Let y(n) = ¢ 9" — % be the exponential kernel.

i)If N ~ Po(A), then
Ae 9
ENy(N)] = Ae? (&”-5 - :> ,
-5 e’
E [NZIII(N)] — et [ele -8 </le_5 + 1) —(A+1) ——A] .

i) If N ~ ZIP (A, ), then

s 8'1676 -1
ENy(N)] = (1—-m)Ae ™ (W —0_ —> ,
5 e’
EN*y(N)] = (1—7)de [ele -3 (ze—ﬁ + 1) —(A+1) 1—_4 .

iii) If N ~ NB(r,p), then

- | 1= (1-ge8)
R (S )
r [ 1—(1—ge® '
W) = | (g (1-0)

(1=ge7%)" | (5 —¢g)?



i) If N ~ ZINB(r, p, 1), then

r 1—(1—ged '
BNy = (1-m 7 Sy e p<(1_p,)> ,

r [ ra - eb 1-— l—qe“s '
E[Ny ()] = <1—n>(]_‘;’e’ 5y (;fq)z—mm) g(l_m)

2.4.2 Gamma severity distribution

Let Y be Gamma distributed, Y ~ Ga(a,f), o, B > 0, where f3 is the rate parameter. We recall

that
a(a+1)

%, E [Yz} = T7 VarY = %7 gY (7) = <ﬁﬁT’y> .

The following result is needed to evaluate the expected value and variance of S.

EY =

Proposition 5. Let Y ~ Ga(o,B), o, B > 0, and let ¢ (x) = e — Ly (y) be the exponential
kernel. Then

oa—1
E[Yo(y)] = —%
o—2
- a(a+(1;7+l3y)a+(22ﬁ+7)

2.4.3 Particular compound distributions

By combining the above discussed counting distributions with the Gamma severity distribution, we
obtain four particular compound distributions: compound Poisson-Gamma, compound Zero In-
flated Poisson-Gamma, compound Negative Binomial-Gamma and compound Zero Inflated Neg-
ative Binomial-Gamma. The next proposition presents their pdfs; the proof is immediate, hence
we omit it.

Proposition 6. Let Y ~ Ga (o, B) and let w(n) = e~ " — %, O(x)=e"— (ﬁ’%’/)a be
exponential kernels. Then:

i) If N ~ Po(A), then the compound Poisson—Gamma pdf is given by

e ,n=x=0

fX,N (x,n) = { ﬁlfz(a)l ﬁ’:xa 1,—Bx (] T w (67&' _61(675—1)) ¢(x)> ,n>1,x>0 '

ii)If N ~ ZIP (A, T), then the compound zero inflated Poisson-Gamma pdf is

+(l—-m)e A n=x=0
fxnxn)=¢ (1—-mn) %%x“ le—Bx [1+a) (6_5”—77:— (1 —n)el(‘f&_l)) ) (x)] ,
n>1,x>0.



iii) If N ~ NB(r, p), then the compound Negative Binomial-Gamma pdf results as
p,n=x=0
frowbxom) = { ﬁri’ér)rr(&f—,)q"x“—le—ﬁx [1 + (6_5” — —(1_5;5)7) o (x)] n>1,x>0 "
iv) If N ~ ZINB (r, p, ), then the compound zero inflated Negative Binomial-Gamma pdf is

T+(1—-m)p',n=x=0
fen (o) = (1= ) B2 gn = [1 to (6 _n- (gl_qj”g’),) 0 <x>] ,
n>1,x>0.

To simulate values from such compound distributions by inversion, we use formula (7) of the
o
conditional cdf under the assumptions that ¥ ~ Ga(a, ) and ¢ (x) = e 7 — < B ) . We have

By
[rwomar = Lo Fyeren (en- ()0
- Fag [l b () [l

hence, letting Fg,(q ) (x) = F[g;) J5y*'e=PYdy denote the Ga(a,B) cdf, this yields for n >
1, x>0,

Funea ()= 1 -0 () (55 ) ] Fooa )+ 0w () (52 " Foutapn (5

Therefore, as discussed before, to simulate a pair (n,x), we first simulate the value n from the
distribution of N, and if n > 1, we generate an uniform U (0, 1) value u and solve the equation
FX|N=}’Z ()C) = u for x.

3 Simulation Study

To evaluate our proposed estimation procedure, we summarize the results of a simulation study.
We compare the Mean Square Error (MSE) of the estimated parameters associated to the different
bivariate Sarmanov distributions that we have analyzed in the previous sections for modeling the
dependence between claims frequency and claims average severity.

We generated 500 bivariate samples of sizes K = 500, K = 5000 and K = 50000 from the fol-
lowing compound Sarmanov models: Poisson-Gamma (CPG), Negative Binomial-Gamma (CNBG),
Zero Inflated Poisson-Gamma (CZIPG) and Zero Inflated Negative Binomial-Gamma (CZINBG).
We have selected different parameters for the analyzed distribution such that the expected number
of claims is around 0.1 or 0.2. In all the simulated models, we assumed the same parameters for
the Gamma marginal distribution: shape & = 0.3 and rate = 0.0006. Concerning the frequency
and dependence parameters, we used those shown in Table 1, considering four distinct cases for
each model, denoted M1,...,M4; in this table, we also show the values of the correlation coefficient
defined in (6). In general, the analyzed models present low although statistically significant corre-
lation. In fact, we wanted to check if our estimation procedure worked with these low correlations.

9



In Tables 2 and 3, we show the results of the MSE divided by the true corresponding parameter
in each case, i.e. we show a relativized MSE. The estimated parameters for each sample are
obtained using the procedure described in Subsection 2.3. We observe that the relativized MSE
decreases when the sample size increases, except for some cases of Gamma parameters of the CZIP
distribution with mean 0.1. In these cases, the number of nonzero values is very small and some
considerable errors associated with some random selected samples can be found. To conclude, we
can affirm that our proposed procedure works well when we have large samples, for example in
most insurance database. Also, the runtime is fast, to obtain 500 replicates with n = 50,000 we
need around 1 hour (i7-6700 CPU, 3.40GHz).

Table 1: Parameters of the bivariate compound Sarmanov models. The Gamma parameters are the
same in all the cases: o = 0.3 and 8 = 0.0006. Dependence bounds between parentheses.

A o (-26.85,3.25)

CPG-M1 0.20 -7.00
CPG-M2 0.20 3.00
A o (-25.99,3.15)

CPG-M3 0.10 -7.00
CPG-M4 0.10 3.00
r p | o (-14.13,3.47)

CNBG-M1 0.30 0.60 -12.00
CNBG-M2 0.30 0.60 3.00
r p | ®(-15.90,3.38)

CNBG-M3 0.15 0.60 -12.00
CNBG-M4 0.15 0.60 3.00
A T o (-24.61,3.48)

CZIPG-M1 0.40 0.50 -12.00
CZIPG-M2 0.40 0.50 3.00
A T o (-24.61,3.48)

CZIPG-M3 0.20 0.50 -12.00
CZIPG-M4 0.20 0.50 3.00
r p T o (-8.95,4.05)

CZINBG-M1 | 0.30 | 0.43 | 0.50 -8.00
CZINBG-M2 | 0.30 | 0.43 | 0.50 3.00
r P T o (-14.13,3.47)

CZINBG-M3 | 0.15 | 0.60 | 0.50 -8.00
CZINBG-M4 | 0.15 | 0.60 | 0.50 3.00

4 Numerical example

We now analyze a data set of auto insurance policyholders of an international company. This data
set contains a sample of K = 99,972 Spanish insureds. We assume that they have a homogeneous
risk profile. For each individual we have information on the number and the average cost of claims.
Our aim is to fit the bivariate Sarmanov distribution and to check the effect of dependence between
frequency and severity on the risk premium.

In Table 4, we display results of the initial analysis that consisted in obtaining the basic de-
scriptives and estimated initial parameters for the marginal distributions assuming independence.
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Table 2: Results of MSE divided by the true value of the parameter for compound Poisson-Gamma
(CPG) and for compound Negative Binomial-Gamma (CNBG).

Poisson Gamma Dependece
A o [} [0)
K=500 0.106 0.147  0.406 1.100
CPG-M1 K=5000 0.045 0.091 0.323 1.054
K=50000 0.034 0.107 0.335 1.007
K=500 0.107 0.140 0.326 2.254
CPG-M2 K=5000 0.034 0.052  0.130 1.171
K=50000 0.012 0.030 0.076 1.019
K=500 0.151 0.198 0.444 1.572
CPG-M3 K=5000 0.057 0.114 0.289 1.052
K=50000 0.029 0.094 0.271 1.013
K=500 0.150 0.192  0.403 3.905
CPG-M4 K=5000 0.048 0.071 0.152 1.651
K=50000 0.017 0.031 0.063 1.063
Negative Binomial Gamma Dependece
r p o [ [0)
K=500 0.436 0.139 | 0.379 0.468 1.028
CNBG-M1 K=5000 | 0.106 0.046 | 0.233 0.322 1.014
K=50000 | 0.031 0.016 | 0.188 0.277 1.002
K=500 0.421 0.138 | 0.328 0.362 2.867
CNBG-M2 K=5000 | 0.107 0.045 | 0.125 0.142 1.343
K=50000 | 0.015 0.008 | 0.029 0.050 1.074
K=500 0.596 0.172 | 0.520 0.546 1.049
CNBG-M3 K=5000 | 0.134 0.059 | 0.241 0.326 1.026
K=50000 | 0.043 0.019 | 0.196 0.269 1.013
K=500 0.588 0.173 | 0.484 0473 3.490
CNBG-M4 K=5000 | 0.133 0.058 | 0.149 0.168 1.559
K=50000 | 0.041 0.018 | 0.067 0.084 1.106
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Table 3: Results of MSE divided by the true value of the parameter for compound Zero Inflated
Poisson-Gamma (CZIPG) and for compound Zero Inflated Negative Binomial-Gamma (CZINBG).

Zero Inflated Poisson Gamma Dependece

A T o [ 0]

K=500 0.626 0.552 | 0.145 0.485 1.043

CZIPG-M1 K=5000 0.507 0.509 | 0.087 0.361 0.996
K=50000 0.502 0.500 | 0.071 0.131 0.971

K=500 0.629 0.552 | 0.158 0.435 1.746

CZIPG-M2 K=5000 0.505 0.509 | 0.133 0.486 1.143
K=50000 0.504 0.501 | 0.144 0.563 0.974

K=500 0.865 7.846 | 0.292 0.678 1.141

CZIPG-M3 K=5000 0.524 0.525 | 0.075 0.220 0.997
K=50000 0.503 0.503 | 0.062 0.164 0.973

K=500 0.866 7.846 | 0.250 0.531 3.457

CZIPG-M4 K=5000 0.525 0.524 | 0.133  0.449 1.397
K=50000 0.504 0.503 | 0.139 0.507 1.030
Zero Inflated Negative Binomial Gamma Dependece

r p T o [ )

K=500 0.032  0.006 0.009 | 0.037 0.000 10.381

CZINBG-M1 K=5000 | 0.008 0.001 0.003 | 0.003 0.000 8.604
K=50000 | 0.006 0.000 0.003 | 0.002  0.000 8.309

K=500 0.032  0.006 0.010 | 0.034 0.000 14.785
CZINBG-M2 K=5000 | 0.008 0.001 0.003 | 0.005 0.000 4917
K=50000 | 0.006 0.000 0.003 | 0.005 0.000 3.203

K=500 0.073  0.057 0.037 | 0.072  0.000 9.802
CZINBG-M3 K=5000 | 0.055 0.015 0.041 | 0.005 0.000 9.172
K=50000 | 0.043 0.015 0.049 | 0.007 0.000 8.168

K=500 0.076  0.051 0.036 | 0.072  0.000 25.638
CZINBG-M4 K=5000 | 0.055 0.015 0.041 | 0.006 0.000 6.879
K=50000 | 0.051 0.010 0.046 | 0.006 0.000 3.694
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At the top of this table, we present the analysis of the number of claims. From the values of the
Chi-square statistic we can see that the best adjustments are obtained with the NB and ZINB dis-
tributions, being somewhat better for the NB. Below the double line in Table 4, we show the basic
descriptive statistics for the average cost of claims, together with the estimated parameters of the
Gamma distribution for this variable. We compared the goodness of fit of the Gamma and Log-
Normal distributions for the average severity and obtained that the best fit is provided by Gamma.

Table 4: Results of basic descriptive analysis and initial parameters for marginal distributions.

Po NB ZIPo ZINB
Initial Parameters A =0.0887 r=0.3171 A =0.3647 r=11.1344
p=07814 w=07567 p=0.9705

T =0.7374
Frequency TRUE
0 92538.00 91482.28 92524.63 92538.00 92537.99
1 6166.00 8118.58 6285.65 6160.47 6172.32
2 1122.00 360.24 950.48 1123.51 1103.16
3 125.00 10.66 170.11 136.60 142.28
4 18.00 0.24 32.81 12.46 14.81
5 3.00 0.00 1.73 0.06 0.11
Chi-Square 99972.00 6761.20 52.81 152.02 77.09
Gamma

Initial Parameters a =0.1881

B = 0.0003
Mean Median STDEV Skewness
Severity 685.63 441.00 1580.81 15.73

The Pearson correlation coefficient between the frequency and severity is 0.4152.

Table 5 contains the results of the estimated parameters for the bivariate Sarmanov CNBG and
CZINBG; as expected, given the results in Table 4, the results for CNPG and CZIPG were worse.
From the values of the Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC), we note that the best fit is obtained with CZINBG, although the difference from the CNBG
model is minimal. In both cases, we obtain a positive and statistically significant dependence
between the frequency and average severity of claims. Furthermore, the dependence parameter is
within the interval defined in (5), which indicates that the estimated Sarmanov models work. The
effect of this dependence on risk premium is analyzed below.

4.1 Effect on pure and risk premiums

In insurance, the pure premium is calculated as the expected cost of the reported claims, i.e. ES =
[E[NX] in our case, while the risk premium commonly consists of adding the effect of the dispersion
of this variable, i.e. VarS = Var|[NX]. For example, if we use the standard deviation criterion, we
obtain the risk premium formula pg = ES+ 8+/VarsS, where § > 0 is a loading constant. Therefore,
for calculating this premium we need to know the distribution of S and especially its first two
moments. For our numerical example, we show in Table 6 the pure and risk premiums obtained if
N and X were independent (i.e., @ = 0), and by assuming that N and X are Sarmanov distributed
with @ > 0 and with ES and VarS given in Proposition 2. We used the models whose parameters
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Table 5: Estimation results of bivariate Sarmanov distributions for CNBG and CZINBG models

CNBG CZINBG
r 0.2814 11.1136
p 0.7602 0.9709
pi 0.0000 0.7337
o 0.2753 0.2742
B 0.0004 0.0004
o 1.3386% 1.3996%
Min(®) | -26.1225 -26.2315
Max() 3.4484 3.4614
corr(X,N) | 04159 0.4208
AIC 157522.9 1574793
BIC 157537.9 157497.3

*Statistically significant positive dependence at 99% confidence level.

are shown in Table 5 and assumed 8 = 0 (pure premium) and é = 1. If we compare the premiums
without and with dependence, we obtain that, for the CNBG model, with 6 = 0O the first one is
approximately 0.57% smaller that the second, with 6 = 1 this same percentage is approximately
0.72% and, furthermore, when 8 — oo the percentage increases to 1.48%. For the CZINBG model,
these percentages are 0.56, 0.67% and 1.38%, respectively. If we consider that these percentages
represent a loss per insured, the total losses could be large and the risk of insolvency will increase.

Table 6: Premiums obtained with CNBG and CZINBG models using @ = 0 and @ > 0.

6=0 o=1
CNBG CZINBG CNBG CZINBG
prwithw=0|61.0930 60.8068 | 580.4958 574.8728
prwithw >0 | 61.4424  61.1454 | 584.6742 571.0315

5 Conclusions

In this paper, we have shown how Sarmanov distribution allows us to mix continuous and discrete
marginal distributions and to model their dependence. Specifically, we have obtained four bivariate
particular cases where we assumed the Gamma distribution for the continuous marginal, and Pois-
son, Zero Inflated Poisson, Negative Binomial and, respectively, Zero Inflated Negative Binomial
distribution for the discrete marginal. Furthermore, a two part maximum likelihood estimation
method was proposed and evaluated using a simulation study. We concluded that our proposed
method is consistent in terms of the MSE of the estimated parameters for the four proposed partic-
ular cases.

As a direct application, we used our model to introduce dependence between the frequency
and severity of claims in the collective model. We numerically illustrated this on an auto insurance
data set, for which we obtained low, but significant positive dependence between frequency and
severity. We concluded that with our model, this dependence between frequency and severity leads
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to an increase in premiums that could improve the company’s solvency, reducing hence the ruin
probability.
6 Appendix

Proof of Proposition 1. We omit the proof of (i)-(iii) being very simple. Also, clearly Pr(S =0) =
p(0), while for s > 0, we have

Fs(s) = p(0)+ Y p(n)Pr(nX <s|N=n)

n>1
s
= p0)+ Y p(n)Fyn— n<_)7
n>1
hence
:Zp(n) _ <£>,s>0,
n>1 n
and inserting here the formula of fy|y, immediately yields the result in (iv). (]

Proof of Proposition 2. The expected value results easily from

BS = ENX|= ¥, [ ayp(n) £0)(1+ 0y ()9 (1)) dy
n>1
— ENEY+0 ¥ np(n) y(n) /0 Y ()0 ()dy
n>1 '

For the variance, we start with
E[S] = ENX] =X [ p ) f () (1+0y ()6 () dy
n>1

= EWVIE] 0 ¥ atpny ) [ 510)00)d

n>1
= E[N|E[r?]+ w]E_[Nzy/(N)] E[Y?¢ (Y)].
Therefore, the variance follows from
VarS = E[S*] —E’[S] =E [N*|E[Y?] + oE [N*y (N)]|E[Y?¢ (Y)]
— (E*N E?Y +20ENEYE [Ny (N)|E[Y ¢ (Y)] + 0*E* [Ny (N)|E2 [Y ¢ (Y)])
= (E[N*] -E°N)E[r?] +E>N (E[Y?] —~E*Y) — 0’ E* [Ny (N)|E*[Y ¢ (V)]
+o (E[N?y(N)]E[r?¢ (Y)] —2ENEYE [Ny (N)|E[Y ¢ (Y)]).
This completes the proof. (]
Proof of Proposition 3. Using (i) from Proposition 1, it is easy to check that
EX = (1-p(0)EY, E[X*] =(1-p(0))E[r?],
VarX = (1—p(0)) (Vary +p(0) (IEIY)2> :
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On the other hand, from (1) and Proposition 2 we know that
E[XN] = ES = ENEY + 0E [Ny (N)]E[Y¢ (Y)],
hence
cov(X,N) = E[XN|—EXEN =ENEY + oE [Ny (N)|E[Y¢ (Y)]— (1 - p(0))EYEN
= oENy(N)]E[Y¢(Y)]+p(0)EYEN,

which, together with the above formula of VarX, immediately yields the stated formula of corr (X,N).
This completes the proof. U

The following lemmas will be needed to prove Proposition 4; although the first lemma is given
for the continuous r.v. Y, it holds for any r.v., including a discrete r.v. N, assuming that the involved
expected values exist. The proof of this lemma is immediate, hence we omit it.

Lemma 1. Let Y be some rv. and let w(x) = e~ %% — % (8) be the corresponding exponential
kernel. Then

ElYy(Y)]
E[Y’y(Y)] = E [Yze*“”] — % (8)E[rY]. (10)

E [W”] — % (8)E[Y], )

Lemma 2. If the r.v. N follows a certain discrete distribution with support N and N follows the
same distribution in the zero inflated form with parameter © € (0, 1), then

ENy(N)] = (1-mENy®),
E[My ()] = (1-m)E[Nw®)],
_ — o Ty (85— 5 5 .
where y (N) = e 5N—%(£(O)andlp(N)=e 5N_%((§(O)’P(0)=PI(N:0).
Proof of Lemma 2. The first formula easily results by applying formula (9),
N v o8] Zn(8)—p0) .~ s
E[Ny(N)] = E|Ne V| N B VRN = (1-7 ne °"p(n
Ny (N)] = E[e V] - = (1=m) L ne”*'p(n)
a+(1-m)Zy(6)—n—(1-7)p(0)
l—-n—(1-m)p(0)

— (1-7) (E [Ne—SN] - %}é’)(o)m) = (1-1)E[Ny(N)].

The proof of the second formula is similar, based on formula (10). [l

(I1-m)EN

Proof of Proposition 4. i) When N ~ Po(A), from the proof of Lemma 4.1 in Tamraz and
Vernic (2018) we know that £ [Ne“SN] = Le* (675_1)_5, hence, applying also formula (9),

Ale -1 —2 Le—d
E[Ny (N)] = Aet( )-8 _ ¢ et Ae? (Jw‘” - el—}l> :
—e



For the second formula, we use

0 2
£ [Nze—em] ) nA" sn _ A y

— et <(/le‘3>zeles +),e‘sele6) —pere A8 (le*‘s + 1) ,

that we insert into (10) and obtain

E[N?y(N)] = Aehe A0 (/le_‘s + 1) —A(A+1)E

e S
A e 5 (4 -5 e —1

if) The formulas for N ~ ZIP (A, ) easily result by applying Lemma 2.
iit) For N ~ NB(r, p), from the proof of Lemma 4.1 from Tamraz and Vernic (2018) we have that

E [N e N } = Lﬂiﬂ. Then, based on formula (9),

(1-ge7?)

.
—6 )4 _pr
B rqp’e rq(l—qe-5>
ENy(N)] = (1—qe—5)’“_? 1=
6 r
rgp” o9 1— <1—qe‘ >
(1—ge8) \1-ged  p(i—p) |’

yielding the first formula. To obtain the second stated formula, we first evaluate

e = B o) - EEG2  ()
- 4 _I;_s)r s (1-ae9) (g )’
L e (1) (o)
P r(r+1) (qe 6) rqe_‘S

rgp’e™® (rqe_s + 1)

(1__qe_5)r+2
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Therefore, based on (10), we have

,
e ® (e * 1) g1 an (i) =

2 —
E [N W(N)] - (1 _qe_s)rJrZ p2 1 _pr
,
_ rqp"” e d (rqe‘s—i—l) - l_l_qu— (l—qe“s)
(l_qe—S)’ (1—qe‘5)2 p? 1—p" ’

which easily yields the stated formula.
iv) The case N ~ ZINB (r, p, ) follows from Lemma 2, which completes the proof. U

Proof of Proposition 5. We start with

- B* [* ayio1 - af®
B =g, Oy =

that we insert into (9) and obtain

hence the first stated formula.

Also,
a(a+1)p*

o oo
2,y BY / at2—1,—(B+1)y 7y, —
E[Y ¢ ] F(OC) 0 y € dy (ﬁ+y)a+2 ’

hence, according to (10),

Elro(r] - St BY_atern (B Y’
B+1**? B> \B+v/)
from where we easily obtain the second stated formula. U
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