
Subpixel real-time jitter detection
algorithm and implementation for
polarimetric and helioseismic imager

David Roma
Manuel Carmona
Jose Bosch
Albert Casas
Atila Herms
Manel Lopez
Oscar Ruiz
Josep Sabater
Thomas Berkefeld
Thorsten Maue
Eiji Nakai
Wolfgang Schmidt
Dirk Soltau
Reiner Volkmer
Jose M. Gomez

David Roma, Manuel Carmona, Jose Bosch, Albert Casas, Atila Herms, Manel Lopez, Oscar Ruiz,
Josep Sabater, Thomas Berkefeld, Thorsten Maue, Eiji Nakai, Wolfgang Schmidt, Dirk Soltau,
Reiner Volkmer, Jose M. Gomez, “Subpixel real-time jitter detection algorithm and implementation for
polarimetric and helioseismic imager,” J. Astron. Telesc. Instrum. Syst. 5(3), 039003 (2019),
doi: 10.1117/1.JATIS.5.3.039003.

Subpixel real-time jitter detection algorithm and
implementation for polarimetric and helioseismic
imager

David Roma,a,b Manuel Carmona,a,b,c Jose Bosch,a,b,c Albert Casas,a,b Atila Herms,a Manel Lopez,a Oscar Ruiz,a
Josep Sabater,b Thomas Berkefeld,d Thorsten Maue,d Eiji Nakai,d Wolfgang Schmidt,d Dirk Soltau,d
Reiner Volkmer,d and Jose M. Gomeza,b,c,*
aUniversitat de Barcelona, Department of Electronic and Biomedical Engineering, Barcelona, Spain
bInstitute of Space Studies of Catalonia, Barcelona, Spain
cUniversity of Barcelona, Institute of Cosmos Sciences, Barcelona, Spain
dLeibniz-Institut für Sonnenphysik, Freiburg, Germany

Abstract. The polarimetric and helioseismic imager instrument for the Solar Orbiter mission from the European
Space Agency requires a high stability while capturing images, specially for the polarimetric ones. For this rea-
son, an image stabilization system has been included in the instrument. It uses global motion estimation tech-
niques to estimate the jitter in real time with subpixel resolution. Due to instrument requirements, the algorithm
has to be implemented in a Xilinx Virtex-4QV field programmable gate array. The algorithm includes a 2-D
paraboloid interpolation algorithm based on 2-D bisection. We describe the algorithm implementation and the
tests that have been made to verify its performance. The jitter estimation has a mean error of 1

25 pixel of the
correlation tracking camera. The paraboloid interpolation algorithm provides also better results in terms of
resources and time required for the calculation (at least a 20% improvement in both cases) than those based
on direct calculation. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JATIS.5.3.039003]

Keywords: image stabilization system; electronics; active optics; control; Solar Orbiter; polarimetric and helioseismic imager.

Paper 19012 received Jan. 29, 2019; accepted for publication Jul. 16, 2019; published online Jul. 30, 2019.

1 Introduction
The polarimetric and helioseismic imager (SO/PHI) is an instru-
ment of the Solar Orbiter (SO) mission from the European Space
Agency (ESA).1 As the name indicates, one of its goals is to
generate polarimetric images (PIs). These images allow obser-
vation of the magnetic field of the solar photosphere as shown
in Fig. 1.

The polarimetric images3 are calculated using a set of images
with different polarizations that have the same field of view
(FoV). Hereinafter, these images are called scientific images
(SIs), as they are the main input for the magnetic field compu-
tation. This process includes subtractions, implying the require-
ment of a high signal-to-noise ratio (SNR) in the SIs because the
differences are small. As a result, it is necessary to stabilize the
images, as any displacement between SIs will smear the result-
ing polarimetric one, reducing its quality. A simulation of the
SNR resulting from the platform jitter is shown in Fig. 2.

In ground-based solar telescopes, stabilization is provided by
the telescope itself,4,5 while in space-borne ones it is usually
done by spacecraft (S/C). In case of polarimeters, the require-
ments of the instruments are quite stringent (in the present case
an order of magnitude higher than the SO platform capabilities).
For this reason, an image stabilization system (ISS) is added6–9

to damp this jitter. Hinode has been the first reported mission to
use a correlator,10 being SO/PHI the second mission using
correlator base stabilization, although with technological
differences.

The ISS11 has to compensate the S/C jitter in real time (RT),
while the SIs are being taken. No roll correction is needed, as the
S/C’s attitude control system meets the SO/PHI requirements.
Based on the S/C specifications and the polarimetric require-
ments, the attenuation curve of the ISS has been defined:12

• The turn over frequency, i.e., the frequency for which the
attenuation curve becomes smaller than unity shall
be ft−o ≥ 30 Hz.

• The attenuation curve shall be at levels >10 for all
frequencies f < 10 Hz.

• The attenuation curve shall be at levels >30 for all
frequencies f < 5 Hz.

This is the reason why SO/PHI has two cameras. The first
is the focal plane assembly (FPA), which provides the SIs.
Although the exposure time for an SI is in the order of 20 ms,
the capture and transfer of the whole set of images, over all
wavelengths and polarimetric phases, required to calculate the
final PI takes several seconds. During this period, the line of
sight has to be stable.

The second camera, the correlation tracking camera (CTC),13

is used as input for the ISS. For this purpose, a beam splitter
(BS) has been introduced in the light path of the FPA, so both
share the same telescope. This camera, based on a CMOS active
pixel sensor, is able to reach up to 1250 fps with the smallest
image size and the lowest integration time. The number of pixels
of the CTC (16 kpx) is much smaller than the FPA (4 Mpx),

*Address all correspondence to Jose M. Gomez, E-mail: jm.gomez@ub.edu 2329-4124/2019/$28.00 © 2019 SPIE

Journal of Astronomical Telescopes, Instruments, and Systems 039003-1 Jul–Sep 2019 • Vol. 5(3)

Journal of Astronomical Telescopes, Instruments, and Systems 5(3), 039003 (Jul–Sep 2019)

https://doi.org/10.1117/1.JATIS.5.3.039003
https://doi.org/10.1117/1.JATIS.5.3.039003
https://doi.org/10.1117/1.JATIS.5.3.039003
https://doi.org/10.1117/1.JATIS.5.3.039003
https://doi.org/10.1117/1.JATIS.5.3.039003
https://doi.org/10.1117/1.JATIS.5.3.039003
mailto:jm.gomez@ub.edu
mailto:jm.gomez@ub.edu
mailto:jm.gomez@ub.edu

while the FoV of a pixel is similar (0.8 arc sec ∕pixel and
0.5 arc sec ∕pixel, respectively).

The jitter introduced by the platform is calculated by the ISS
using a global motion estimation (GME) algorithm. The first
image of the Sun surface taken by the CTC, similar to the one
shown in Fig. 3, is used as a reference. This reference image (RI)
is compared, using the GME, with the following CTC images,
hereinafter live images (LIs). Both, the RI and the LI, are square
and can have a size between 64 × 64 and 128 × 128 pixels.

A subpixel paraboloid interpolation is applied to the GME
results to further increase the displacement resolution. Thanks
to the interpolation, the algorithm resolution is improved,
which allows it to reach the required attenuation (factor of 10
at 10 Hz).

The resulting interpolation value is then fed to a control algo-
rithm, which estimates the movement that has to make a tip-tilt
mirror (TTM) to compensate the jitter. The new position is sent
to the tip-tilt controller (TTC)15 that moves the TTM, damping
the jitter. The secondary mirror, which is part of the TTM
assembly, is before the BS that feeds both, the CTC and the FPA.

The stabilized FoV reflected by the TTM is also received by
the FPA. Only when the ISS loop is working and locked will the
FPA capture SIs.

The ISS RI has to be updated after a number of LIs to take
into account the evolution of the Sun surface. Based on the expe-
rience on ground-based Sun telescopes and the Sunrise balloon-
borne telescope,16 the period between RIs has been defined as
1 min. This value will be fine tuned during the commissioning
phase of the mission. The flow diagram is shown in Fig. 4.

A similar solution has already been used in the Hinode
mission17 using a 50 × 50 pixel image. It has a delay of 3.2 ms
including the sensor readout time of 2.6 ms. This implies a post-
processing time of 0.6 ms. The upper delay limit for PHI to
reach the desired damping is 3.5 ms,11 while the number of
pixels of the image can be 6 times bigger (128 × 128). The pro-
posed algorithm minimizes the postprocessing time, using a
pixel-wise strategy.

The ISS has been first implemented and tested using
https://github.com/jmgc/myhdl-numeric, an open source fork
of MyHDL,18 which includes fixed-point support equivalent
to the VHDL one.19 The major advantage is that it allows use
of the python unit testing facilities. It can also be used with a
continuous integration server, simplifying the detection of pos-
sible inconsistencies in an early stage. Afterward, it has been
automatically translated to VHDL and tested in a bread-board
model of the ISS.

The remainder of this paper is organized as follows.
Section 2 introduces the motion estimation systems, their con-
straints when used for jitter compensation, and finally focus on
the spatial domain GMEs and subpixel interpolation. Section 3
presents the solution implemented in the ISS and explains the
architecture used for the GME and the subpixel interpolation,
optimizing the field programmable gate array (FPGA) resour-
ces. Section 4 describes the tests and results for both, the full
chain and the paraboloid interpolation. Finally, the conclusions
are presented in Sec. 5.

Fig. 1 Image of the Sun surface magnetic field distribution in the huge
sunspot group in October 2014. [Observed by Solar Optical
Telescope (SOT), wavelength: iron line (630 nm)].2

(b)(a)

Fig. 2 (a) Simulation of the error introduced by the Solar Orbiter jitter
and (b) the improvement if the jitter is reduced by a factor 10, both in
DN2. The white areas indicate an error value below 10−5.

Fig. 3 Image of the Sun granules observed by SOT, wavelength: G
band (430 nm).14

Sun TTM BS CTC

FPA

ISSTTC

Fig. 4 ISS flow diagram. The OF is represented with dashed arrows,
whereas the electrical flow is represented with a solid arrow. The acro-
nyms are: TTM, tip-tilt mirror; BS, beam splitter; CTC, correlation
tracking camera; FPA, focal plane assembly; TTC, tip-tilt controller;
and ISS, image stabilization system

Journal of Astronomical Telescopes, Instruments, and Systems 039003-2 Jul–Sep 2019 • Vol. 5(3)

Roma et al.: Subpixel real-time jitter detection algorithm and implementation. . .

https://github.com/jmgc/myhdl-numeric
https://github.com/jmgc/myhdl-numeric

2 Motion Estimation Systems Overview
The core functionality for jitter compensation is based on
motion estimation algorithms. The ISS structure is based on
them and, specifically, on video based motion estimation ones,
since the acquisition system is a camera.

Video-based subpixel motion estimation methods usually
assume a sequential structure. First, the camera captures one
frame, which is received and stored by the frame buffer (FB).
Every image received by the FB follows an enhancement proc-
ess to improve its quality. This enhancement can be at pixel
level, e.g., offset and gain corrections, or at image level, e.g.,
gradient subtraction.

This first acquired image is considered the RI and all the dis-
placements will be referred to it. Afterward, the subsequent
LIs are stored also in the FB and enhanced. Then the motion
estimation algorithm is applied between every LI and the RI.
Finally, to improve the resolution, subpixel motion interpolation
may be applied.

2.1 Motion Estimation Algorithms

As seen before, the core functionality for our system is the
motion estimation algorithm. Taking into account our objective,
we may distinguish between two kinds of algorithms:

• Optical flow. This kind of algorithm focused on the
motion of patterns between the images. The most com-
monly used are Lucas–Kanade–Shi–Tomasi (LKST)20,21

(based on the spatial intensity gradient), Horn–Schunk
(HS)22 (estimates the velocity field), and the most recent
Farneback23 (uses polynomial expansion). All these algo-
rithms have also been implemented in FPGAs.24–26

• GME algorithms. In this case, the image is treated as a
whole and a correlation (CT) between images is per-
formed. They work in the spatial domain (e.g., HINODE),
or pixel domain,27–29 frequency or Fourier domain,30,31

and wavelet domain.32 In case of Sun surface motion esti-
mation, the spatial and frequency domain alternatives are
preferred33 as, in general terms, they are less complex to
implement, reducing the delay introduced by the algo-
rithm calculations. For this reason, although there are
implementations of wavelets in FPGAs or application-
specific integrated circuits,34–37 they have been discarded.

The major difference between them is that the optical flow
(OF) methods focus on the displacement of specific patterns
and, from there, try to extract the global displacement. On the
contrary, GME algorithms process the image as a whole and
extract directly the displacement between successive images.
In this sense, OF may allow knowing the specific displacement
of certain patterns on the image. But if we consider that the
images are quasistatic and there is only a movement between
scene and observer, the most natural solution seems to be the
GME algorithms.

2.2 Constraints for Jitter Compensation

Jitter compensation and motion estimation systems are based on
the same principles. However, jitter compensation sends the cal-
culated displacements to an actuator which compensates the
actual motion. As a result, the latency introduced by the calcu-
lation becomes critical. Furthermore, in some cases, it is

possible to achieve a better jitter damping lowering the accuracy
of the system if the decrease in response time is big enough.

As the ISS works in an RT closed loop, the stability of the
loop depends on the time elapsed between the capture of an
image by the CTC and the final displacement of the TTM
(τCL). As a result, there is a maximum delay allowed to capture,
receive, process a frame, and estimate the jitter. If this delay
(τCL) is reduced, the loop stability improves. If an FB is used
to store every LI, the maximum allowed processing time
(τjitter) will be the difference between the τCL and the time
required to receive and store an image (τimage).

Conversely, if a pixel-wise strategy is used, the full τimage can
be used to calculate the jitter, maximizing the time for calcula-
tion (τjitter) while minimizing the latency (τCL). This implies to
do most of the calculations while the stream of pixels is being
received.

To ensure stability, the frame rate (fimage) shall be at least 10
times the ft−o. As the ft−o is 30 Hz, the fimage ≥ 300 fps. Also
the upper delay limit for τCL to reach the desired damping is
3.5 ms.11

The major contributions to the delay come from the photon
budget, readout of the NOIS1SM100A38 sensor and the inter-
face bit rate (100 Mbps). The CTC has been optimized to allow
the transfer of the pixel values at the same rate as they are
sampled. As a result, the time required to transfer the full image
can be considered the same as the readout time. This implies that
for the CTC the fimage can be considered equivalent to τimage. As
the τimage is 3.33 ms, the maximum allowed postprocessing time
is 167 μs, nearly 4 times smaller than the HINODE case.

All frequency domain GMEs require the use of FBs.
Furthermore, spatial covariance requires subtracting a fitted
plane from the image to minimize the effect a linear trend in
intensity has in the position of the peak.39 Hence, all of them
were discarded. The final solution makes use of a spatial domain
GMEwith a new pixel-wise optimized implementation, which is
described in the following sections.

2.3 Spatial Domain Global Motion Estimation

These methods are mainly based on the sum of squared
differences (SSD) [Eq. (1)] or sum of absolute differences
(SAD) [Eq. (2)]:

EQ-TARGET;temp:intralink-;e001;326;293SSDðx; yÞ ¼
X
k;l

½LIðk; lÞ − RIðk − x; l − yÞ�2; (1)

EQ-TARGET;temp:intralink-;e002;326;239SADðx; yÞ ¼
X
k;l

jLIðk; lÞ − RIðk − x; l − yÞj; (2)

where k and l are the pixel indices of the CTC image, and x and
y are the correlation space indices.

The values of k, l, x, and y are limited by the RI image size.
Assuming that the image row and column counting starts with
the value 0, the limits are defined by

EQ-TARGET;temp:intralink-;e003;326;162

�
0 <¼ x <¼ k < ncols
0 <¼ y <¼ l < nrows

; (3)

where nrows is the number of rows, and ncols is the number of
columns of the CTC image. In our case, both parameters will
have the same value (nimage).

Journal of Astronomical Telescopes, Instruments, and Systems 039003-3 Jul–Sep 2019 • Vol. 5(3)

Roma et al.: Subpixel real-time jitter detection algorithm and implementation. . .

The point of maximum likelihood of the displacement
between both images will be the position of the minimum value
of the SSD or SAD.

2.4 Subpixel Paraboloid Interpolation

As the maximum allowed jitter is less than a pixel, it is necessary
to reach subpixel resolution. Only using the GME, the maxi-
mum resolution reached is a pixel, and therefore, the uncertainty
is still of �0.5 px. Therefore, a paraboloid interpolation algo-
rithm around the point of maximum likelihood has been used.
The paraboloid is calculated with the nine cells CT matrix
obtained from the GME, i.e., Eq. (1) or Eq. (2).

The total displacement will be the addition of the GME dis-
placement plus the subpixel displacement. Once found the pixel
level displacement with the GME, we can assume that the
remaining displacement between the RI and the LI is less than
half a pixel, which is the uncertainty level of the GME. The sub-
pixel algorithm will use as input data the result of calculating the
SSD or SAD, which we define as zi;j. So x and y are substituted
by i and j, respectively, to avoid confusion with the previous
section. The cell with the minimum value will be the (0,0) and
its value z0;0. The full set of values is represented as the matrix
zi;j:

EQ-TARGET;temp:intralink-;e004;63;491zi;j ¼
 z−1;−1 z−1;0 z−1;þ1

z0;−1 z0;0 z0;þ1

zþ1;−1 zþ1;0 zþ1;þ1

!
: (4)

The paraboloid used for the subpixel interpolation40 can be
defined as

EQ-TARGET;temp:intralink-;e005;63;414

(zðx;yÞ¼ a00þa01xþa10yþa02x2þa11xyþa20y2

x∈ ð−1;1Þ
y∈ ð−1;1Þ

; (5)

where the coefficients amn need to be determined using the
values zi;j.

Substituting x and y by the sample indices ð−1;0; 1Þ in
the previous paraboloid equation, we get the values of the
matrix zi;j:

EQ-TARGET;temp:intralink-;e006;63;303

8>>>>>>>>>>>><
>>>>>>>>>>>>:

z−1;−1 ¼ a20 þ a02 þ a11 − a10 − a01 þ a00
z−1;0 ¼ a20 − a10 þ a00
z−1;þ1 ¼ a20 þ a02 − a11 − a10 þ a01 þ a00
z0;−1 ¼ a02 − a01 þ a00
z0;0 ¼ a00
z0;þ1 ¼ a02 þ a01 þ a00
zþ1;−1 ¼ a20 þ a02 − a11 þ a10 − a01 þ a00
zþ1;0 ¼ a20 þ a10 þ a00
zþ1;þ1 ¼ a20 þ a02 þ a11 þ a10 þ a01 þ a00

; (6)

where i represents a change of row, equivalent to a movement on
the y direction in the image, while j is a change of column, x
direction in the image. Also since the system is overdetermined,
the coefficient a11 is calculated using the values of z�1;�1.
Notice that a11 represents the interactions between x and y that
can be seen as the interpolation paraboloid rotating over the
z axis.

The solution proposed by Ref. 41 is used to solve the over-
determination:

EQ-TARGET;temp:intralink-;e007;326;752

8>>>>>>>>><
>>>>>>>>>:

a00 ¼ z0;0
a01 ¼ z0;þ1−z0;−1

2

a10 ¼ zþ1;0−z−1;0
2

a11 ¼ zþ1;þ1þz−1;−1−zþ1;−1−z−1;þ1

4

a02 ¼ z0;þ1−2·z0;0þz0;−1
2

a20 ¼ zþ1;0−2·z0;0þz−1;0
2

: (7)

As it is a paraboloid, the coordinates of the minimum ðx; yÞ
can be determined calculating the partial derivatives and solving
the resulting system of equations:

EQ-TARGET;temp:intralink-;e008;326;615

(
∂z
∂x ¼ 0

∂z
∂y ¼ 0

: (8)

This yields the following equation for the subpixel displace-
ment ðxpi; ypiÞ:

EQ-TARGET;temp:intralink-;e009;326;542

(
xpi ¼ a10a11−2a20a01

4a02a20−a211

ypi ¼ a01a11−2a02a10
4a02a20−a211

; (9)

In these equations, the denominator can be zero in some
pathological cases. This has to be taken into account in the divi-
sion algorithm implementation. In the proposed algorithm, pre-
sented in the next section, this situation is avoided by design.

3 Optimized Jitter Estimation Algorithm
Jitter estimation algorithms in ground-based solutions can use
up-to-date high-end computers, digital signal processor (DSP)
platforms or parallel processing solutions, all of them including
floating-point calculation, which simplifies the implementation
of the algorithms. In space projects, the number of available
components is small, as they have to be qualified for this appli-
cation. When the decision was taken, the only high-end solution
available for ESA missions was the Xilinx Virtex-4QV42 FPGA.

To minimize resources, the FPGA needs to include all the
elements of the chain, from the camera interface to the gener-
ation of control signals for the TTM. It also uses only square
images, with size nimage × nimage.

3.1 System Blocks

As explained before, to have the lowest possible latency, the
processing of the displacement needs to be done while the image
is being received. For this reason, the typical steps used in a
motion estimation system have been modified avoiding the use
of an FB.

• CTC. Captures the images and sends them coded in a
bitstream.

• Camera interface. Decodes the bitstream received from
the camera and extracts the pixels.

• Pixel enhancement. Corrections applied to the pixels, e.g.,
dark and flat image compensation.

• Global motion estimation. GME computation.

• Subpixel paraboloid interpolation. Improve the displace-
ment resolution.

Journal of Astronomical Telescopes, Instruments, and Systems 039003-4 Jul–Sep 2019 • Vol. 5(3)

Roma et al.: Subpixel real-time jitter detection algorithm and implementation. . .

• Control loop. Control system to filter and command the
jitter compensation to the actuators.

When the ISS starts, a number of images are discarded to
ensure the CTC has reached its steady state. The first image that
is not discarded is used as an RI, and it is stored for the calcu-
lation of the correlation matrix. The following images are
considered LIs. As indicated previously, the RI is updated peri-
odically. The steps are described in more detail in the following
sections.

3.2 Pixel Enhancement

The jitter detection starts preprocessing the images obtained
from the solar surface. The CTC includes the possibility to
amplify the image pixel values digitally by powers of two and
remove an offset. This does not modify the SNR of the signal
but improves the use of the CTC communication interface.

The second step aims to remove the fixed-pattern noise43

coming from the sensor read-out noise and internal biases.
The dark noise has been considered negligible for the present
application, as the integration time is very small (some millisec-
onds). These fixed patterns are minimized by applying an image
enhancement algorithm with calibrated parameters. For every
single pixel of the camera, the gain and the offset are determined
using dark and flat frames, respectively. These calibration values
are applied to every pixel while they are being received:

EQ-TARGET;temp:intralink-;e010;63;462Iðx; yÞ ¼ aðx; yÞ · ½cðx; yÞ − oðx; yÞ�; (10)

where cðx; yÞ is the incoming pixel, aðx; yÞ is the gain param-
eter, oðx; yÞ is the offset parameter, and Iðx; yÞ is the enhanced
pixel used as input for the GME algorithm. The resulting image
pixels have 8-bit resolution.

3.3 Pixel Level Global MOTION Estimation

The correlation matrix CTx;y is calculated using a spatial domain
method, as it allows to avoid the need of an FB for the LIs. The
available spatial domain methods are mainly based on the SSD
[Eq. (1)] or SAD [Eq. (2)].

The point with the minimum value is considered the point of
maximum likelihood. As the system is going to work in close-
loop, and it shall damp the jitter, the displacements are expected
to be nearly 0. For this reason, only a small number of CTx;y
cells around the point of maximum likelihood (x and y equal
to 0) are going to be computed and stored. This also allows
to make these calculations in parallel.

Contrary to what we may expect, the SSD is preferred in
front of the SAD for this FPGA implementation. The Virtex-
4 has multiplication modules (DSP), but it has to synthesize the
add modules using multiple logic cells. The absolute value
calculation requires an add operation that has to be synthesized,
while the square uses a multiplier module. As the cells are scarce
and the multiplier is going to be idle if it is not used, the SSD is
used. This allows to optimize the use of cells.

To minimize the calculations, the size of the correlation
matrix has been optimized. The size value is the minimum
needed to close the loop taking into account the platform sta-
bility. Since the SO platform is expected to have a stability ðσÞ
of 1 pixel, using the �3 · σ rule (or 6 · σ), a correlation matrix
(CTx;y) of 7 × 7 elements is calculated by Eq. (11). Hence, to
compute the SSD in parallel, 49 multipliers (DSP modules) are
used at once:

EQ-TARGET;temp:intralink-;e011;326;752CTx;y ¼ SSDðx; yÞ ∀ x; y ∈ ð−3;3Þ; (11)

where x and y are the correlation matrix indices.
The algorithm has to take into account two aspects. The first

is that frame of 3 pixels around the LI shall be discarded to avoid
border effects. For this reason, only the pixels that are not part of
this frame are considered valid to calculate the correlation. The
second is the serialized reception of the pixels from the camera.
When the first pixel that is considered valid is received, a 7 × 7
matrix with the RI pixel that is in the same position ðk; lÞ, and
the 48 around are subtracted from the LI pixel, the result is self-
multiplied and stored in an accumulator matrix (CTp

x;y). This
process is described in Algorithm 1.

When the last LI pixel has been received and operated, the
matrix CTx;y will be available. The accumulator matrix is reset
to zero for every new image. After a number of LIs, the RI will
be refreshed with a new CTC image.

To allow this calculation to be done while a pixel is received,
two strategies have been followed. The first was divide the
image in the same number of subimages as the CTx;y (7 × 7).
Every subimage is stored in an independent memory inside the
FPGA. The subimage size and pixel assignment inside the
subimage is defined by the following equations:

EQ-TARGET;temp:intralink-;e012;326;499

8>>>>><
>>>>>:

ns ¼ ½nimage∕7�
ks ¼ remðk; 7Þ
ls ¼ remðl; 7Þ
kpx ¼ k∕∕7
lpx ¼ l∕∕7

; (12)

where dxe is the ceiling function, // is the integer division, rem is
the remainder function, ðk; lÞ are the incoming RI pixel column
and row, ns is the subimage size (ns × ns), ðks; lsÞ determines

Algorithm 1 Correlation calculation

1: p ¼ 0 ▹ The valid pixel counter is initialized

2: CTp
x;y ¼ 0 ∀ x; y ∈ ð−3;3Þ ▹ The correlation matrix is

initialized

3: while Receiving pixel LIk;l do ▹ The pixels of the live image are
received serialized

▹ If the LI pixel is not part of the outer
frame, it is considered valid

4: if ðk >¼ 3Þ & ½k < ðncols − 3Þ� & ðl >¼ 3Þ & ½l < ðnrows − 3Þ� then

5: p ¼ p þ 1 ▹ Increment the valid pixel counter

6: CTp
x;y ¼ CTp−1

x;y þ ðLIk;l − RIk−x;l−y Þ2 ∀ x; y ∈ ð−3;3Þ
▹ Calculate the correlation

7: end if

8: end while

9: CTx;y ¼ CTp
x;y ▹ The correlation matrix CTx;y has been

calculated

10: return CTx;y ▹ Return the correlation matrix and wait for the
next LI to restart the process

Journal of Astronomical Telescopes, Instruments, and Systems 039003-5 Jul–Sep 2019 • Vol. 5(3)

Roma et al.: Subpixel real-time jitter detection algorithm and implementation. . .

the subimage where the pixel is stored, and ðkpx; lpxÞ are the
pixel position inside the subimage.

Using this method, it is possible to extract the 49 RI pixels
needed to calculate the CT of an LI pixel in a single-clock
period.

The second is the introduction of a small pipeline that fetches
the 49 RI pixels from their corresponding subimages, calculates
the difference with the present LI pixel, and calculates the 49
accumulations, as indicated in Eq. (1).

The process has been implemented in an isochronous way,
ensuring that a correlation matrix is available after the last image
pixel is received from the CTC. As a result, the time needed
to calculate the CT is the same as the one needed to receive
an image.

The cell with the minimum value is searched in the resulting
CTx;y matrix. The displacements at pixel level are the indices xct
and yct for the minimum of CTx;y, with an error of �1∕2 pixel.
This cell with the minimum value and its eight nearest neighbors
are stored to be used for the interpolation:

EQ-TARGET;temp:intralink-;e013;63;543zi;j ¼ CTxctþi;yctþj ∀ i; j ∈ ð−1;1Þ; (13)

with z0;0 having the value of CTxct;yct .
Using the present implementation, the SSD calculations are

finished before the final image pixel is received.

3.4 Subpixel Paraboloid Interpolation Algorithm

The calculation of the paraboloid [Eq. (10)] can be done easily if
floating point numbers44 are available. However, floating point
numbers will require a larger number of resources than the fixed
point counterparts.45 For this reason, an approach based on
fixed-point numbers has been designed and implemented.

To minimize the resources, a successive approximation
approach has been selected. The algorithm uses a 2-D bisection
procedure. The process is done using shift and add operations
with fixed-point numbers. The strategy is similar to the one used
by coordinate rotation digital computer.46

As explained in Sec. 2.4, the method will start with a 3 × 3

matrix, as shown in Eq. (4), using the correlation matrix com-
puted by the GME. As a first overview, before explaining it in
depth, the algorithm goes as follows:

1. The paraboloid coefficients are calculated from the
resulting 3 × 3 correlation matrix values.

2. Using these coefficients, a set of paraboloid values
are interpolated around the current minimum which,
by construction, is the correlation matrix center value
[Eq. (13)].

3. A new minimum is searched between these new inter-
polated values, and its position is determined.

4. Knowing the position found at the previous step, the
paraboloid coefficients are rescaled and translated to
become the new center position.

The algorithm will iterate the two last steps. Since the mini-
mum will always be closer to the center value than any other
point, at each iteration the error is reduced by one half of the
previous step resolution. Hence, the process just has to be iter-
ated until the desired resolution is reached.

For the following part of this section, where the algorithm is
explained in depth, the following nomenclature will be used. As
the process is iterative, the superindex p will indicate the current
iteration step for the paraboloid coefficients (ap) and the inter-
polated correlation matrix values (zp), while the subindex will
be used in case of variables (stepp, xp, and yp). The initialization
step is indicated by p equal to −1.

At the initialization, the first step calculates the paraboloid
coefficients (a−1mn) using the correlation matrix values deter-
mined by the GME algorithm. This is done substituting the
values of zi;j in Eq. (7).

The following steps will be repeated on every iteration. The
first step is rescaling the paraboloid coefficients to the new sub-
field, centered on the current minimum of the correlation matrix.
Since the new subfield has half the size of the previous one, this
is done scaling the amn coefficients as shown in

EQ-TARGET;temp:intralink-;e014;326;576

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ap00s ¼ ap−100

ap01 s ¼ ap−1
01

2

ap10s ¼ ap−1
10

2

ap02s ¼ ap−1
02

4

ap11s ¼ ap−1
11

4

ap20s ¼ ap−1
20

4

; (14)

where an s has been added to the subindices to indicate the scal-
ing of the coefficients. Notice that the division by two and four
is equivalent to a binary shift right by one or two places, respec-
tively. This allows avoiding an explicit division module when
programmed in an FPGA.

Now, using Eq. (6), the values of zpi;j can be calculated.
Although it may seem that with only four points, it may be
enough, it is important to calculate the full eight points around
the center position, as it is explained in detail later. Also the
coefficient a00 does not affect the calculation of the minimum
position, for this reason its value is always set to 0:

EQ-TARGET;temp:intralink-;e015;326;327

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

zp−1;−1 ¼ ap20s þ ap02s þ ap11s − ap10s − ap01s
zp−1;0 ¼ ap20s − ap10s
zp−1;1 ¼ ap20s þ ap02s − ap11s − ap10s þ ap01s
zp0;−1 ¼ ap02s − ap01s
zp0;0 ¼ 0

zp0;1 ¼ ap02s þ ap01s
zp1;−1 ¼ ap20s þ ap02s − ap11s þ ap10s − ap01s
zp1;0 ¼ ap20s þ ap10s
zp1;1 ¼ ap20s þ ap02s þ ap11s þ ap10s þ ap01s

: (15)

The minimum of the calculated zp values is determined, and
its indices i and j are stored in up and vp, respectively. It is
important to notice that we do not care about the values in
15, we are only interested in the up and vp values (the position)
of the minimum.

From a theoretical point-of-view, the objective is to use this
minimum position as the new z0;0 matrix value. In this sense,
if this translation is applied to x and y to Eq. (5), yields:

Journal of Astronomical Telescopes, Instruments, and Systems 039003-6 Jul–Sep 2019 • Vol. 5(3)

Roma et al.: Subpixel real-time jitter detection algorithm and implementation. . .

EQ-TARGET;temp:intralink-;e016;63;752

zðx; yÞ ¼ a00s þ a01sðxþ vpÞ þ a10sðyþ upÞ
þ a02sðxþ vpÞ2 þ a11sðxþ vpÞðyþ upÞ
þ a20sðyþ upÞ2: (16)

Rearranging the previous coefficients, the translated parabo-
loid coefficients in terms of x and y can be found:

EQ-TARGET;temp:intralink-;e017;63;672

8>>>>>>>><
>>>>>>>>:

ap00 ¼ ap00s
ap01 ¼ ap01s þ 2 · ap02s · vp þ ap11s · up
ap10 ¼ ap10s þ ap11s · vp þ 2 · ap20s · up
ap02 ¼ ap02s
ap11 ¼ ap11s
ap20 ¼ ap20s

: (17)

Notice that the multiplication by u and v can be substituted
by a simple comparison, as up and vp can only have the val-
ues ð−1;0; 1Þ.

Also the step is scaled:

EQ-TARGET;temp:intralink-;e018;63;525stepp ¼ stepp−1

2
: (18)

Finally, the new x and y coordinates of the minimum position
are calculated:

EQ-TARGET;temp:intralink-;e019;63;462

�
xp ¼ xp−1 þ vp · stepp
yp ¼ yp−1 þ up · stepp

: (19)

As in the case of Eq. (17), the multiplications can be substi-
tuted by comparisons. Most importantly, the last values of xp
and yp will be the computed subpixel displacement. As indi-
cated previously, the number of iterations will indicate the pre-
cision in bits of the paraboloid interpolation results ðxpi; ypiÞ.

It may be considered that for the subpixel interpolation, it is
no need to interpolate at eight points around the center (mini-
mum) value and that four should suffice. This may be true in
some situations but fails in case the paraboloid representing the
correlation matrix of the GME is rotated. In general, as we may
see in Fig. 5, with four points, it is enough when moving to the
new subfield. But when the paraboloid is rotated, Fig. 6, the
minimum falls outside the new search area. Conversely, if eight
positions are interpolated, Fig. 7 shows that this issue is solved,
and the minimum is inside the new subfield search area. The full
set of operations is summarized in Algorithm 2.

The final implementation makes eleven iterations. The first
eight are needed to reach the desired subpixel resolution. The
remaining three are added to calculate the rounding of the eighth
bit. The total displacement ðxd; ydÞ is the sum of the correlation
displacement ðxct; yctÞ and the paraboloid interpolation result
ðxpi; ypiÞ.

4 Results
The results from four sets of tests are presented. The first val-
idates the method to estimate the S/C jitter. The second com-
pares the results between the proposed method (CT) and OF
ones, starting with a simple paraboloid pattern, and afterward
using CTC images. Finally, the paraboloid implementation is
compared with other alternatives.

4.1 Full Chain Results

The objective of the tests is to determine the error of the jitter
estimation using Algorithm 2. The displacements are in the sub-
pixel region. As it has been stated before, the selected resolution
for the test images is 1/128 of a pixel.

The optical characteristics of SO/PHI provides a pixel FoVof
∼96 km∕pixel on the Sun surface, when SO is in the perihelion.
Nowadays, the maximum spatial resolution (2 pixels) of Sun
images is ∼50 km.47 Hinode or GREGOR images could be used
to generate the patterns. However, artificial images have deter-
mined features (noise, etc.), which have advantages for testing
the algorithm. Only if the dynamic of the solar evolution of the
granulation needs to be taken into account are time series from
granulation needed, either simulated or observed ones.

4.1.1 Test image generation

There are different alternatives. The most common one is assum-
ing that a pixel is a point. As a result, the displaced value can be
modeled interpolating the values of the neighbor pixels.

A more realistic approach requires taking into account the
area of the pixel. In this case, an image with a spatial resolution
equivalent to the subpixel desired resolution is needed and after-
ward binning is applied on them to have the desired final pixel
resolution. In our case, the RI and LI size is 128 × 128 pixels.
As the required displacement resolution is 1/128, the image that
will be used to simulate the image on the sensor needs to have a
minimum size of 16384 × 16384 pixels. Hereinafter, we will
use the term subpixel to refer to the resolution of this high-res-
olution image and pixel for the final 128 × 128 image. Since we
will apply different displacements on the images, an additional
frame around the image is required to avoid extrapolation.

To generate the high-resolution images, two alternatives have
been considered. The first one is using the Sun equations to cal-
culate the images.48 This option has been discarded, as the equa-
tions are complex to solve and require computational power.
The second one uses three-dimensional computer graphics
(3DCG) to simulate the images.

For the present tests, the second option has been selected. In
particular, a number of metaballs have been randomly generated
in an FoVand rendered afterward. For this purpose, the Blender
3DCG application has been used. The final image size is
25;000 × 25;000 pixels with 16 bits resolution, and a contrast
of a 13%. This means that we are using an outer frame of
8616 pixels for each side, providing a margin much higher than
the maximum �3 pixels allowed by our algorithm.

From these high-resolution images, a 8-bit depth CTC image
is generated tiling the image. Every tile corresponds to a pixel
of the RI or LI. As a result, the value of every one of the 128 ×
128 pixels of the image is the mean value of the 128 × 128 sub-
pixels of its corresponding tile. An example is shown in Fig. 8. It
can be seen that the images have some noise, whose source is the
ambient occlusion49 used for the images generation. The value
change is around 1 DN, which is equivalent to the expected pho-
ton noise when the full linear region of the sensor is used, as
should be the case for the present application, and the enhance-
ment algorithm has been applied. The live (displaced) image is
obtained the same way, but an integer offset is applied to the
high-resolution images prior the tiling of the image.

The patterns produced by the granules are the ones used to
detect the displacement. In practice, the difference between
the RI and the LI comes from the displacement due to the

Journal of Astronomical Telescopes, Instruments, and Systems 039003-7 Jul–Sep 2019 • Vol. 5(3)

Roma et al.: Subpixel real-time jitter detection algorithm and implementation. . .

(a) (b)

(c) (d)

Fig. 5 (a) 3-Dparaboloidplot and (b)–(d) three first stepsof the algorithmcalculation.The contour lines show
the paraboloid values. The minimum of the paraboloid is the red dot near the coordinate (0, 0) in figure (b).

(a) (b)

Fig. 6 (a) Anomaly when the paraboloid is rotated. The indicated point (red dashed line) has the mini-
mum value of the four. (b) If the quadrant with the dashed circle is selected, it can be seen that the
paraboloid minimum (red dot) is outside. As a result, the minimum cannot be reached.

Journal of Astronomical Telescopes, Instruments, and Systems 039003-8 Jul–Sep 2019 • Vol. 5(3)

Roma et al.: Subpixel real-time jitter detection algorithm and implementation. . .

movements of the platform and the dynamics of the solar sur-
face. In our case, we will focus on the first. The second can be
considered negligible as the frame rate is orders of magnitude
higher than the time constant of this phenomenon.

An RI and an LI with a displacement of 0.2 pixels have been
used to calculate the SSD between them. It can be seen that the
differences are small, with a magnitude of 1 DN. Following the
algorithm described in Sec. 3.3, the same calculation is done
for the center position and the 48 neighboring ones (CTx;y).
Afterward, the 9 SSD points around the maximum likelihood

point are selected (zi;j), and the paraboloid interpolation is cal-
culated to determine the minimum position. The full process is
shown in Fig. 9.

SO/PHI is designed to be operative with nominal perfor-
mance between minimum perihelion distance (0.28 AU) and
∼0.80 AU.50 The granules sizes are very different depending
on the S/C distance to the Sun. This aspect can increase the
errors of the motion estimation. For this reason, different
FoVs have been generated simulating different distances.
These distances assume worse case scenarios. The first eight
ones are simulations for 0.2 AU, whereas the last eight ones are
for 0.9 AU. Figure 10 shows the simulated FoVs.

A test has also been done to detect possible privileged direc-
tions. For this purpose, the same tests have been done with the
FoV flipped. This is equivalent to doubling the FoVs.

From every FoV, 1024 RIs and their corresponding LIs have
been generated. The coordinates have been determined using
two approaches. For the first one (we will name it XY), the dis-
tribution is uniform in the X and Y directions.

The second approach, which will be named Polar case, uses a
uniform distribution in the radial direction. Although the radius

Algorithm 2 Paraboloid minimum finding algorithm using a 2-D
bisection procedure.

1: procedure PARABOLOID(zi;j) ▹ Matrix cells

2: z−1
i ;j ← zi;j from SSD

3: Calculate a−1mn

4: step ← 1

5: p ← 0 ▹ initialize p to the bit 0

6: for p < precision do ▹ loop until precision bit

7: Scale apmns using Eq. (14)

8: Calculate zp
i;j using Eq. (15)

9: Find the minimum zi;j ⇒ u, v ← i ; j

10: Calculate apmn using Eq. (17)

11: stepp ← stepp−1
2

12: Update xp and yp using Eq. (19)

13: end for

14: xpi; ypi ← xp; yp ▹ The minimum location

15: return x , y

16: end procedure

(a) (b)

Fig. 7 (a) Final implementation of the paraboloid algorithm showing the overlapping subsquares with
their centers as blue dots and (b) the paraboloid minimum (red dot) is now located inside the selected
subsquare.

Fig. 8 The image represents a 128 × 128 image, which can be a RI
or LI. Every pixel is determined calculating the mean value of the
pixels shown in the inset.

Journal of Astronomical Telescopes, Instruments, and Systems 039003-9 Jul–Sep 2019 • Vol. 5(3)

Roma et al.: Subpixel real-time jitter detection algorithm and implementation. . .

is smaller than half the length of the pixel, an uniform distribu-
tion over the angle Θ can be used. When the radius is over this
distance, it is necessary to modulate the probability of Θ taking
into account the shape of the corners of the pixel. This en-
sures that the histograms in the radial direction will be correct.
Algorithm 3 describes the implementation.

(a) (b)

(c)

Fig. 9 Squared differences process: (a) RI, (b) squared differences with LI, and (c) resulting paraboloid.

Fig. 10 Simulated FoV of the CTC with the Sun at 0.2 AU (upper two
rows) and 0.9 AU (lower rows). The intensity distribution is in arbitrary
units.

Algorithm 3 Uniform radial distribution. To simplify the calculation,
the random angle is calculated for one quadrant. Afterward a quadrant
is assigned randomly, covering the four quadrants.

1: procedure UNIFORM_RADIUS(side) ▹ pixel side

2: R ← side
2 ▹ The radius of the inscribed circle

3: θmin ← 0 ▹ The minimum angle of a quadrant

4: θmax ←
π
2 ▹ The maximum angle of a quadrant

5: Rmax ← R ·
ffiffiffi
2

p
▹ Radius of the circle that inscribes the pixel

6: ΔR ← randomð0; RmaxÞ

7: Δquadrant ←
int½randomð−2;2Þ�·π

2

8: ifΔR > R then ▹ If the radius is bigger than the incircle radius,
the angle shall be inside the quadrant

9: θmin ← cos−1
�
radius
ΔR

�
10: θmax ←

π
2 − θangle

11: end if

12: Δθ ← randomðθmin; θmaxÞ

13: Δθ ← Δθ þ Δquadrant

14: return ΔR , Δθ

15: end procedure

Journal of Astronomical Telescopes, Instruments, and Systems 039003-10 Jul–Sep 2019 • Vol. 5(3)

Roma et al.: Subpixel real-time jitter detection algorithm and implementation. . .

In Fig. 11, both distributions are shown. Notice that the polar
one has a circular pattern in the middle and an increase of the
density near the vertex. This ensures that the number of points at
every radial distance is the same.

4.1.2 Full chain test results

First, the errors (ϵ) in the calculation of the displacement
between different RIs and LIs have been determined. For this,
a uniform X–Y random displacement (Δsim) has been applied.
Both images (reference and live) have the same size.

Four different tests have been done for perihelion and
aphelion with RI and LI sizes of 128 × 128 pixels and
64 × 64 pixels.

The displacements (Δcalc) have been calculated. The ϵ
between both displacements (Δsim and Δcalc) has been derived.
The histograms for the different cases are shown in Fig. 12.

From the plot, we can derive that the worst case is for 64 pixel
images at the perihelion. The error is nearly distributed around
the full pixel (maximum ϵ 0.4).

Using the uniform radial distribution, it is possible to analyze
the error depending on the displacement modulus. The results

are shown in Fig. 13. The behavior has been modeled using the
Gamma probability distribution, which is presented with dashed
lines. The calculated mean and std values are presented in
Table 1.

From the histograms, it can be seen that the mean error is
below 1

25
pixel, being the worst case with 64 pixel images at the

perihelion. Moreover, 80% of points are inside the circle with
ϵ < 1

16
pixel. In case of aphelion, both sizes have equivalent

results. For this reason, an smaller image can be selected,
allowing to increase the control-loop working frequency.

These results will be used to determine the control loop
parameters of the full ISS.11 The selected resolution for the sub-
pixel displacement is a 128’th of a pixel (7 bits).

4.2 Algorithms Comparison

The objective of the present test is to compare the results
obtained from the proposed method using SSD and paraboloid
interpolation (correlation), and the ones resulting from LKST,
HS, and Farneback. The OpenCV51 implementation is used.

A set of images has been generated using a paraboloid gra-
dient. The RI and its 3-D representation are shown in Fig. 14.

The images have been displaced in the x direction following
the Δx sequence (0, 0, 0, δ, 0, −δ, 0, δ, 2δ, δ, 0, −δ, −2δ, −δ, 0),
where δ has the value 0.766 to determine the subpixel accuracy.
The results are shown in Fig. 15.

(a) (b)

Fig. 11 Histogram of the distribution of the RI offsets: (a) uniform dis-
tribution in the X and Y directions and (b) the uniform radial distribu-
tion (Algorithm 3).

Fig. 12 ϵcal histogram calculated using the XY uniform distribution.
The columns indicate the size of the RI (left 64 px and right
128 px), the rows indicate the distance (upper perihelion and lower
aphelion).

Fig. 13 ϵcal histogram calculated using the uniform radial distribution.
The columns indicate the size of the RI (left 64 px and right 128 px),
the rows indicate the distance (upper perihelion and lower aphelion).

Table 1 Calculated mean and std values for the error distribution
resulting from the uniform radial displacements.

Size (px) Distance Mean Std

64 Perihelion 0.040 0.034

128 Perihelion 0.026 0.019

64 Aphelion 0.020 0.010

128 Aphelion 0.019 0.010

Journal of Astronomical Telescopes, Instruments, and Systems 039003-11 Jul–Sep 2019 • Vol. 5(3)

Roma et al.: Subpixel real-time jitter detection algorithm and implementation. . .

It can be seen that LKST and correlation provide similar
results and close to the simulated displacements, whereas HS
and Farneback are much smaller, especially the last one.

These results can be analyzed using Fig. 16.

• The Shi–Tomasi algorithm selects features from the
images, in this case a total of 128. It can be seen that the
detected features are mostly on the shaded areas shown in
the CT image. These features are afterward tracked using
the Lucas–Kanade algorithm, which provides a vector with
the displacement of every feature. The global motion can
be estimated determining the mean value of these vectors.

• The Farneback and HS algorithms determine the displace-
ment for all the points in the image. Most of the points are

considered quasistatic (shown in white), as they have
the same value in both images. This lowers the magni-
tude of the mean calculation used to estimate the
displacement.

Fig. 14 Test image based on a paraboloid gradient.

Fig. 15 Motion estimated by the different algorithms. It can be seen
that the algorithm HS and Farneback detect a reduced displacement,
whereas LKST and CT provide similar results, with a value nearly
equal to Δx (see the inset).

Fig. 16 Qualitative representation of the displacements detected by
the different methods using Fig. 14: LKST is represented as arrows,
for every one of the 128 pixels selected; HS and Farneback are rep-
resented colors, where the color represents the angle, and the inten-
sity represents the magnitude (white is magnitude 0). Correlation is
represented as the difference between the images.

Journal of Astronomical Telescopes, Instruments, and Systems 039003-12 Jul–Sep 2019 • Vol. 5(3)

Roma et al.: Subpixel real-time jitter detection algorithm and implementation. . .

• The CT algorithm finds the displacement between two
images minimizing the differences between them. From
the image, it can be seen that there has been a displace-
ment to the right. The blue shadows indicate that the
motive has moved reducing the superposition, whereas the
red ones indicate that the superposition has increased. If
the full image is used, the algorithm can estimate the
global motion. For these tests, a subpixel resolution of
8 bits has been used.

As presented in Table 2, the error using this image for LKST
and correlation is around a 1∕128’th of a pixel. In case of cor-
relation, this is nearly the ideal case as the resolution is 8 bits.
Hence, 1∕128’th of a pixel is the resolution selected to generate
the images in the following test cases.

Based on this result, the ISS subpixel interpolation resolution
has been specified as 8 bits.

4.3 CTC Image Comparison

A test has been done using real images from the CTC engineer-
ing model. The pattern has been generated using a fiber bundle
illuminated by a red LED. The output of the fibers has been
focused using a lens on the CTC sensor. The pattern has been
displaced on one direction using a motorized stage following the
previous Δx sequence. The first image is shown in Fig. 17.

It is important to notice that the value of δ is unknown in this
case, as the motors precision is below the required one. For this
reason, as a first approach, the value calculated in every algo-
rithm for the first unit displacement is used as the estimated
value for δ. The estimated displacement is shown in Fig. 18.
The four algorithms (correlation, LKST, HS, and Farneback)
have a similar behavior as the one shown in Sec. 4.2.

The correlation and LKST algorithms have similar results,
although they have differences of 1

2
pixel. HS and Farneback

also behave the same way, detecting a smaller displacement.
To compare the results obtained by the different algorithms,
a simulated image has been interpolated using the RI and dis-
placing it the estimated value indicated by every algorithm.
These images have been subtracted from the real one to deter-
mine the differences. The differences images for every algorithm
are shown in Fig. 19.

The absolute mean and squared error values are presented in
Table 3. The correlation image seems to have less error than the
other algorithms:

• correlation: 0.41

• LKST: 0.52

This ensures that the proposed algorithm minimizes the error.

4.4 Paraboloid Implementation Comparison

The presented paraboloid interpolation Algorithm 2 has been
compared with four other implementations in terms of precision
and resource usage.

Table 2 Calculated maximum displacement error.

Method Error (px)

LKST 1∕128

HS 1∕2.3

Farneback 1∕2

Correlation 1∕128

Fig. 17 Image captured with the CTC. It can be seen that the major
part of the image has a nearly constant value.

Fig. 18 Four algorithms’ estimations and the motor sequence. It can
be seen that the results are consistent with the test ones.

Fig. 19 Differences between an image displaced one motor step and
the RI displaced the estimated value calculated by the four algorithms.
The correlation is the one with smaller errors.

Journal of Astronomical Telescopes, Instruments, and Systems 039003-13 Jul–Sep 2019 • Vol. 5(3)

Roma et al.: Subpixel real-time jitter detection algorithm and implementation. . .

The characteristics of these four implementations are:

• fixed-point implementation,

• fixed-point implementation using a successive approxi-
mation algorithm for the division,

• 32-bits floating-point implementation,

• 64-bits floating-point implementation.

All the implementations follow the same schema, with a final
number of states ∼60. The first fixed-point implementation
works with a big number of bits (∼150 bits in the present case)
to avoid losing resolution. In the second case, the division
requires a large number of periods for the same reason. The divi-
sion is not optimized taking into account the results size. This
would have implied the development of an algorithm with char-
acteristics similar to a floating-point implementation, which is
out of the scope of this study.

In all the cases, the size of the inputs (zi;j) is 30 bits, whereas
the outputs ðx; yÞ are signed fixed-point with a fractional size of
8 bits. To minimize the rounding errors, 3 guard bits have been
added to the calculations.

No precision is expected to be lost in case of fixed-point
arithmetic (first two cases) as all the required bits are used for
the calculations. In case of floating-point values, the precision
will depend on the size of the mantissa. As the inputs have
30 bits size, the 32 bits floats could be in the limit with the 23 bits
mantissa. However, the tests made show that the errors are
smaller than the required output precision.

The total number of steps for every iteration of the proposed
algorithm is nearly 50. This can be reduced if needed, introduc-
ing parallelization during the calculation of the amn coefficients
or the zi;j values. The total number of steps needed for one cal-
culation is the product of the number of steps in the loop by the
required resolution, in this case 11 bits. Adding the overheads,
this results in 583 steps or 583 clock cycles, to get the subpixel
displacement. The other cases are indicated in Table 4.

This first test has been made with the five implementations
(the one that uses the proposed Algorithm 2 and the four that use
the direct Algorithm 4). A random test pattern has been gener-
ated for the input matrix cells. The random numbers were
selected between 0 and the maximum value allowed by the cells.
Afterward, the paraboloid coefficients amn were calculated
using Eq. (7). To ensure that the coefficients describe a parabo-
loid and it had a minimum, the values of the coefficients a02 and
a20 were checked to be positive. If not, a new set of random cell
values were calculated. If the coefficients were correct, the val-
ues of x and y were calculated using Eq. (9). The resulting x and
y were checked to be both in the interval ð−0.5; 0.5Þ. If this was
the case, the generated cells were used to test the different

algorithms. If not, a new set of cells was generated. The pseu-
docode is presented in Algorithm 5.

The results using the described cells show that the precision
is equivalent between the different algorithms with a maximum
error of 1 less significant bit. This has been tested for outputs

Table 4 Synthesis comparison.

Implementation
Freq.
(MHz) Periods Registers Logic DSP

Time
(μs)

Proposed 152 583 1586 4449 0 3.8

Fixed 1.1 62 3634 101,765 16 56

Fixed with div. 90 660 5089 5865 16 7.3

Float32 13 62 1550 13,548 4 4.8

Float64 5.2 62 2711 54,605 33 12

Table 3 Calculated mean absolute error (hjϵji) and mean squared
error (hϵ2i).

Method hjϵji (DN) hϵ2i (DN2)

LKST 0.52 0.76

HS 0.70 1.79

Farneback 0.85 3.11

Correlation 0.41 0.45

Algorithm 4 Paraboloid minimum finding algorithm using direct
equations

1: procedure PARABOLOID_MIN(zi;j) ▹ Matrix cells

2: Calculate amn substituting zi;j in Eq. (7)

3: Calculate x , y substituting amn in Eq. (9)

4: return x , y

5: end procedure

Algorithm 5 Paraboloid cells generator

1: procedure PARABOLOID_CELLS(bits) ▹ cells size

2: max_value ← 2bits − 1

3: loop

4: zi;j ← random number ∈ ð0;max_valueÞ

5: Calculate amn substituting zi;j in Eq. (7)

6: if a02 < 0 ∪ a20 < 0 then

7: continue

8: end if

9: Calculate x, y substituting amn in Eq. (9)

10: if x ∋ ð−0.5; 0.5Þ ∪ y ∋ ð−0.5;0.5Þ then

11: continue

12: end if

13: return zi;j

14: end loop

15: end procedure

Journal of Astronomical Telescopes, Instruments, and Systems 039003-14 Jul–Sep 2019 • Vol. 5(3)

Roma et al.: Subpixel real-time jitter detection algorithm and implementation. . .

between 8 and 16 fractional bits. This is compliant with the
application requirements (eight fractional bits).

A second test has been made synthesizing the five algorithms
for the Virtex-4QV. First, the state machines have been trans-
lated to VHDL-2008. Then they have been synthesized using
Synplify from Synopsys. Six parameters have been used to com-
pare the results, which correspond to the columns of the Table 4:

1. maximum possible frequency,

2. number of periods needed by the state machine to
reach the result,

3. registers occupation,

4. logic cells occupation,

5. DSP cells occupation,

6. total time required at the maximum expected fre-
quency, where time ¼ periods

freq
.

It can be seen that the proposed solution is better in terms of
maximum possible frequency, occupation (registers and logic),
and total time. In case of a floating-point solution, the 32 bits
one seems to be a good alternative for the present application.
Regarding the fixed-point, an iterative division algorithm is
needed to make it feasible. Finally, just mention that both, the

float64 and fixed-point direct solution, do not fit inside the
FPGA used in the project.

4.5 Optical Test

The system has been finally integrated inside SO/PHI, as shown
in Fig. 20, and installed on top of an optical bench to determine
its performance. This is the flight model (FM) that has already
been delivered to ESA.

To measure the displacements, a pattern showing a crosshair
target (Fig. 21) has been used. The pattern has a root mean
square contrast around a 30%. The CTC takes 400 fps with a
size of 64 × 64 px. The algorithm results are shown in Fig. 21.

It can be seen that the algorithm detects the optical bench
noise, equivalent to 5 μm on the focal plane of the CTC.

5 Conclusions
An algorithm to estimate the jitter for the ISS of SO/PHI instru-
ment in RT and its implementation has been presented. It
provides subpixel estimation using paraboloid interpolation
based on 2-D bisection. The proposed methodology has been
tested with synthesized images, showing a mean error below
1
25

pixel. Also the proposed paraboloid interpolation algorithm
has been tested in terms of precision, resources, and time needed
for the calculation. The algorithm surpasses the required 8-bits
precision, being able to reach 16 bits of precision, and presents
differences of�1 LSBwith the other alternatives. The resources
and time needed by the proposed algorithm are the least in both
cases, with an improvement over 20%. Thanks to these optimi-
zations, the total delay is the image read-out and a postprocess-
ing of 50 μs, which includes the transmission of the new
position to the TTC. This postprocessing delay is constant and
independent of the image size. The system has been tested in a
lab environment on subsystem level and within the SO/PHI FM.
The full results of the calibration and performance test of the full
image stabilization system will be published in a future paper.

Acknowledgments
This work has been funded by the Spanish MINECO through
project ESP2015-66494-R, including a percentage from Euro-
pean FEDER funds. Disclosures: the authors have no relevant
financial interests in the manuscript and no other potential
conflicts of interest to disclose.

Fig. 20 Main subsystems as seen from the left side of SO/PHI. The
CTC can be seen on the top right corner, while the TTM in the bottom
left one. The TTM is labeled as HRT secondary mirror, the mechanism
is behind it.

Fig. 21 Pattern used to calculate the displacements, seen by the CTC, and the displacements measured
by the algorithm.

Journal of Astronomical Telescopes, Instruments, and Systems 039003-15 Jul–Sep 2019 • Vol. 5(3)

Roma et al.: Subpixel real-time jitter detection algorithm and implementation. . .

References
1. S. K. Solanki et al., “The polarimetric and helioseismic imager on Solar

Orbiter,” arXiv:1903.11061 [astro-ph.IM] (2019).
2. https://hinode.nao.ac.jp/uploads/2016/03/10/12_02.png, © NAOJ/JAXA

(23 June 2019).
3. J. C. del Toro Iniesta, Introduction to Spectropolarimetry, Cambridge

University Press, Cambridge (2003).
4. R. Sridharan et al., “An image stabilization system for solar observa-

tions,” Bull. Astron. Soc. India 33, 414–414 (2005).
5. B. Gelly et al., “Design and implementation of an image stabilization

device at the THEMIS solar telescope,” Exp. Astron. 22(1), 67–85
(2008).

6. A. Title, “The SOUP and CIP instruments,” Adv. Space Res. 4(8), 67–74
(1984).

7. V. Domingo, B. Fleck, and A. I. Poland, “The SOHO mission: an over-
view,” Solar Phys. 162(1), 1–37 (1995).

8. J. Schou et al., “Design and ground calibration of the helioseismic and
magnetic imager (HMI) instrument on the solar dynamics observatory
(SDO),” Solar Phys. 275, 229–259 (2012).

9. T. Berkefeld et al., “The adaptive optics system of the 1.5 m Gregor
solar telescope: four years of operation,” Proc. SPIE 9909, 990924
(2016).

10. T. Shimizu et al., “Image stabilization system on SOLAR-B solar opti-
cal telescope,” Proc. SPIE 5487, 1199 (2004).

11. M. Carmona et al., “System model of an image stabilization system,”
Proc. SPIE 9150, 91501U (2014).

12. J. Hirzberger and J. Woch, “PHI instrument requirements specification,”
Tech. Rep. SOL-PHI-MPS-DE2000-SP-1.1.2, Max–Planck–Institut für
Sonnensystemforschung (2013).

13. D. Roma et al., “A space grade camera for image correlation,” in IEEE
13th Int. New Circuits and Syst. Conf. (NEWCAS), pp. 1–4 (2015).

14. https://hinode.nao.ac.jp/uploads/2016/03/10/17.png,© NAOJ/JAXA
(23 June 2019).

15. A. Casas et al., “Design and test of a tip-tilt controller for an image
stabilization system,” Proc. SPIE 9911, 991123 (2016).

16. W. Schmidt et al., “Auto alignment and image tracking system for the
sunrise telescope,” Proc. SPIE 6274, 62740H (2006).

17. T. Shimizu et al., “Image stabilization system for Hinode (solar-b) solar
optical telescope,” Solar Phys. 249(2), 221–232 (2008).

18. J. Decaluwe, “MyHDL: a python-based hardware description lan-
guage,” Linux J. 2004, 5 (2004).

19. IEEE Std 1076-2008: IEEE Standard VHDL Language Reference
Manual, IEEE (2008).

20. B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Int. Joint Conf. on Artif. Intell.,
Vancouver, BC, Canada, pp. 674–679 (1981).

21. J. Shi and C. Tomasi, “Good features to track,” in IEEE Computer
Society Conf. Comput. Vision and Pattern Recognit (Proc.
CVPR’94), IEEE, pp. 593–600 (1994).

22. B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artif.
Intell. 17(1), 185–203 (1981).

23. G. Farnebäck, “Two-frame motion estimation based on polynomial
expansion,” in Image Analysis, J. Bigun and T. Gustavsson, Eds.,
pp. 363–370, Springer Berlin Heidelberg, Berlin, Heidelberg (2003).

24. J. Diaz et al., “FPGA-based real-time optical-flow system,” IEEE Trans.
Circuits and Syst. Video Technol. 16, 274–279 (2006).

25. Z. Wei et al., “A fast and accurate tensor-based optical flow algorithm
implemented in FPGA,” in IEEE Workshop on Appl. Comput. Vision
(WACV ‘07), p. 18 (2007).

26. D. Bagni, P. Kannan, and S. Neuendorffer, “Demystifying the Lucas-
Kanade optical flow algorithm with Vivado HLS,” Tech. Rep.
XAPP1300, Xilinx (2017).

27. F. Dufaux and J. Konrad, “Efficient, robust, and fast global motion esti-
mation for video coding,” IEEE Trans. Image Process. 9, 497–501
(2000).

28. Y. Keller and A. Averbuch, “Fast gradient methods based on global
motion estimation for video compression,” IEEE Trans. Circuits and
Syst. Video Technol. 13, 300–309 (2003).

29. Y. Su, M.-T. Sun, and V. Hsu, “Global motion estimation from coarsely
sampled motion vector field and the applications,” IEEE Trans. Circuits
and Syst. Video Technol 15, 232–242 (2005).

30. S. Erturk, “Digital image stabilization with sub-image phase correlation
based global motion estimation,” IEEE Trans. Consum. Electron. 49,
1320–1325 (2003).

31. S. Kumar et al., “Real-time affine global motion estimation using phase
correlation and its application for digital image stabilization,” IEEE
Trans. Image Process. 20, 3406–3418 (2011).

32. H.-W. Park and H.-S. Kim, “Motion estimation using low-band-shift
method for wavelet-based moving-picture coding,” IEEE Trans.
Image Process. 9, 577–587 (2000).

33. M. G. Löfdahl, “Evaluation of image-shift measurement algorithms for
solar Shack-Hartmann wavefront sensors,” A&A 524, A90 (2010).

34. A. M. Reza and R. D. Turney, “FPGA implementation of 2D wavelet
transform,” in Conf. Rec. Thirty-Third Asilomar Conf. Signals, Syst. and
Comput. (Cat. No.CH37020), Vol. 1, pp. 584–588 (1999).

35. X. Bing and C. Charoensak, “Rapid FPGA prototyping of Gabor-
wavelet transform for applications in motion detection,” in 7th Int.
Conf. Control, Autom. Rob. and Vision (ICARCV 2002), Vol. 3,
pp. 1653–1657 (2002).

36. K. Mei et al., “VLSI design of a high-speed and area-efficient
JPEG2000 encoder,” IEEE Trans. Circuits Syst. Video Technol. 17,
1065–1078 (2007).

37. A. Pande et al., “Hardware architecture for video authentication using
sensor pattern noise,” IEEE Trans. Circuits Syst. Video Technol. 24,
157–167 (2014).

38. ON Semiconductor, STAR1000 1M Pixel Radiation Hard CMOS Image
Sensor (2015).

39. R. Smithson and T. Tarbell, “Correlation tracking study for meter-class
solar telescope on space shuttle,” Tech. Rep., Lockheed Missiles and
Space Co. (1977).

40. S. S. Gleason, M. A. Hunt, and W. B. Jatko, “Subpixel measurement
of image features based on paraboloid surface fit,” Proc. SPIE 1386,
135–144 (1990).

41. Z. Yi and R. L. Molowny-Horas, “Proc. LEST mini-workshop, software
for solar image processing,” LEST Tech. Rep. (56) (1992).

42. Xilinx, Space-Grade Virtex-4QV Family Overview (2014).
43. D. Roma et al., “APS fixed pattern noise modelling and compensation,”

in Des. Circuits and Integr. Syst. Conf. (2016).
44. D. Bishop, “Fixed- and floating-point packages for vhdl-2005,” in Desi.

Verif. Conf. (DVCon) (2005).
45. M. Parker, “High-performance floating-point implementation using

FPGAs,” in IEEE Mil. Commun. Conf. (MILCOM 2009), pp. 1–5
(2009).

46. J. E. Volder, “The CORDIC trigonometric computing technique,” IRE
Trans. Electron. Comput. EC-8, 330–334 (1959).

47. W. Schmidt et al., “The 1.5 meter solar telescope GREGOR,” Astron.
Nachr. 333(9), 796–809 (2012).

48. R. F. Stein and Å. Nordlund, “Simulations of solar granulation. I. gen-
eral properties,” Astrophys. J. 499(2), 914–933 (1998).

49. G. Miller, “Efficient algorithms for local and global accessibility shad-
ing,” in Proc. 21st Ann. Conf. Comput. Graphics and Interact. Tech.,
SIGGRAPH ‘94, ACM, New York, NY, USA, pp. 319–326 (1994).

50. PHI Instrument Team et al., “Experiment interface document Part B,”
Tech. Rep. SOL-PHI-MPS-MN1400-IF-2.3.0, MPS (2015).

51. G. Bradski, “The OpenCV library,” Dr. Dobb’s J. Software Tools
(2000).

David Roma is an assistant professor of the Department of Electronic
and Biomedical Engineering at the University of Barcelona (UB). He
has worked as an electronics engineer for the SO/PHI instrument for
SO mission, developing and testing the correlation camera hardware
and firmware. He has been also deeply involved in the validation and
software tools for the full image stabilization system. At the same time,
he has also been doing, since 2015, his PhD with the UPC-IonSAT
Group under the direction of Manuel Hernandez Pajares, with topics
related to real-time ionospheric maps generation and validation. He
has six published articles in peer-reviewed papers, six conference
presentations and involved in three international projects related to
space science and ionosphere. He is now working at the Institute
of Space Sciences from the Spanish National Research Council.

Manuel Carmona is an associate professor of the Department of
Electronic and Biomedical Engineering at UB. His research is focused
on the modeling and simulation of systems in two areas: space and

Journal of Astronomical Telescopes, Instruments, and Systems 039003-16 Jul–Sep 2019 • Vol. 5(3)

Roma et al.: Subpixel real-time jitter detection algorithm and implementation. . .

https://hinode.nao.ac.jp/uploads/2016/03/10/12_02.png
https://hinode.nao.ac.jp/uploads/2016/03/10/12_02.png
https://hinode.nao.ac.jp/uploads/2016/03/10/12_02.png
https://hinode.nao.ac.jp/uploads/2016/03/10/12_02.png
https://hinode.nao.ac.jp/uploads/2016/03/10/12_02.png
https://doi.org/10.1007/s10686-007-9083-4
https://doi.org/10.1016/0273-1177(84)90368-5
https://doi.org/10.1007/BF00733425
https://doi.org/10.1007/s11207-011-9842-2
https://doi.org/10.1117/12.2232604
https://doi.org/10.1117/12.551368
https://doi.org/10.1117/12.2054867
https://hinode.nao.ac.jp/uploads/2016/03/10/17.png
https://hinode.nao.ac.jp/uploads/2016/03/10/17.png
https://hinode.nao.ac.jp/uploads/2016/03/10/17.png
https://hinode.nao.ac.jp/uploads/2016/03/10/17.png
https://hinode.nao.ac.jp/uploads/2016/03/10/17.png
https://doi.org/10.1117/12.2232469
https://doi.org/10.1117/12.669955
https://doi.org/10.1007/s11207-007-9053-z
https://doi.org/10.1016/0004-3702(81)90024-2
https://doi.org/10.1016/0004-3702(81)90024-2
https://doi.org/10.1109/TCSVT.2005.861947
https://doi.org/10.1109/TCSVT.2005.861947
https://doi.org/10.1109/83.826785
https://doi.org/10.1109/TCSVT.2003.811360
https://doi.org/10.1109/TCSVT.2003.811360
https://doi.org/10.1109/TCSVT.2004.841656
https://doi.org/10.1109/TCSVT.2004.841656
https://doi.org/10.1109/TCE.2003.1261235
https://doi.org/10.1109/TIP.2011.2156420
https://doi.org/10.1109/TIP.2011.2156420
https://doi.org/10.1109/83.841935
https://doi.org/10.1109/83.841935
https://doi.org/10.1051/0004-6361/201015331
https://doi.org/10.1109/TCSVT.2007.896640
https://doi.org/10.1109/TCSVT.2013.2276869
https://doi.org/10.1117/12.25387
https://doi.org/10.1109/TEC.1959.5222693
https://doi.org/10.1109/TEC.1959.5222693
https://doi.org/10.1002/asna.v333.9
https://doi.org/10.1002/asna.v333.9
https://doi.org/10.1086/apj.1998.499.issue-2

microsystems. He is also involved in PA/QA space projects tasks.
He is co-principal investigator of the UB contribution to the ISS for
SO/PHI. He has worked in university and industry research projects.

Jose Bosch received his PhD in electronics and applied physics and
his MSc degree in materials science from UB. He is a professor of the
Department of Electronic and Biomedical Engineering at UB. From
1987 to 1993, his research field was the analysis and characterization
of photoluminiscent semiconductors and quantum wells electronic-
based devices. Since 1994, he has been working in the design of
digital systems, mainly with microcontrollers and embedded systems,
and smart instrumentation. He is a member of the team that devel-
oped the ISS for the SO/PHI instrument for SO mission.

Albert Casas is an assistant professor of the Department of
Electronic and Biomedical Engineering at UB. He is also a member
of the Institute of Space Studies of Catalonia (IEEC). In the last years,
he has collaborated on designing the ISS for SO/PHI. Nowadays, he
collaborates with Technical University of Catalonia, designing a new
on-board computer platform for a nanosatellite, based on advanced
FPGA technology.

Atila Herms received his PhD in physics from UB in 1984. He is
a full professor of digital systems in the Department of Electronic
and Biomedical Engineering, Faculty of Physics at UB. His field of
research is digital systems design. He directs a research group dedi-
cated to instrumentation and communication systems design spe-
cially for space applications. Now, he is the dean of the Faculty of
Physics at UB.

Manel Lopez has been an associate professor of the Department
of Electronic and Biomedical Engineering at UB since 2007. His
research activity is devoted to the hardware system electronics
designs, embedded software, and communications. He has mainly
worked in the field of sensor networks and embedded systems. He had
participated in the Spanish section of the ESA. His current research is
focused in the characterization of sensors, design for instrumentation
electronics, control electronics, and embedded systems.

Oscar Ruiz is an associate professor of the Electronics and
Biomedical Engineering Department at UB and the current head of

studies for the electronic engineering and telecommunication degree.
His research is focused on the application of electronic instrumenta-
tion to biomedical tasks. He is also involved in dissemination activities
in order to promote engineering careers, mainly STEM, among high
school students.

Josep Sabater received his BS and MS degrees in computer science
and computer engineering from the University Ramon Llull,
Barcelona, Spain, in 2000 and 2001, respectively. Additionally, he
received his MS degree in electronics from the UB, Spain, in 2010.
In 2010, he joined the IEEC. Since then, he has been working on elec-
tronics and control software for satellites and ground telescopes. He
was previously involved in the design of the ISS for SO/PHI.
Furthermore, he is currently developing the control system for the
cryogenic probe arms of MIRADAS instrument for Gran Telescopio
Canarias (GTC). His current research interests include motion plan-
ning, robotics, control systems, and artificial intelligence.

Thorsten Maue is the SO/PHI ISS project engineer at the KIS. He
completed his studies of aerospace engineering in 2006. With his
experience in optical space instrumentation, he joined KIS in 2012
to help developing and qualifying the ISS for SO/PHI.

Reiner Volkmer received his PhD in physics and astronomy from the
University of Göttingen, Germany. He was developed the data han-
dling system for the IBIS instrument on the integral satellite at the
University of Tübingen. He was a project manager for the develop-
ment and construction of the 1.5-m solar telescope GREGOR at the
KIS, Freiburg, Germany. Since 2012, he has been a project manager
for the project of the ISS for the SO/PHI instrument at KIS.

Jose M. Gomez is an associate professor of the Department of
Electronic and Biomedical Engineering at UB. He is also a member
of the Institute of Cosmos Sciences at the University of Barcelona and
the IEEC. His research is focused on the development of ground-
based and space borne instrumentation for telescopes. He collabo-
rates in the instrument MIRADAS for the GTC. He is a principal inves-
tigator of the UB contribution to the ISS for SO/PHI. He has also
worked at IBM.

Biographies of the other authors are not available.

Journal of Astronomical Telescopes, Instruments, and Systems 039003-17 Jul–Sep 2019 • Vol. 5(3)

Roma et al.: Subpixel real-time jitter detection algorithm and implementation. . .

