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Abstract

The calculus of relations is a rich discipline that spanned much of the history of

symbolic logic, with contributions ranging from De Morgan to Tarski. Yet not much

is known about the proof theory for the calculus of relations. For example, a sequent

calculus developed by Maddux has the shortcoming of not being cut-free. In this

work we will develop a sequent calculus that is cut-free. To do this we will use a

procedure developed by Negri & von Plato to transform geometric theories into rules

for a sequent calculus.

Keywords: Proof theory; Calculus of relations; Cut-elimination; Non-geometric the-

ories.





Chapter 1

Introduction

1.1 Historical introduction

In the year 1900, David Hilbert published a list of twenty-three open problems in

mathematics. Several of them became very influential for the development of 20th

century mathematics, and some of them lack a definitive solution even today. Yet a

not very well known fact is that in the year 2000 a note by Hilbert was discovered,

mentioning a problem he never added to the list[1][2]:

As a 24th problem of my Paris talk I wanted to pose the problem: criteria

for the simplicity of proofs, or, to show that certain proofs are simpler

than any others. In general, to develop a theory of proof methods in

mathematics.

This note should elicit quite some interest, if not only to show the great insight that

Hilbert had, since the discipline of proof theory, which proved many results that

could be related to this 24th problem, would be born only 20 years after this note

was written.

At the beginning of the 20th century the mathematical community was starting

to develop the methods that we now consider to be central to the discipline of the

1



2 Chapter 1. Introduction

foundations of mathematics. Many mathematical fields started to investigate how to

well-formulate some research questions related to the axioms of the field itself. For

example, even one of the most classical mathematical discipline, that of geometry,

had unresolved questions relative to the independence of one of its axioms (the

famous 5th postulate, dating back to Euclid).

And to answer such questions a systematic theory of how to obtain proofs from some

starting axioms was needed. It was from this and similar challenges that the idea

of a logical calculus gradually emerged. It was with the starting contributions from

Frege, Peano, and others, that the discipline of metamathematics evolved. And for

the first time it achieved to express mathematical statements purely with formulas,

totally manipulable in a precise syntactic fashion. This work was later perfected

by Russell in the first decade of the 20th century, thanks to him the principles of

proof found by Frege where expressed in the clearer notation of Peano. And thus

the seminal Principia Mathematica were born.

These formalizations played a central role in the research program outlined by

Hilbert’s 23 open problems. In particular, it was one of Hilbert’s aims to use such

formalization to show the consistency and completeness of arithmetic and analy-

sis. Thanks to the results of Gödel, we know that this research program of Hilbert

failed. The incompleteness theorems determined that it was impossible to obtain a

complete formalization for arithmetic, and that the consistency of Peano arithmetic

is unprovable.

This came at a great shock for the field, yet not all hopes of proving the consistency

of arithmetic went lost. This was due to the work of Gentzen, and the foundations

he gave to proof theory. Indeed one could claim that Gentzen’s work gave some

answers to Hilbert’s 24th problem we cited at the beginning, since he developed the

first successful theory about proof methods in mathematics.

First, through his work in natural deduction and sequent calculi systems, he pin-

pointed the subformula property as one of the key elements for the complexity and

decidability of a derivation. The basic idea being that a "good" proof system would



1.1. Historical introduction 3

have the property that its derivations only have formulas that are contained in the

conclusion to be derived. And so this property can be used to derive an upper-

bound on the number of formulas that can possibly appear in the derivation, and

thus inform questions regarding the complexity and decidability of a derivation.

In particular Gentzen proved that its sequent calculus of first order logic had this

property, though the famous result of cut-elimination (we will discuss this matter

in more detail later on in the chapter).

Secondly, Gentzen further developed proof theory to not only cover logic, but also

arithmetic. In his work he formalized Peano arithmetic derivations as proof trees

constructed from the rules of inference[3]. He defined a procedure to attach an

ordinal ≤ ε0 to a proof, and showed that, while moving down the tree, the ordinals

would get smaller. From this he deduced that if a contradiction was derivable, then

this would cause an infinite descending chain of ordinals.

By Gödel’s results we know that such a proof would not be provable in PA (indeed

Gentzen proved it in primitive recursive arithmetic plus quantifier free transfinite

induction up to ε0). So Gentzen’s proof would end up becoming the first "actual"

arithmetical statement not provable in PA (since Gödel’s famous "I am not provable"

formula needs the concept of provability from the metamathematics of a formalized

system), and it would become the foundation of the field of ordinal analysis.

These successes lead proof theory to further developments, in particular to find

proof systems for mathematical theories. For example, many continued Gentzen’s

and Hilbert’s aim of a proof theory of analysis. Furthermore many proof systems

have been developed for theories of order, lattice theory, and elementary geometry,

thanks to some recent developments in the sequent calculi of geometrical theories[4].

Yet one simple theory that lacked a syntactic characterization for a long time is the

theory of the calculus of relation. This theory has a history as long as logic itself,

given that it was first developed by De Morgan and Peirce, and then in the 1940s

Tarski developed it to what is now known as the theory of relation algebras, and

found many results of great mathematical importance. For example, one famous
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result is that relation algebras can express all first order logic containing no more

than 3 variables, and that this suffices to express PA. Thus relation algebras can be

seen as an alternative formalization of almost all mathematics.

Yet not much is known about the syntactical properties of such theory, given that

the only calculus in the literature[5] is provably not cut-free. Thus the aim of this

thesis will be to fill this gap in the literature, by finding a cut-free sequent calculus

for the calculus of relations.

To do so in the first chapter a broad introduction to the proof theory of sequent

calculi will be given. Then in the second chapter we will explain how to find sequent

calculi rules from any geometric theory, while preserving cut-elimination. The third

chapter presents how to obtain a geometric first-order theory out of any first order

theory. Finally the fourth chapter will apply the results from the previous chapters

to the calculus of relations.

More specifically for this chapter, we will give a broad introduction to the calculus of

sequents, and present some of the earliest results related to it. Given the availability

of resources on this subject[6][4], we will not give many details about the materials

presented. We will only try to give intuitions about the important features of sequent

calculi.

We will first give an introduction and the definition of a sequent calculus for propo-

sitional logic. Then we will present some of the biggest benefits of sequent calculi,

that is, their ease of use when searching for a proof, and which characteristics the

calculi have to maintain to preserve this ease of search. Next we present some

results (inversion, weakening, contraction) that are indispensable for proving later

results about sequent calculi. Lastly, we will expand our propositional calculus to a

first-order logic one, which we will be using for the rest of the thesis.

1.2 Introduction to sequent calculus

We fix an alphabet of propositional atoms {P,Q,R, ...}, countably infinite, further-

more we will have the logical constant ⊥. Then we define the propositional formulas
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{A,B,C, ...} inductively from the connectives ∨,∧,→, and ⊥.

We will call Γ ⇒ ∆ a sequent, where Γ and ∆ are finite multisets of propositional

logic formulas. The standard interpretation of a sequent will be
∧

Γ →
∨

∆, as

we want to express that from everything in Γ follows at least something in ∆.

We will call Γ the antecedent, and ∆ the consequent. Then clearly if we have an

empty Γ, the sequent ⇒ ∆ expresses that
∨

∆ is a tautology. While if ∆ is empty,

then we have Γ → ⊥, so the antecedent Γ is inconsistent. As an example to get

the intuition behind sequent calculus, consider how we might prove the following

tautology: ⇒ (((p ∧ q)→ w) ∧ p)→ (q → w).

We start by looking at the meaning of the most external connective (→). So if

we assume ((p ∧ q) → w) ∧ p, then we should be able to derive q → w. For the

moment, we write this as ((p ∧ q) → w) ∧ p ⇒ q → w. Then we notice that at

this level we can deal with other 2 connectives (the ∧ and the →). So we start by

trying to get rid of ∧: if we are assuming ((p∧ q)→ w)∧ p, then then it’s the same

as assuming (p ∧ q) → w and p, thus we write (p ∧ q) → w, p ⇒ q → w. Then

we want to get rid of the → in q → w: we are assuming some formulas and we

want to prove q → w, so it is the same as assuming those formulas and q, to prove

w. Thus (p ∧ q) → w, p, q ⇒ w. We have another → to get rid of, but this time

is on our assumptions. So we use the equivalence A → B ≡ ¬A ∨ B. So we get

¬(p∧q)∨w, p, q ⇒ w. Now we have the connective ∨ in our assumptions, that means

we could reason by cases: we want w, p, q ⇒ w and ¬(p∧q), p, q ⇒ w. The first case

now has no more connectives, and we notice that we have a w in both the antecedent

and consequent, so is trivially true. What about ¬(p ∧ q), p, q ⇒ w? We have to

get rid of the negations, so we can notice, given our semantic interpretation, that∧
Γ∧¬A→

∨
∆ is equivalent to

∧
Γ→ (¬A→

∨
∆), and that is

∧
Γ→ A∨

∨
∆.

So we have p, q ⇒ p ∧ q, w for the second case. The last connective is a ∧ in the

conclusion, so if we want to prove p∧ q, that is the same as proving first p and then

q, so this case is further split into p, q ⇒ p, w and p, q ⇒ q, w. In both cases we can

see that the have reached some tautologies.

The idea behind sequent calculus is that we want to imitate the kind of reasoning
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behind this example: we want to start with a sequent, and simplify the connectives

in the formulas in Γ and ∆ until all the connectives are eliminated and there are

only atomic formulas on each side of the sequent. So we want our proofs to look

like a rooted tree graph, with the root of the tree being the formula to be proven.

Then each step of the tree simplifies some connective, and sometimes branches the

tree. At the end we want to have only tautologies as the leaves of the tree. So we

need to give our inference rules, two for each connective, based whether they are on

the left or the right of the sequent. So for the ∧ we have:

Γ⇒ A,∆ Γ⇒ B,∆
R∧

Γ ⇒ A ∧B,∆

for the right and

Γ, A,B ⇒ ∆
L∧

Γ, A ∧B ⇒ ∆

for the left.

Given a rule, we call the formula whose connective is currently being eliminated the

principal formula (in the above case, A∧B). Furthermore we call the formula above

the inference line the premise, while the formula below it the conclusion.

For right ∨:

Γ⇒ A,B,∆
R∨

Γ⇒ A ∨B,∆

and left ∨

Γ, A⇒ ∆ Γ, B ⇒ ∆
L∨

Γ, A ∨B ⇒ ∆

for right →

Γ, A⇒ B,∆
R→

Γ⇒ A→ B,∆
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and left →

Γ⇒ A,∆ Γ, B ⇒ ∆
L→

Γ, A→ B ⇒ ∆

Then we need some axioms, our search for a proof will be successful only if at the

end of our proof tree search we find something that is obviously true. So our first

axiom represents the idea that a sequent is provable if one of the atoms on the right

correspond to an atom to the left:

Ax
Γ, P ⇒ P,∆

with P an atom.

Then we need a way to treat negation. We will use the equivalence ¬A ≡ A → ⊥,

and the rule (a sort of ex falso quodlibet) for ⊥:

⊥
Γ,⊥ ⇒ ∆

By inspecting all our rules, we can notice an important feature of our sequent cal-

culus, called the subformula property: in any proof-tree of a sequent Γ ⇒ ∆, the

formulas appearing above the inference line will be subformulas of the formulas in

Γ and ∆. This is an important observation that makes us conclude that the empty

sequent ⇒ is not derivable.

Furthermore all of our rules have an important property (easily seen with truth-

tables): whenever the premise of a rule is valid, then also the conclusion is valid.

This observation allows to immediately prove the soundness of the calculus: by

induction, the axioms we have given are clearly valid, and the rules preserve validity,

so clearly if we can prove a sequent with this calculus, then this sequent is valid.

On the other hand we can also see that completeness holds: if a sequent Γ ⇒ ∆ is

valid, then we will find a proof with our calculus. If we have a valid sequent, then
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it’s validity will be preserved upward. At the end our leaves can be axioms or a

general sequent Γ′ ⇒ ∆′ made by atoms (when the proof fails). Yet this last case

never happens, since the validity is preserved to the leaves, and having a general

sequent Γ′ ⇒ ∆′ on some leaf means that we could put all the atoms in Γ′ to true

and all the atoms in ∆′ to false, and thus have a not valid sequent. So we will never

find a regular sequent on the top level, and so our leaves will only be axioms. So we

will always have a proof.

Finally, if a sequent Γ⇒ ∆ is derivable in our sequent calculus, we write `n Γ⇒ ∆,

where n is the depth (the length of the longest branch) of the proof tree of Γ⇒ ∆.

This depth will be often used in induction proofs, like in the paragraph above.

This concludes our definition of the classical propositional logic sequent calculus,

which we will call G3cp[6]. The reason for the "3" is that this version of the calculus

was not historically the first one to be developed. We will give some motivations

about why this calculus is adopted in the next sections.

1.3 Desideratum: cut-free

In Gentzen’s original calculus, called LK, we had a rule of the following form:

Γ⇒ A,∆ Γ′, A⇒ ∆′
Cut

Γ,Γ′ ⇒ ∆,∆′

This rule can be seen as representing some sort of transitivity of the sequent: it

states that when we can conclude A, and this A can also be in the antecedent for

another derivation, then the A can be "cut", and the derivations joined.

We can notice that this rules appears to be very different from the rules of G3cp:

in our bottom-up proof construction, we could always know how to proceed using

the rules, which can be applied in a unique way. Yet if the cut rule is available then

we face a problem: how do we guess the formula A? (we notice that that formula

doesn’t appear in the below sequent Γ,Γ′∆,∆′). This creates some problems when
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it comes to automated theorem searches, as we no longer have a simple algorithm

as for the rules without cut.

Also another problem is that with a cut rule we are introducing a totally new formula

A in our proof tree, and this breaks the subformula property.

This motivates the importance of cut-elimination theorems. In case of G3cp+Cut,

we could do this easily given that we have the completeness and soundness theorems.

Theorem 1.3.1. If G3cp+Cut ` Γ⇒ ∆ then G3cp ` Γ⇒ ∆.

Proof. if G3cp+Cut ` Γ ⇒ ∆ then by soundness we know Γ ⇒ ∆ is valid (since

the cut rule is also sound), then by completeness G3cp ` Γ⇒ ∆.

Yet this proof does not give an algorithm that transforms an instance of a proof

containing cut, to a cut-free proof. This was first done by Gentzen in his "Main

Theorem" (Hauptsatz) about LK[7].

1.4 Desideratum: shared contexts

Another important property that our calculus contains is that, going upwards in the

proof tree search, it is always uniquely determined how to apply a rule. Consider

these two possible rules for the R∧ connective

Γ⇒ A ∆⇒ B R∧
Γ,∆ ⇒ A ∧B

and

Γ⇒ A Γ⇒ B R∧
Γ ⇒ A ∧B
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The first type of rule we call context independent, the second context sharing. They

can be seen to be equivalent (i.e. simulate the work of one using the other) in the

following way. If we have Γ ⇒ A ∧ B, then by contraction we have Γ,Γ ⇒ A ∧ B:

so we can use the context independent rule to get Γ ⇒ A and Γ ⇒ B ; if we have

Γ,∆ ⇒ A ∧ B, then by the context sharing we have Γ,∆ ⇒ A and Γ,∆ ⇒ B,

then by weakening we have Γ ⇒ A and ∆ ⇒ B). However we can easily see that

these two type of rules are not equivalent when it comes to proof-search algorithms.

We want the rules of the sequent calculus to be always used in a determined way,

but with the context independent rules, we would have to consider a lot of different

possibilities when it comes to splitting the context between the two antecedents of

the premises. With context sharing this doesn’t happen: a proof search is uniquely

determined by the principal formula of the sequent.

With this we conclude that the calculus G3cp is a good candidate for a sequent

calculus that has the subformula property and that has effective proof-search algo-

rithms.

1.5 Some initial theorems: inversion, weakening,

contraction

Now we can proceed to explain some of the first results related to sequent calculi.

Given the ample availability of textbooks related to these results[6][8], our exposition

will be rather short.

First we want to talk about how, when we inspect the rules of G3cp, we can no-

tice that not only the direction from premises to conclusions is valid, but also the

opposite. That is, we can prove that if we assume that the conclusion is derivable,

also the premise is derivable. Furthermore this result preserves proof depth. So, for

example, for the rule R→, we have that:

Theorem 1.5.1. If `n Γ⇒ A→ B,∆ then `n Γ, A⇒ B,∆

And we have a result of this shape, which we will call inversion principle, for each rule
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of G3cp. As in many other cases, all of these theorems can be proved by induction.

Another important result is weakening:

Theorem 1.5.2. If `n Γ⇒ ∆ then `n Γ, A⇒ ∆ and `n Γ⇒ A,∆

This result basically states that if we have proven a sequent, then we can weaken

the antecedent and/or the consequent, and we still have a valid sequent.

Lastly we present contraction:

Theorem 1.5.3. If `n Γ, A,A ⇒ ∆ then `n Γ, A ⇒ ∆. Also if `n Γ ⇒ ∆, A,A

then `n Γ⇒ ∆, A

This theorem states that when dealing with the multisets in a sequent, we can

disregard repetitions.

An important thing to note is that in all these results, the height of the proof `n
is preserved. This is important because it means that we can use these results

as useful lemmas while proving by induction on the depth of a proof. Indeed in

many textbooks[6][8] these results are used as important lemmas while proving cut-

elimination results.

1.6 The intuitionistic variant and the classical logic

variant

Now we extend our sequent calculus to first-order logic. We need a new first-order

language, with or without identity, and without function symbols except constants.

A term t of our language is either a variable x (we allow countably infinite many of

them) or a constant a. Then the formulas are defined inductively from the atoms

pni (t1, ...tn), with i ≥ 1 and n ≥ 0, and the propositional constant ⊥, and using the

connectives and the quantifiers (existential, ∃, and universal, ∀).

The substitution of a variable x with a term t in a term s (or in a formula A, or

in a multiset Γ) is written as s[t/x](or A[t/x], or Γ[t/x]). To indicate simultaneous

substitution of a list of variables x1, ..., xn with a list t1, ..., tn, we write [t̄/x̄].
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Now to complete the definitions of our first-order calculus: we will use the same

rules of G3cp plus some rules for the existential quantifiers:

Γ⇒ ∃xA,A[t/x],∆
R∃

Γ⇒ ∃xA,∆

Γ, A[y/x]⇒ ∆
L∃

Γ, ∃xA⇒ ∆

and universal quantifier:

Γ⇒ A[y/x],∆
R∀

Γ⇒ ∀xA,∆

Γ, A[t/x],∀xA⇒ ∆
L∀

Γ, ∀xA⇒ ∆

We also need that in the rules R∀ and L∃ the variable y does not occur free in the

conclusion. We will call y the eigenvariable of R∀ and L∃.

We will call this calculus G3c.

With the quantifier rules at our disposal we can obtain the intuitionistic variant

rather easily. We will call this intuitionistic variant of our calculus G3im. The

propositional part of it is equal to G3cp, except for the rules of implication[9]:

Γ, A→ B ⇒ A Γ, B ⇒ ∆
L→

Γ, A→ B ⇒ ∆

Γ, A⇒ B
R→

Γ, A→ B ⇒ ∆

The L→ rule has a repetition of the principal in the left premise. Furthermore the

succedent is only A. The right rule is similar in this. The existential quantifier will

be the same as in the classical calculus, while the universal quantifiers will be similar

to the implication:
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Γ⇒ A[y/x]
R∀

Γ⇒ ∀xA,∆

Γ, A[t/x],∀xA⇒ ∆
L∀

Γ, ∀xA⇒ ∆

With y an eigenvariable in R∀. These modifications might appear weird but are nec-

essary to make the weakening possible. We will not deal much with the intuitionistic

variant in this thesis, so we leave a more thorough description to [4].

Going back to G3c, an important lemma about substitutions of terms for variables

in a sequent is:

Lemma 1.6.1. If `n Γ⇒ ∆ then `n Γ[t/x]⇒ ∆[t/x], where t is freely substitutable

for x in ∆,Γ

which basically states that term renaming doesn’t impact our proof depth (again,

an important aspect for proofs by induction). Furthermore the previous result can

be strengthened even more, to substitute for a term instead that for a variable:

Lemma 1.6.2. If `n Γ ⇒ ∆ then `n Γ[t/u] ⇒ ∆[t/x], where the term t is freely

substitutable for the term u in ∆,Γ

With these results at our disposal we can prove the inversion, weakening, and con-

traction results also for G3c[8][6].

Finally a historically important result that we will only state is the cut elimination

theorem for G3c:

Theorem 1.6.3. If G3c+Cut ` Γ⇒ ∆ then G3c ` Γ⇒ ∆.

For a proof, the reader is redirected to [6].

With these definitions and results fixed for sequent calculi about logics, now we

are ready for the next chapter, where we will give a look at how we could devise a

sequent calculus for a mathematical theory.



Chapter 2

Extending the calculus

2.1 Extending the calculus

In the previous chapter we have seen how sequent calculus is an effective method for

finding proofs in first-order logic. Now we might ask ourselves: what about finding

proofs of a mathematical theory? Indeed first-order logic has a long history when it

comes to formalization of mathematics, but to do so it needs some axioms relative

to the mathematical theory that it wants to be speaking about. So it is spontaneous

to ask how the axioms of a theory can be added to the G3c sequent calculus, so that

it can derive the valid formulas of the theory.

One first idea might be to add the axioms of the theory as end sequents: if for

each axiom A of the theory we have a sequent rule of the form ⇒ A from which

the derivation can start, then our calculus should still be complete. Let’s see an

example of this.

We think about the theory of equivalence relations, and add two rules for a relation

R that is reflexive and Euclidean:

Ref⇒ xRx

Euc
xRz, yRz ⇒ xRy

14
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Now form these two rules we can derive that R is symmetric (yRx ⇒ xRy) by the

following derivation:

Ref⇒ xRx
Euc

xRx, yRx⇒ xRy
Cut

yRx ⇒ xRy

Yet this proof uses a Cut rule. And clearly it wouldn’t be possible to derive yRx⇒

xRy without it. So if we want to preserve the cut-free property of G3c we have to

add the axioms of a theory in a different way.

Historically there have been different approaches to extend the rules of a sequent

calculus.

For example, Gentzen[10] tried to add some mathematical basic sequents, that is

substitution instances of sequents of the form P1, ..., Pi ⇒ Q1, ..., Qj, with P and Q

atomic formulas. Then one can prove that the cut rule can be eliminated also when

used with these basic sequents.

Another way of adding axioms, found in Gentzen’s consistency proof of elementary

arithmetic[7], is to put axioms as an antecedent Γ, such that to prove a theorem T

our sequent calculus would always prove results of the form Γ⇒ T . In this way the

sequent calculus derivations are basically the same as the G3c system, and so we

still have cut elimination. Yet we have to force such Γ set of mathematical axioms

even in derivations of logical rules, which might appear not natural.

Yet more recently[4] a fourth way of adding rules to the G3c sequent calculus was

developed, this will be the topic that we will explore in the rest of this chapter. The

aim of this approach will be to find some "good" rule only for a particular type of

mathematical theories, called geometric theories. Then in the next chapter we will

see how this approach can be extended to all theories.

2.2 Geometric axioms and rules

We start by defining geometric implications:
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Definition 2.2.1. Geometric implication: a geometric implication (sometimes called

special coherent implication) is a first-order sentence that is the universal closure of

an implication C → D, where C is a conjunction of atoms and D is a disjunction

of existentially quantified conjunctions of atoms.

That is geometric implications are formulas of the general form:

∀x̄(P1 ∧ ... ∧ Pn → ∃ȳ1M1 ∨ ... ∨ ∃ȳmMm)

With all the P̄ being atoms and each Mj being a conjunction of atoms Q̄. Further-

more we assume we rename the variables in P̄ s so that no ȳ appears free in P̄ . Also

we notice that in the geometric implication we can have an empty antecedent, by

swapping the conjunction with a single >, or an empty consequent, by swapping

the disjunction with a single ⊥. So for example the axiom for a reflexive relation R

becomes

∀x> → xRx

Finally a theory axiomatized by geometric implications will be called a geometric

theory.

We can find many examples of geometric theories[11], for example Robinson’s arith-

metic. Another example are all algebraic theories, like group theory and ring theory,

and all essentially algebraic theories, like category theory, the theory of fields, the

theory of local rings, lattice theory, projective geometry.

Furthermore it is interesting to notice that sometimes a theory that doesn’t im-

mediately appear as geometric can be easily transformed into one. For example,

Robinson arithmetic is a finitely axiomatized theory of first-order logic with iden-

tity. It’s axioms are[12]:

1. ¬s(a) = 0

2. s(a) = s(b)→ a = b

3. ¬a = 0→ ∃y s(y) = a
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4. a+ 0 = a

5. a+ s(b) = s(a+ b)

6. a · 0 = 0

7. a · s(b) = a · b+ a

We can notice that the third axiom is not in a geometric form, yet we can use the

equivalent a = 0 ∨ ∃y s(y) = a instead, and thus obtain a geometric theory.

So it would be useful to temporarily focus on theories axiomatized by such formulas,

as geometric implications have a shape that looks promising for being transformed

in a sequent calculi rule. Given a geometric implication G, such rule, called Grule

will be:

Q̄1(z̄1/ȳ1), P̄ ,Γ⇒ ∆ ... Q̄m(z̄m/ȳm), P̄ ,Γ⇒ ∆
Grule

P̄ ,Γ⇒ ∆

With the condition that the eigenvariables z̄i must not be free in P̄ ,Γ,∆. With this

condition, and by inspecting the rule, one can notice that we took care in a rather

simple way of the existential quantifiers.

Another aspect that might be puzzling at first is the presence of the repetition of

the P̄ in the premises. This is a trick that is necessary to be able to still have the

contraction lemma.

Suppose we have a derivation of A,A,Γ⇒ ∆, eith the last rule used being a Grule.

Then we have 3 different cases for the origin of that repeated A. First, both instances

of A are in Γ; second, one is principal; third, both of them are. In the first case

we would handle the contraction by a usual induction. But in the second case we

would have to use a trick used first to handle the contraction for the L → rule in

G3i[4], that is, putting a repeated principal formula in the premises. Also the third

case poses a problem, this time specific to the shape of geometric implications. The
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solution we will use is to add an ad hoc condition to have contraction, called the

closure condition:

Definition 2.2.2. Closure condition: a sequent calculus has the closure condition

if, for every rule of the type

Q̄1(z̄1/ȳ1), P1, ....Pm−2, P, P,Γ⇒ ∆ ... Q̄n(z̄n/ȳn), P1, ....Pm−2, P, P,Γ⇒ ∆
Grule

P1, ....Pm−2, P,Γ⇒ ∆

it has a rule

Q̄1(z̄1/ȳ1), P1, ....Pm−2, P,Γ⇒ ∆ ... Q̄n(z̄n/ȳn), P1, ....Pm−2, P,Γ⇒ ∆
Grule

P1, ....Pm−2, P,Γ⇒ ∆

Now clearly the number of rules to be added to a sequent calculus satisfying this

condition is bounded. So adding this fix is not problematic.

Now we have all the intuitions to understand the Grule. To further cement the

idea that this rule is able to convey the same expressiveness of the axiom it is

representing, we give the following theorem.

Theorem 2.2.1. A geometric axiom is derivable from the corresponding geometric

rule. Also, a geometric rule is derivable from the corresponding geometric axiom

plus the use of contraction, cut and inversion.

Proof. First we want to derive the sequent⇒ ∀x̄(P1∧...∧Pn → ∃ȳ1M1∨...∨∃ȳmMm):

Q̄1(z̄1/ȳ1), P̄ ,⇒M1(z̄1/ȳ1), ...,Mm(z̄n/ȳn)
R∃

Q̄1(z̄1/ȳ1), P̄ ,⇒ ∃ȳ1M1, ...,∃ȳmMm ...
Q̄m(z̄1/ȳ1), P̄ ,⇒M1(z̄1/ȳ1), ...,Mm(z̄n/ȳn)

R∃
Q̄m(z̄m/ȳm), P̄ ,⇒ ∃ȳ1M1, ...,∃ȳmMm

Grule
P̄ ⇒ ∃ȳ1M1, ...,∃ȳmMm repeated R∨

P̄ ⇒ ∃ȳ1M1 ∨ ... ∨ ∃ȳmMm repeated R∧
P1 ∧ ... ∧ Pn ⇒ ∃ȳ1M1 ∨ ... ∨ ∃ȳmMm

R→⇒ P1 ∧ ... ∧ Pn → ∃ȳ1M1 ∨ ... ∨ ∃ȳmMm
R∀⇒ ∀x̄(P1 ∧ ... ∧ Pn → ∃ȳ1M1 ∨ ... ∨ ∃ȳmMm)

For the second part of the theorem we want to check we can derive the Grule:
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Q̄1(z̄1/ȳ1), P̄ ,Γ⇒ ∆ ... Q̄m(z̄m/ȳm), P̄ ,Γ⇒ ∆
Grule

P̄ ,Γ⇒ ∆

Given that we also can use the geometric implication⇒ ∀x̄(P1∧ ...∧Pn → ∃ȳ1M1∨

...∨ ∃ȳmMm) as an axiom to the derivation. This can be checked by the derivation:

⇒ ∀x̄(P1 ∧ ... ∧ Pn → ∃ȳ1M1 ∨ ... ∨ ∃ȳmMm)
invR∀⇒ P1 ∧ ... ∧ Pn → ∃ȳ1M1 ∨ ... ∨ ∃ȳmMm

invR→
P1 ∧ ... ∧ Pn ⇒ ∃ȳ1M1 ∨ ... ∨ ∃ȳmMm

invL∧
P̄ ⇒ ∃ȳ1M1 ∨ ... ∨ ∃ȳmMm

Q̄1(z̄1/ȳ1), P̄ ,Γ⇒ ∆
L∧

M1(z̄1/ȳ1), P̄ ,Γ⇒ ∆
L∃∃ȳ1M1, P̄ ,Γ⇒ ∆ ...

Q̄m(z̄m/ȳm), P̄ ,Γ⇒ ∆
L∧

Mm(z̄m/ȳm), P̄ ,Γ⇒ ∆
L∃∃ȳmMm, P̄ ,Γ⇒ ∆

Grule∃ȳ1M1 ∨ ... ∨ ∃ȳmMm, P̄ ,Γ⇒ ∆
Cut

P̄ , P̄ ,Γ⇒ ∆
Contraction

P̄ ,Γ⇒ ∆

If we analyze the last derivation we can see that the Grule is actually hiding a cut.

This indeed creates a small problems for the desired subformula property. Yet as

we will see later we can still obtain a weaker version of the subformula property,

namely the subterm property. Another important remark is that it is convenient to

always assume that in a derivation the sets of free and bound variables are disjoint,

so we don’t have to face problems with the substituted variables yi.

Now that we have the definitions and rationale for the geometric rules, we can define

the sequent calculus that is formed by a geometric theory.

Definition 2.2.3. Given a Geometric theory T , G3cT is defined as the sequent

calculus obtained from G3c plus the Grules obtained from the axioms of T , plus the

rules that are necessary to satisfy the closure condition.

In the next section we will see how the sequent calculus thus defined holds the

desiderata (namely, cut elimination) that we explained in the previous chapter. But

as for the proof of G3c, before having the cut-elimination result we will have to
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prove that the inversion, weakening, substitution and contraction lemmas also hold

for G3cT.

2.3 Inversion, substitution, weakening, contraction

We first prove a new version of the substitution lemma.

Lemma 2.3.1. Substitution: if G3cT `n Γ ⇒ ∆ then G3cT `n Γ(t/x) ⇒ ∆(t/x),

with x a free variable in Γ and ∆, t a term free for x in Γ and ∆, and not containing

any of the variables of the geometric rules in the derivation.

Proof. Proof. By induction on the height of the derivation. The logical part of

the proof is already done. So we need to consider only the inductive step with the

last rule of the derivation being a Grule. So we have a P̄ ,Γ′ ⇒ ∆ Derived by the

premises Q̄1(z̄1/ȳ1), P̄ ,Γ
′ ⇒ ∆, ..., Q̄m(z̄m/ȳm), P̄ ,Γ′ ⇒ ∆. We know that the term

t is free for x in these premises. So by induction hypothesis we get derivations of

Q̄1(z̄1/ȳ1)(t/x), P̄ (t/x) ,Γ′(t/x) ⇒ ∆(t/x), ..., Q̄m(z̄m/ȳm)(t/x), P̄ (t/x), Γ′(t/x) ⇒

∆(t/x). We are assuming that in a derivation the sets of free and bound variables are

disjoint, so we have x 6= yi. The zi are not free so x 6= zi. Also t does not contain any

of the yi. So we can swap the substitutions (z̄1/ȳ1) and (t/x): Q̄1(t/x)(z̄1/ȳ1), P̄ (t/x)

,Γ′(t/x) ⇒ ∆(t/x), ..., Q̄m(t/x)(z̄m/ȳm), P̄ (t/x), Γ′(t/x) ⇒ ∆(t/x). Then we apply

the geometric rule scheme to get P̄ (t/x),Γ′(t/x)⇒ ∆(t/x). So we are done.

By using this lemma we have the useful remark that in a derivation in G3cT, the

collections of proper variables of any two geometric rules can be considered as dis-

joint.

Now we can prove weakening.

Lemma 2.3.2. Weakening: If G3cT `n Γ⇒ ∆ then G3cT `n Γ, A⇒ ∆ and G3cT

`n Γ⇒ A,∆
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Proof. The proof is by induction, with the base case and almost all of the induction

step done with the classical result. We only consider the case where the last rule

that has been used is a geometric rule. We can use the induction hypothesis almost

immediately, except that it could be the case that A contains some variables used

in the geometric rule. At this point adding the A would cause problems with the

condition on eigenvariables not being free in P̄ ,Γ,∆. But we have the substitution

lemma, so we can apply it to prevent any variable clash. So we are done

By a quick observation, we can prove the inversion lemma.

Lemma 2.3.3. Inversion: if G3cT `n P̄ ,Γ ⇒ ∆ then G3cT `n Q̄1(z̄1/ȳ1), P̄ ,Γ ⇒

∆, ...Q̄m(z̄m/ȳm), P̄ ,Γ⇒ ∆

Proof. We simply notice that by a quick weakening we are done.

Finally we prove contraction.

Lemma 2.3.4. Contraction: If G3cT `n Γ, A,A ⇒ ∆ then G3cT `n Γ, A ⇒ ∆.

Also if G3cT `n Γ⇒ ∆, A,A then G3cT `n Γ⇒ ∆, A

Proof. We prove by induction. The classical cases are already proved, so we only

need to consider the inductive step with the last rule being used a geometric rule.

We consider both left and right contraction. We have to consider different cases.

We could have that both occurrences of A are not principal in the rule. In this case

we can apply directly the induction hypothesis and then the rule and be done. The

other case is when only one occurrence of A is principal. In this case A is one of the

atoms P , so we handle this by repeating the principal formulas P in the geometric

rule. The third and final case is when both occurrences of A are principal. This is

the case why we introduced the closure condition, so we are done.
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Now that we have these lemmas we are ready to prove the cut elimination theorem

for the sequent calculi of geometric theories.

2.4 Cut elimination

Theorem 2.4.1. If G3cT+Cut ` Γ⇒ ∆ then G3cT ` Γ⇒ ∆.

Proof. This proof will have the same structure as usual proofs of cut elimination[6].

We assume we have a rule of the form

Γ⇒ A,∆ Γ′, A⇒ ∆′
Cut

Γ,Γ′ ⇒ ∆,∆′

used somewhere in our sequent calculus derivation, and we show by induction how

to eliminate it. The induction is on the length of A, with an auxiliary induction on

the sums of the derivations heights of the two premises of the cut rule (hl for left

height, hr for right height). For hl + hl = 0 the theorem follows the usual proof

of cut elimination. So we only consider the cases where the height of the cut is

hl + hl > 0, and that arise from the addition of the geometric rule. So we have 2

sub-cases, depending on the length of A.

• Length of A is 0. Then we have two further cases whether we consider the left

premise of the cut or the right one. Considering the left, then A is some atom P

(other than in P̄ ). So we have a derivation of the form:

Q̄1(z̄1/ȳ1), P̄ ,Γ⇒ ∆, P ... Q̄m(z̄m/ȳm), P̄ ,Γ⇒ ∆, P
Grule

P̄ ,Γ⇒ ∆, P Γ′, P ⇒ ∆′
Cut

P̄ ,Γ,Γ′ ⇒ ∆,∆′

In which case the first thing we notice is that we can always use the substitution

lemma, so we can consider the variables zi as fresh. So we can push the cut up in

the derivation, without problems (this will be the general strategy also in the rest

of the proof, we want to push the cut one step up in the derivation, so that we can

apply the IH):
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Q̄1(z̄1/ȳ1), P̄ ,Γ⇒ ∆, P Γ′, P ⇒ ∆′
Cut

Q̄1(z̄1/ȳ1), P̄ ,Γ,Γ
′ ⇒ ∆,∆′ ...

Q̄m(z̄m/ȳm), P̄ ,Γ⇒ ∆, P Γ′, P ⇒ ∆′
Cut

Q̄m(z̄m/ȳm), P̄ ,Γ,Γ′ ⇒ ∆,∆′
Grule

P̄ ,Γ,Γ′ ⇒ ∆,∆′

Now we consider P being in the right premise. In this case P could be either not

principal, so we proceed like above and we are done, or principal (Say P1 in P̄ ), in

which case we have:

Γ⇒ ∆, P1

Q̄1(z̄1/ȳ1), P1, ...Pn,Γ
′ ⇒ ∆ ... Q̄m(z̄m/ȳm), P1, ...Pn,Γ

′ ⇒ ∆
Grule

P1, ...Pn,Γ
′ ⇒ ∆′

Cut
P2, ...Pn,Γ,Γ

′ ⇒ ∆,∆′

So we have to look at the left premise now, to know how to eliminate/push up

the cut. if Γand ∆ have one atom in common, then we have this situation also in

P2, ...Pn,Γ,Γ
′∆,∆′, so we are done. If ⊥ is in Γ, or > is in ∆, then the same happens

in the conclusion of the cut, so also in this case we are done immediately. If P1 is in

Γ, then the conclusion is of the form P1, P2, ...Pn,Γ
′′,Γ′∆,∆′, and is obtained from

P1, ...Pn,Γ
′ ⇒ ∆′ by weakening.

So we only have to take care of the cases, for each rule, where the left premise is from

some rule, and without P1 being principal. To do these we use the usual lemmas,

and are straightforward. As examples we give the ones for L∃, L→, and Grule.

For L∃ we have a derivation of the form:

Γ, A[t/x]⇒ ∆, P1 L∃
Γ, ∃xA⇒ ∆, P1

Q̄1(z̄1/ȳ1), P1, ...Pn,Γ
′ ⇒ ∆′ ... Q̄m(z̄m/ȳm), P1, ...Pn,Γ

′ ⇒ ∆′
Grule

P1, ...Pn,Γ
′ ⇒ ∆′

Cut∃xA, P2, ...Pn,Γ,Γ
′ ⇒ ∆,∆′

This is dealt first by noticing we can substitute fresh variables in our geometric rule

to not have eigenvariables problems, then with:
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Γ, A[t/x]⇒ ∆, P1 P1, ...Pn,Γ
′ ⇒ ∆′

Cut
A[t/x], P2, ...Pn,Γ,Γ

′ ⇒ ∆,∆′
L∃∃xA, P2, ...Pn,Γ,Γ

′ ⇒ ∆,∆′

For L→ we have a derivation of the form:

Γ⇒ A,∆, P1 Γ, B ⇒ ∆, P1 L→
Γ, A→ B ⇒ ∆, P1

Q̄1(z̄1/ȳ1), P1, ...Pn,Γ
′ ⇒ ∆′ ... Q̄m(z̄m/ȳm), P1, ...Pn,Γ

′ ⇒ ∆′
Grule

P1, ...Pn,Γ
′ ⇒ ∆′

Cut
A→ B,P2, ...Pn,Γ,Γ

′ ⇒ ∆,∆′

But we deal with this by:

Γ⇒ ∆, P1 P1, ...Pn,Γ
′ ⇒ A,∆′

Cut
P2, ...Pn,Γ,Γ

′ ⇒ A,∆,∆′
Γ, B ⇒ ∆, P1 P1, ...Pn,Γ

′ ⇒ ∆′
Cut

P2, ...Pn,Γ,Γ
′, B ⇒ ∆,∆′

L→
A→ B,P2, ...Pn,Γ,Γ

′ ⇒ ∆,∆′

The case of the Grule is totally novel, although very standard. We have a derivation

of the form:

Q̄′1(z̄
′
1/ȳ
′
1), P

′
1, ...P

′
n,Γ⇒ ∆, P1 ... Q̄′m(z̄′m/ȳ

′
m), P ′1, ...P

′
n,Γ⇒ ∆, P1

Grule
P ′1, ...P

′
n,Γ⇒ ∆, P1

Q̄1(z̄1/ȳ1), P1, ...Pn,Γ
′ ⇒ ∆′ ... Q̄m(z̄m/ȳm), P1, ...Pn,Γ

′ ⇒ ∆′
Grule

P1, ...Pn,Γ
′ ⇒ ∆′

Cut
P ′1, ...P

′
n, P2, ...Pn,Γ,Γ

′ ⇒ ∆,∆′

After pondering how we don’t have variable clashes by using the substitution lemma,

we can transform this derivation into:

Q̄′1(z̄
′
1/ȳ
′
1), P

′
1, ...P

′
n, P2, ...Pn,Γ,Γ

′ ⇒ ∆,∆′ ... Q̄′m(z̄′m/ȳ
′
m), P ′1, ...P

′
n, P2, ...Pn,Γ,Γ

′ ⇒ ∆,∆′
Grule

P ′1, ...P
′
n, P2, ...Pn,Γ,Γ

′ ⇒ ∆,∆′



2.4. Cut elimination 25

With all the m premises derived from a cut on P1, ...Pn,Γ
′ ⇒ ∆′ (which we get from

a Grule we have) and a Q̄′x(z̄′1/ȳ′1), P ′1, ...P ′n,Γ⇒ ∆, P1. Then by IH we are done.

• Now we have the cases where the cut is applied to a formula A that is not an

atom. We again have to distinguish the cases where we are looking at the right or

left premise.

For the left, almost all the cases are done by the classical cut-elimination proof, we

only need to focus on the case where the left rule is derived from a Grule:

Q̄1(z̄1/ȳ1), P̄ ,Γ⇒ ∆, P ... Q̄m(z̄m/ȳm), P̄ ,Γ⇒ ∆, P
Grule

P̄ ,Γ⇒ ∆, P Γ′, P ⇒ ∆′
Cut

P̄ ,Γ,Γ′ ⇒ ∆,∆′

But we already dealt with this case, the fact that A is a formula doesn’t matter

much.

For the right, the fact that A is a formula makes it so that it must be from Γ′ (not

principal). So we have the case:

Γ⇒ ∆, A

Q̄1(z̄1/ȳ1), P1, ...Pn, A,Γ
′ ⇒ ∆′ ... Q̄m(z̄m/ȳm), P1, ...Pn, A,Γ

′ ⇒ ∆′
Grule

P1, ...Pn, A,Γ
′ ⇒ ∆′

Cut
P1, ...Pn,Γ,Γ

′ ⇒ ∆,∆′

Which is dealt with:

Q̄1(z̄1/ȳ1), P1, ...Pn,Γ,Γ
′ ⇒ ∆,∆′ ... Q̄m(z̄m/ȳm), P1, ...Pn,Γ,Γ

′ ⇒ ∆,∆′
Grule

P1, ...Pn,Γ,Γ
′ ⇒ ∆,∆′

With each of them premises obtained with a cut from Γ⇒ ∆, A and Q̄x(z̄x/ȳx), P1, ...Pn, A,Γ
′ ⇒

∆′. So we are done.
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This result is useful because it gives us directly the weak subformula property

Theorem 2.4.2. If G3cT ` Γ⇒ ∆, then in the derivation appear only subformulas

of Γ,∆, or atomic formulas.

Which is a stepping stone in proving the subterm property for the rules of a calcu-

lus. This in turn is of great interest because with the subterm property we get an

immediate solution to the derivability problem of a sequent.

This on ultimate analysis depends on the atomic formulas coming from the geometric

rule, as it might be that they are introduced in such a way that we cannot track

them, making a calculus undecidable. Yet this strategy might still be useful, as it

pinpoints the origin of the undecidability, and it can be used to give some subset of

a theory which could be decidable (we will see a simple example of this in chapter

4).

Meanwhile in the next section we are going to show an important consequence of

having a calculus for geometric theories.

2.5 Barr’s theorem

In this section we present a general and interesting application of the ability to get

a sequent calculus out of any geometric theory.

First we notice without proof that the results of this chapter could have been very

well presented with the intuitionistic counterpart of G3c, that is, G3im (the inter-

ested reader is redirected to [11] for more information). Indeed it can be shown that

the results for the cut-elimination theorem hold for both systems, without many

differences in the proofs presented above. So we call the intuitionistic variant en-

hanced with geometric rules G3imT(where the "m" stands for multisuccedent). We

only remind that the main difference between the two calculi is that the principal

formula of rule L → is repeated in the antecedent of the left premise. Also in the

rule R → and R∀, there is no ∆ in the consequent of the premise. As we expect,



2.5. Barr’s theorem 27

these differences make so that the formulas provable with G3cT and G3imT are

different. Yet geometric theories present us with an interesting observation:

Theorem 2.5.1. Barr’s theorem: Let T be a geometric theory, and let A be a

geometric formula. Then if G3cT `⇒ A, then G3imT `⇒ A.

Proof. A is of the form ∀x(B → C). This tells us that in a G3cT proof of such a

formula, we first have a R∀ step/steps, then a R→ step, and then any combination

of rules to derive C and B: for which we will only use the ∧,∨,∃ and geometric

rules. This is because A is geometric, so B and C do not contain any → or ∀.

We also notice that a geometric rule has the same consequent in the premises and

conclusions, so they will preserve the sequents that have a single consequent. So we

are sure that in the G3cT derivation, the R∀ and R→ derivations are applied to a

single consequent. So the intuitionistic rules are applicable. So G3imT `⇒ A.

This is an interesting result originally coming from a different field. Indeed the study

of geometric theories has influenced many areas of logic and mathematics. And one

such example is in topos theory, where Barr’s theorem is a classical result.

Thus we end the chapter by noticing how this classical theorem becomes almost

immediately provable through the methods of proof theory, by a simple analysis of

the rules used by a calculus. This testifies for the strength of this approach.

In the next chapter we will try to extend the results just presented, to theories that

are originally non-geometric.



Chapter 3

Non-geometric theories

3.1 Introduction

The aim of this chapter will be to prove how to obtain a sequent calculus from non-

geometric theories. In the last chapter we obtained a procedure to obtain sequent

calculi rules for geometric theories. Now we will give a method to get a geometric

conservative extension out of every first-order theory, so that we can use the result

from the past chapter to get a sequent calculus out of any theory.

This method can be considered a modification of Skolem’s "normal form" theorem

from 1920[13][14]. Skolem showed that for any first-order sentence is possible to

construct a ∀∃ sentence that is satisfiable iff the initial sentence is satisfiable. This

was done by the familiar procedure of extending the original language with new

predicate symbols.

Although this result is very similar to what we need, in Skolem’s paper geometric

axioms are not treated. As reported in[13] the first to publish a similar result for

geometric axioms was Antonius[15], that showed in 1975 that given any first order

theory, one can always translate it to a geometric theory provided that we can add

sufficiently many new relational symbols. Yet this result is due to a completeness

theorem proved through category-theoretic models, so in this chapter we will follow

the results of Dyckhoff and Negri[13], that extended the results of Antonius and

28
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relate it to the work of Skolem.

So the aim of this chapter will be to augment Skolem’s proof by showing that given

a first-order sentence A in a language L we can construct an extension of L′ of L

and a finite set of geometric formulas that have the same consequences as A (that

is a geometric conservative extension). To do so we will first give some starting

definitions about formulas, theories, and extensions.

3.2 Starting definitions

To begin it is useful to recall the definition of geometric formula from the past

chapter. Yet it will be more useful if we distinguish a geometric formal and its

component part, that is a positive formula.

Definition 3.2.1. Positive formula: a positive formula is a first-order logic formula

composed only of atoms, conjunction, disjunction, and existential quantification.

Starting from this definition we give a more useful one:

Definition 3.2.2. Special positive formula: a special positive formula is a disjunc-

tion of existentially quantified conjunctions of atoms.

Given these two definitions it is immediate to notice that we can use the distribution

rules over the conjunctions and disjunction, to obtain a special positive formula out

of every positive formula.

Now we can give a more general definition of geometric implication:

Definition 3.2.3. Geometric implication: a geometric implication is a universal

closure of an implication A→ B, where each A, B, are positive formulas.

this more general definition will help to make clarity in later proofs, now we give the

definition we where using in chapter 2 (we will later prove that these 2 definitions

are almost equivalent).
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Definition 3.2.4. Special geometric implication: a special geometric implication is

the universal closure of an implication A → B, where A is a conjunction of atoms

and B is a special positive formula.

This is the definition we where used to, and we can prove the following:

Theorem 3.2.1. Every geometric implication is equivalent to a conjunction of spe-

cial geometric implications.

Proof. We pick a geometric implication, it will have the form A → B. We can

transform B into a special positive formula. Then for A we use the equivalence

(∀x(P ∨Q)→ S) ≡ ((∀xP → S) ∧ (∀xQ→ S)) to eliminate the disjunctions. And

∀x(∃yP → Q) ≡ ∀xy(P → Q) to eliminate the existential quantifiers. So we are

done.

This is useful because of the following definition:

Definition 3.2.5. Geometric theory: a theory is geometric if it is axiomatized by

geometric implications.

So without loss of generality we can consider a geometric theory to be axiomatized

by special geometric implications.

Now we give some (more famous) definitions.

Definition 3.2.6. Conservative extension: a theory T in a language L is extended

by a theory T ′ in a language L′ if L′ is extending L and if for every formula φ ∈ L,

we have that T ` φ iff T ′ ` φ.

Definition 3.2.7. L-equivalence: two formulae (or theories) are said to be L-

equivalent when they prove the same L-formulae.

Given these definitions we can present our principal result as: any first-order L-

theory T is L-equivalent to a geometric theory.
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To finish we will quickly recall the standard notions of definitional extension of a

theory. The idea is that we can add new predicate symbols to the language, by also

adding new axioms to the theory to specify their meaning.

Definition 3.2.8. Definitional equivalence: Given L a language and P a new

predicate symbol not in the language, a definitional equivalence are the sentences

∀xP (x)→M(x) and ∀xM(x)→ P (x), with M an L-formula.

this next definition will be the basic "step" necessary to build a definitional exten-

sion.

Definition 3.2.9. Immediate definitional extension: Given a theory T in the lan-

guage L, and immediate definitional extension of T is given by the addition of a new

predicate symbol P to L and a definitional equivalence of P to T as an axiom.

We notice that after an immediate definitional extension of a theory T by a predicate

P that has definitional equivalence with an original predicate M , we might modify

the original axioms in T by replacing the M with the P .

Definition 3.2.10. Definitional extension: Given a theory T in the language L, a

definitional extension of T is the multiple application of an immediate definitional

extension (we allow the predicate symbols added early to be modified in later steps)

We can modify these definitions to something weaker but more useful to us, that is,

semidefinitional extensions. That is the same idea expressed in the previous defini-

tions, but with only one direction of the implication of the definitional equivalence.

But before doing that the following well known definition will be useful:

Definition 3.2.11. Positive/Negative occurrence in a formula. Given a formula F :

1. F is a positive occurrence of F

2. If A∨B is a positive(negative) occurrence in F , then both A and B are positive

(negative) occurrences in F
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3. If A∧B is a positive(negative) occurrence in F , then both A and B are positive

(negative) occurrences in F

4. if A → B is a positive(negative) occurrence in F , then both A is a nega-

tive(positive) occurrence and B is a positive (negative) occurrence in F .

With this we can define the following:

Definition 3.2.12. Positive semidefinitional extension: Given a theory T and a

formula ∀xP (x) → M(x), we obtain a positive semidefinitional extension of T by

replacing any positive occurrence ofM(x) by P (x) in the axioms of T , and by adding

∀xP (x)→M(x) to the axioms.

Definition 3.2.13. Negative semidefinitional extension: Given a theory T and a

formula ∀xM(x) → P (x), we obtain a negative semidefinitional extension of T by

replacing any negative occurrence ofM(x) by P (x) in the axioms of T , and by adding

∀xM(x)→ P (x) to the axioms.

Definition 3.2.14. Immediate semidefinitional extension: Given a theory T in the

language L, and immediate semidefinitional extension of T is given by the addition

of a new predicate symbol P to L and the extension of T by either a negative or

positive semidefinitional extension.

Definition 3.2.15. Semidefinitional extension. Given a theory T in the language

L, a semidefinitional extension of T is the multiple application of non-interacting

immediate semidefinitional extension or immediate definitional extensions.

In this last definitions we are including immediate definitional steps as well for the

cases where we want to abbreviate both a positive and negative M . Yet we cannot

do this with two semidefinitional extensions because after the first our P would no

longer be fresh.

One immediate result that follows immediately from the definitions and is important

to notice is

Lemma 3.2.2. Every definitional extension is a semidefinitional extension.



3.3. Skolem’s result 33

Now we are ready to present the result of Skolem.

3.3 Skolem’s result

We start with an important definition of Skolem extension.

Definition 3.3.1. Skolem extension: Given a language L and a theory T in it, a

theory T ′ in a language L′ extending L is a Skolem extension when

1) every theorem of T is a theorem of T ′

2) there is a substitution of L-formulae for predicate symbols in L′ \ L s.t. every

theorem of T ′ is a theorem of T .

With this we prove the following useful theorem.

Theorem 3.3.1. 1) Every semidefinitional extension is a Skolem extension

2) Every Skolem extension is a conservative extension

3) If T ′ is a Skolem extension of T , then they are both satisfiable in the same do-

mains, with L being interpreted the same way.

Proof. 1) By definition we can pick an immediate semidefinitional extension. It will

be either positive or negative.

If it is positive then we have an axiom ∀xP (x) → M(x) added to T and a new

predicate P added to L. Then pick an axiom A of T with some positive occurrences

of M(x), these will be replaced by P (x) in the new axiom A′ of T ’. Since these

occurrences are positive with the new axiom ∀xP (x) → M(x) we can infer that

A′ → A. So A is a theorem of T ′. This reasoning works similarly for the negative

immediate semidefinitional extension. So the first part of the definition of Skolem

extension is done.

The second part is also immediate because swapping any occurrence of P (x) with

M(x) will get us back to the original theorems or with the tautology ∀xM(x) →

M(x). So we are done.
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2) This is immediate because by the second part of the definition of Skolem extension

we have a substitution that preserves L-formulae.

3)We have a T ′ satisfiable in D, we want to prove that T is satisfiable in D as well,

but then by the first point of the definition of Skolem extension we are immediately

done. Conversely we have a theory T in a domain D with an interpretation I, and

we want it’s Skolem extension T ′ to be satisfied in D. We can do this because by

the second point of the definition of Skolem extension we have a substitution σ that

substitutes predicate symbols in L′ \ L with L-formulae s.t. every theorem of T ′ is

a theorem of T . Then we can define a new interpretation I ′ s.t I ′(A) = I(Aσ) if A

is a predicate symbol in L′ \ L, otherwise we set it equal to I. Then we have that

everything in T is satisfied in D. So we are done.

Now we will give a quick example of how to employ Skolem extensions, before

extending it to geometric theories.

3.4 Example

Suppose we have the following formula:

∀x∃y∀zU(x, y, z)

Then we might want to get rid of the last quantifier, by substituting ∀zU(x, y, z)

with an single predicate R(x, y), so to obtain the formula ∀x∃yR(x, y). Intuitively

we want a formula expressing that ∀x, y(R(x, y) ≡ ∀zU(x, y, z)). To do so we use the

definitional equivalence definition from the past sections, that gives us the formulae:

∀x, y (R(x, y)→ ∀zU(x, y, z))

and

∀x, y (∀zU(x, y, z)→ R(x, y))
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which become:

∀x, y, z (R(x, y)→ U(x, y, z))

and

∀x, y ∃z (U(x, y, z)→ R(x, y))

From here it’s clear that with this formulae and ∀x∃yR(x, y) we can prove the initial

formula ∀x∃y∀zU(x, y, z). More than that, only the formula

∀x, y, z (R(x, y)→ U(x, y, z))

and ∀x∃yR(x, y) suffice to prove ∀x∃y∀zU(x, y, z), which is the result we desire

given that we want geometric axioms for our theories. So now we will argue more

formally how to obtain such result.

3.5 An extension of Skolem’s extensions

Our first aim will be to consider a generic ∀∃ formula and prove that it can be re-

placed by special geometric implications. So we consider a generic formula ∀x∃yM1(x, y)∨

... ∨Mn(x, y), with each Mj being a conjunction of literals. So each Mj will have

the generic form Pj1(x, y) ∨ ... ∨ Pjr(x, y) ∨ ¬Qj1(x, y) ∨ ... ∨ ¬Qjs(x, y). Then

we replace each of the s formulas ¬Q with a new predicate N , so to obtain a

new formula ∀x∃yM ′
1(x, y) ∨ ... ∨ M ′

n(x, y) , with each M ′ being a conjunction

of only positive atoms. After distribution of the quantifier this formula becomes

∀x(∃ yM ′
1(x, y) ∨ ... ∨ ∃y M ′

n(x, y)), which is equivalent to

∀x> → (∃ yM ′
1(x, y) ∨ ... ∨ ∃y M ′

n(x, y))

that is, a special geometric implication.

Likewise we have to add an axiom for each literal Q that was substituted. These

axioms will be of the form ∀x, y Nji(x, y)→ ¬Qji(x, y), which is
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∀x, y (Nji(x, y) ∧Qji(x, y))→ ⊥

again a special geometric implication.

Given these observations we are ready to prove the following

Theorem 3.5.1. Every ∀∃ theory has a Skolem extension axiomatized by special

geometric implications

Proof. We first need to notice that the formulae ∀x, yNji(x, y)→ ¬Qji(x, y) together

with ∀x(∃ yM ′
1(x, y) ∨ ... ∨ ∃y M ′

n(x, y)) imply the original formula ∀x∃yM1(x, y) ∨

... ∨Mn(x, y).

Conversely we also need to show that anything that is provable from the formu-

lae ∀x, y Nji(x, y) → ¬Qji(x, y) together with ∀x(∃ yM ′
1(x, y) ∨ ... ∨ ∃y M ′

n(x, y)),

and that doesn’t use the new predicate symbols, is also provable from the original

∀x∃yM1(x, y) ∨ ... ∨Mn(x, y), but we get this from the previous result that every

semidefinitional extension is a Skolem extension. So we are done.

With this result in our hands we now only have to prove that we can replace any

theory with a ∀∃ theory. The intuition here is that if we have a formula of the form

∀x∃y∀z∃u U(x, y, z, u)

Then we can transform it to a ∀∃ formula by using the "definitional" axiom ∀x, yP (x, y)→

∀z∃u U(x, y, z, u), i.e. ∀x, y, z P (x, y) → ∃u U(x, y, z, u), and our old sentence be-

comes

∀x∃y P (x, y)

that is, a ∀∃ formula.

So we have to prove that this works for a finite number of quantifier alternations.

In this way we will have the following theorem.
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Theorem 3.5.2. Given A be any first-order sentence, we can construct a finite set

special geometric implication that are axioms of a Skolem extension of the theory

axiomatised by A.

Proof. We pick a generic formula A. We can consider it as being of the form:

∀x1∃y1∀x2∃y2....∀xn∃yn B(x1, x2, ...xn, y1, y2, yn)

With B being in disjunctive normal form. Then we can start the process of replacing

it with the formulae

∀x1∃y1 P1(x1, y1)

and

∀x1, x2, y1 (P1(x1, y1)→ ∃y2,∀x3,∃y3...∀xn∃yn B(x1, x2, ...xn, y1, y2, ...yn))

In this last formula the subformula ∃y2...∀xn∃yn B(x1, x2, ...xn, y1, y2, ...yn)) is not

yet of the form we want, so we consider another "definition" axiom

∀x1, x2, y1, y2 (P2(x1, x2, y1, y2)→ ∀x3,∃y3...∀xn∃yn B(x1, x2, ...xn, y1, y2, ...yn))

And so our formula ∀x1, x2, y1(P1(x1, y1)→ ∃y2,∀x3,∃y3...∀xn∃ynB(x1, x2, ...xn, y1, y2, ...yn))

can be simplified to a special geometric implication:

∀x1, x2, y1 (P1(x1, y1)→ ∃y2 P2(x1, x2, y1, y2))

But now the formula ∀x1, x2, y1, y2(P2(x1, x2, y1, y2)→ ∀x3,∃y3...∀xn∃ynB(x1, x2, ...xn, y1, y2, ...yn))

is still not done yet, we need the addition of another formula of the form
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∀x1, x2, x3, y1, y2 (P2(x1, x2, y1, y2)→ ∃y3 P3(x1, x2, x3, y1, y2, y3))

and for that it will need a definition of the form :

∀x1, x2, x3, y1, y2, y3(P3(x1, x2, x3, y1, y2, y3)→ ∀x4,∃y4...∀xn∃ynB(x1, x2, ...xn, y1, y2, ...yn))

which will lead us to another series of implications.

From this it follows that a series of axioms of the following form will be created:

∀x1∃y1 P1(x1, y1)

∀x1, x2, y1 (P1(x1, y1)→ ∃y2 P2(x1, x2, y1, y2))

∀x1, x2, x3, y1, y2 (P2(x1, x2, y1, y2)→ ∃y3 P3(x1, x2, x3, y1, y2, y3))

...

∀x1, ...xi+1, y1, ...yi (Pi(x1, ...xi, y1, ..yi)→ ∃yi+1 Pi+1(x1, ...xi+1, y1...yi+1))

until we reach the final

∀x1, ...xn, y1, ...yn−1 (Pn−1(x1, ...xn−1, y1, ..yn−1)→ ∃yn B(x1, x2, ...xn, y1, y2, ...yn))

Now that we have a procedure to generate e finite list of ∀∃ axioms, we can use the

result of theorem 5.1, to obtain a Skolem extension axiomatized by special geometric

implications.

With this result and with theorem 3.1 we get the immediate result that we want
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Theorem 3.5.3. For every first-order theory T , we can construct a theory T ′ that

is a geometric conservative extension of T .

Given this we can conclude that we are able to use the results from chapter 2 on

any theory. That is, we can get a cut-free calculus out of any first order theory, by

first transforming it into a geometric theory.



Chapter 4

Relation Algebra and Sequent

Calculi

In this chapter we will see how to utilize the techniques that we learned in the

previous chapters. In particular we will find a cut-free calculus for the theory of

relation algebras.

4.1 Historical remarks

In 1864, after the pioneering work of George Boole [16], Augustus de Morgan writes

the first paper on the subject of the logic of relations. De Morgan realized that the

logic of that time was inadequate to express some types of arguments, even some

trivial ones. As he famously noted, the logic of Aristotle was not able to deduce,

from the fact that a horse is an animal, that the head of a horse is the head of an

animal. In his efforts to expand the limits of traditional logic, he was the first to

try to use the concept of relations, and to recognize its significance.

Later Charles Saunders Peirce would give a foundation to the theory of relations in

1883[17], by making precise all the fundamental concepts of the theory of relations

and formulating its fundamental laws. In this work he would also discuss the opera-

tion of relational composition, and give one of the first intuitions about the need of

40
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a notion of quantifier distinct from the classical boolean connectives[18]. In doing

this, he made clear that a part of the theory theory of relations can be presented

as a calculus, formally similar to the calculus of classes developed by G. Boole, but

with greater expressive power.

An extension of the work of Peirce on the calculus of relations was then accomplished

by Ernst Schröder[19], and with this work the theory seemed to be interesting and

rich enough to become a field of study per se. For example, the initial paper[20][21]

by Leopold Löwenheim (where a version of the downward Löwenheim-Skolem theo-

rem was first proved) was written based on the calculus of relations. Furthermore

Whitehead and Russel, in the Principia Mathematica, included the theory of rela-

tions as one of the core parts of symbolic logic. They would write [22]:

"The subject of symbolic logic is formed by three parts: the calculus of

propositions, the calculus of classes, and the calculus of relations"

Yet the calculus of relations soon experienced a setback, when Alwin Korselt proved

the existence of some formulae in which four deep nested quantifiers had no equiv-

alent in the calculus of relations[23].

This led to a loss of interest in the field until the work of Tarski. In 1941 he published

the paper "On the calculus of relations"[24] in which he formulated the calculus as

a finitely axiomatized FOL theory. In this paper Tarski notes also how this system

might be better expressed by using an equational formulation, that is by developing

a calculus that only deals with relations and doesn’t need to delve into FOL. This

created the field of relation algebra. Throughout the years various results succeeded

in showing the expressive power of such system, with one of the most famous results

due to Tarki[25], establishing that a relation algebra can express any FOL formula

with at maximum three variables. Then it is provable that this fragment of FOL is

sufficient to express Peano arithmetic, and this entails that relation algebras can be

used to effectively algebrize almost all of mathematics, without the cost that comes

with quantifiers and connectives from FOL. Because of these reasons we choose

relation algebras as an interesting theory to be explored with a sequent calculus.
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4.1.1 Relation algebra

We start by giving a quick presentation of the current formalization of a relation

algebra. We do this just to give an understanding of the calculus under the most

current mathematical framework, as later we will construct our sequent calculus

starting from the original formalization of Tarski, given in FOL.

A Relation Algebra(RA) is a structure A = 〈A,+,−,�,`, 1̊〉 of type 〈2, 1, 2, 1, 0〉.

The intuitive meaning of A is that of a set of binary relations. + is the absolute

or Boolean addition of relations, that is if xRy is "x loves y" and xPy is "x hates

y", then xR + Py is "x loves or hates y". − is the complementation, so if R is the

relation of "loving", then R− is the relations of "not loving". � is the relative or

Peircean multiplication, so if R is the relation of "behaving kindly" and P is the

relation of "being a friend of" then R� P is "behaving kindly with a friend of". `

the formation of converses, so if R is "loving" then R` is "being loved". And 1̊ the

identity element or Peircean unit, with the meaning of "is the same as". (for a more

intuitive meaning, we will present the FOL description of the Relation operation

symbols after presenting the conditions of a RA). We notice that RA does not use

individual variables x, y, ... to specify the relations, the algebra has as elements only

the binary relations.

There are more operations in the classical calculus of relations, but they can be all

described in terms of these fundamental operations. So, given R,P ∈ A we have

that:

• The absolute or Boolean multiplication R · P is (R− + P−)− (if R is "loving"

and P is "hating", then R · P is "loving and hating").

• The relative or Peircean addition R⊕P is (R−�P−)− (if R is the relation of

"behaving kindly" and P is the relation of "being a friend of" then R ⊕ P is

the relation "behaving kindly with everyone except the friends of")

• The relation of inclusion R ≤ P is R + P = P
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• The Boolean unit 1 is 1̊ + 1̊−, and has standard meaning of a relation that

always holds.

• The Boolean zero 0 is 1− or (̊1 + 1̊−)−, and has standard meaning of a relation

that never holds.

• The diversity element or Peircean zero 0̊ is 1̊−, and has standard meaning of a

relation that holds between two elements only if the two elements are different.

Then we have some conditions, that can be seen as axioms schemata, that have to

be satisfied. The first 3 conditions express the fact that our addition and comple-

mentation operators are the same as in a Boolean algebra:

R + P =̊P +R (A1)

R + (P + S)=̊(P +R) + S (A2)

(R− + P )− + (R− + P−)−=̊R (A3)

Them the second group of conditions say that an interpretation of the Peircean

multiplication is a semigroup operation and the interpretation of the identity is an

identity element with respect to the Peircean multiplication:

R� (P � S)=̊(P �R)� S (A4)

R� 1̊=̊R (A5)

The third group of conditions say that an interpretation of the converse operator is

an involution with respect to the semigroup operation:
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R``=̊R (A6)

(R� P )`=̊P` �R` (A7)

And the fourth group says that the interpretations of the Peircean multiplication

and converse operators distribute across addition:

(P +R)� S=̊(P � S) + (R� S) (A8)

(R + P )`=̊R` + P` (A9)

The final condition is due to Tarski, it is a simplification of a set of equivalence

results of De Morgan, put into a single equational form:

(R` � (R� P )−) + P−=̊P− (A10)

with the original de Morgan equivalences being:

R� P ≤ S− iff R` � S ≤ P− iff S � P` ≤ R−

With the standard interpretation of R ≤ P iff R + P = P .

Yet this formalization of relation algebra emerged only in a second moment, with the

original article by Tarski first describing the operations between relations as axioms

of a FOL theory, and then deducing the rules that we have just seen as theorems of

this theory. We will focus on the following FOL description, as it is easier to derive

a sequent calculi from a FOL theory.

We augment our FOL language with new relation variables, R, S, T, ... . Then from
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the symbols for the relational constants and operations described earlier (+,−,�,`

, ·,⊕, 1̊, 0̊, 1, 0) and a special relation equality symbol =, we augment the relational

variables: we combine relation constants and relation variables with a single unary

relation operation symbol, or we join two of them with a binary operation symbol,

and so on. So we form compounds such as 1−, R−, R−�P , R−�P + 1−, etc. Then

we also add any expression of the form xRy with x, y individual variables and R a

relation variable. Then the axioms of the theory of relation are the following

∀x∀y x1y (T1)

∀x∀y ¬x0y (T2)

∀x x̊1x (T3)

∀x∀y∀z (xRy ∧ ẙ1z)→ xRz (T4)

∀x∀y x̊0y ⇐⇒ ¬x̊1y (T5)

∀x∀y xR−y ⇐⇒ ¬xRy (T6)

∀x∀y xR`y ⇐⇒ yRx (T7)

∀x∀y xR + Py ⇐⇒ xRy ∨ xPy (T8)
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∀x∀y xR · Py ⇐⇒ xRy ∧ xPy (T9)

∀x∀y xR⊕ Py ⇐⇒ ∀z(xRz ∨ zPy) (T10)

∀x∀y xR� Py ⇐⇒ ∃z(xRz ∧ zPy) (T11)

R=̊P ⇐⇒ ∀x∀y(xRy ⇐⇒ xPy) (T12)

All of these axioms can be turned into sequent calculi rules with the procedure

defined previously, by converting them first into geometric axioms.

4.1.2 Geometric axioms for RA

The axioms of Tarski can easily be converted to geometric axioms, then in the next

section we will use these geometric axioms to get to a sequent calculus for relation

algebras.

The axiom T1 is easily converted into the geometric counterpart using verum ad

quodlibet :

∀x∀y > → x1y (GT1)

T2 is similarly simple:

∀x∀y x0y → ⊥ (GT2)

T3 is the same as T1:
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∀x> → x̊1x (GT3)

T4 is already geometric:

∀x∀y∀z (xRy ∧ ẙ1z)→ xRz (GT4)

With T5 (∀x∀y x̊0y ⇐⇒ ¬x̊1y)we start to be more careful. Given the biconditional

we can split it in into two axioms T5.1 (∀x∀y x̊0y → ¬x̊1y)and T5.2 (∀x∀y ¬x̊1y →

x̊0y). T5.1 can be transformed using logical equivalences into ∀x∀y ¬(x̊0y ∧ x̊1y),

which is geometric:

∀x∀y (x̊0y ∧ x̊1y)→ ⊥ (GT5.1)

T5.2 is easily transformed into ∀x∀y x̊1 ∨ x̊0y, which is:

∀x∀y > → y x̊1y ∨ x̊0y (GT5.2)

For T6 (∀x∀y xR−y ⇐⇒ ¬xRy) we follow the exact same reasoning:

∀x∀y (xR−y ∧ xRy)→ ⊥ (GT6.1)

∀x∀y > → xRy ∨ xR−y (GT6.2)

for T7 (∀x∀y xR`y ⇐⇒ yRx), we split it into two geometric axioms:

∀x∀y xR`y → yRx (GT7.1)
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∀x∀y yRx→ xR`y (GT7.2)

For T8 (∀x∀y xR+Py ⇐⇒ xRy ∨ xPy) we split it as usual into T8.1 (∀x∀y xR+

Py → xRy ∨ xPy), which is geometric, and T8.2 (∀x∀y (xRy ∨ xPy)→ xR+ Py).

For T8.2 we can use the equivalence (A ∨ B) → C ⇐⇒ (A → C) ∧ (B → C) to

get T8.2.1 ∀x∀y xRy → xR + Py) and T8.2.2 ∀x∀y xPy → xR + Py). This leads

us to the geometric axioms:

∀x∀y xR + Py → xRy ∨ xPy (GT8.1)

∀x∀y xRy → xR + Py (GT8.2.1)

∀x∀y xPy → xR + Py (GT8.2.2)

For T9 we are immediately done:

∀x∀y xR · Py → xRy ∧ xPy (GT9.1)

∀x∀y xRy ∧ xPy → xR · Py (GT9.2)

For T10 (∀x∀y xR ⊕ Py ⇐⇒ ∀z(xRz ∨ zPy))we have to be more careful. We

first split it into T10.1: ∀x∀y xR ⊕ Py → ∀z(xRz ∨ zPy), which is geometric after

moving out the quantifier, and T10.2: ∀x∀y ∀z(xRz ∨ zPy) → xR ⊕ Py. After

some logical equivalences, we get T10.2: ∀x∀y∃z (¬xRz ∧¬zPy)∨ xR⊕ Py, which

we can make geometric if we can get rid of the negations. So we have T10.2.1

: ∀x∀y∃z (xR′z ∧ zP ′y) ∨ xR ⊕ Py and T10.2.2: ∀x∀z xR′z → ¬xRz, which is
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∀x∀z xR′z ∧ xRz → ⊥, and T10.2.3: ∀x∀z xP ′z ∧ xPz → ⊥. This gives us the

geometric axioms:

∀x∀y∀z xR⊕ Py → (xRz ∨ zPy) (GT10.1)

∀x∀y > → ∃z((xR′z ∧ zP ′y) ∨ xR⊕ Py) (GT10.2.1)

∀x∀z xR′z ∧ xRz → ⊥ (GT10.2.2)

∀x∀z xP ′z ∧ xPz → ⊥ (GT10.2.3)

For T11 (∀x∀yxR�Py ⇐⇒ ∃z(xRz∧zPy)) we have it split into T11.1 ∀x∀yxR�

Py → ∃z(xRz ∧ zPy) and T11.2 ∀x∀y∀z (xRz ∧ zPy) → xR � Py, which are

geometric:

∀x∀y xR� Py → ∃z(xRz ∧ zPy) (GT11.1)

∀x∀y∀z (xRz ∧ zPy)→ xR� Py (GT11.2)

For T12 (R=̊P ⇐⇒ ∀x∀y(xRy ⇐⇒ xPy)) we have to first split it into T12.1:

R=̊P → ∀x∀y(xRy ⇐⇒ xPy) and T12.2: (∀x∀y(xRy ⇐⇒ xPy))→ R=̊P . Then

T12.1 is equivalent to : ∀x∀y R=̊P → ((¬xRy ∧ ¬xPy) ∨ (xRy ∧ xPy)), which we

can make geometric by introducing new relations: T12.1.1 is ∀x∀yR=̊P → ((xR′y∧

xP ′y) ∨ (xRy ∧ xPy)), T12.1.2 is ∀x∀y xR′y → ¬xRy and T12.1.3 is ∀x∀y xP ′y →

¬xPy, but these last two axioms we already have (up to renaming). For T12.2 we

can rewrite it as: ∃x∃y ¬(xRy ⇐⇒ xPy)∨R=̊P which is ∃x∃y ¬((¬xRy ∨xPy)∧

(¬xPy ∨ xRy))∨R=̊P , which is ∃x∃y ((xRy ∧¬xPy)∨ (xPy ∧¬xRy))∨R=̊P , for
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which we use the renaming trick again, and it becomes T12.2.1: ∃x∃y((xRy∧xP ′y)∨

(xPy ∧ xR′y)) ∨R=̊P and T12.2.2:∀x∀y xR′y → ¬xRy and T12.2.3: ∀x∀y xP ′y →

¬xPy, but again these last two axioms we already have. So for this last axioms we

have:

∀x∀y R=̊P → ((xR′y ∧ xP ′y) ∨ (xRy ∧ xPy)) (GT12.1.1)

> → ∃x∃y ((xRy ∧ xP ′y) ∨ (xPy ∧ xR′y)) ∨R=̊P (GT12.2.1)

4.1.3 A sequent calculus for RA

Now that we have the geometric version of the axioms we are ready to present a

sequent calculus for relation algebras. If we transform GT1 to a rule, we would get

the rule that introduces the "1" relation, and we would get:

>, x1y,Γ⇒ ∆
1>,Γ ⇒ ∆

Now to deal with this rule and the following ones that contain a > symbol, we would

need to introduce the rule

>,Γ⇒ ∆
>

Γ ⇒ ∆

But to avoid unnecessary complications we will take out the > symbol from all the

rules. So our rule for the introduction of the 1 is:

x1y,Γ⇒ ∆
1

Γ ⇒ ∆

The GT2 axiom will corresponds to the impossibility of the "0" relation:

0
x0y,Γ ⇒ ∆
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GT3 is the axiom that introduces the 1̊ relation:

x̊1x,Γ⇒ ∆
I̊1Γ ⇒ ∆

GT4 is a sort of identity rule for the 1̊, that states:

xRy, ẙ1z, xRzΓ⇒ ∆
E̊1

xRy, ẙ1z,Γ ⇒ ∆

GT5.1 and GT5.2 specify the behaviour of 0̊, with one being an axiomatic rule and

another being an introduction:

Ax̊0
x̊1y, x̊0y,Γ ⇒ ∆

x̊1y,Γ ⇒ ∆ x̊0y,Γ ⇒ ∆
I̊0Γ ⇒ ∆

GT6.1 and GT6.2 deal with R−, similarly to the previous rules:

AxR−
xR−y, xRy,Γ ⇒ ∆

xRy,Γ ⇒ ∆ xR−y,Γ ⇒ ∆
IR−Γ ⇒ ∆

GT7.1 and GT7.2 specify R`, saying that you can always get the converse of a

relation:

yRx, xR`y,Γ ⇒ ∆
I1R`

yRx,Γ ⇒ ∆

xR`y, yRx,Γ ⇒ ∆
I2R`

xR`y,Γ ⇒ ∆
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GT8 specifies how R + P acts, with the first rule GT8.1 "eliminating" the +, and

GT8.2.1 and GT8.2.2 being equal up to renaming, and "introducing" the +:

xR + Py, xRy,Γ ⇒ ∆ xR + Py, xPy,Γ ⇒ ∆
E+

xR + Py,Γ ⇒ ∆

xRy, xR + Py,Γ ⇒ ∆
I+

xRy,Γ ⇒ ∆

GT9.1 similarly eliminates the ·, while GT9.2 introduces it:

xR · Py, xRy, xPy,Γ ⇒ ∆
E·

xR · Py,Γ ⇒ ∆

xRy, xPy, xR · Py,Γ ⇒ ∆
I·

xRy, xPy,Γ ⇒ ∆

Given the meaning of + and ·, we notice how their rules look a bit similar to the

rules for ∧ and ∨.

GT10.1 deals with how to eliminate R⊕P , while GT10.2.1 is a sort of introduction.

GT10.2.2 and GT10.2.3 are the same up to renaming, and are used as axiomatic

rules:

xR⊕ Py, xRz,Γ ⇒ ∆ xR⊕ Py, zPy,Γ ⇒ ∆
E⊕

xR⊕ Py,Γ ⇒ ∆

xR′z, zP ′y,Γ ⇒ ∆ xR⊕ Py,Γ ⇒ ∆
I⊕

Γ ⇒ ∆

AxR′
xRy, xR′y,Γ ⇒ ∆

GT11.1 eliminates the � while GT11.2 introduces it:

xR� Py, xRz, zPy,Γ ⇒ ∆
E�

xR� Py,Γ ⇒ ∆
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(and z is not free in the conclusions)

xRz, zPy, xR� Py,Γ ⇒ ∆
I�

xRz, zPy,Γ ⇒ ∆

GT12 is important because it tells us how to deal with equations between relations.

GT12.1.1 is a sort of elimination while GT12.2.1 is a sort of introduction.

R=̊P, xR′y, xP ′y,Γ ⇒ ∆ R=̊P, xRy, xPyΓ ⇒ ∆
E=̊

R=̊P,Γ ⇒ ∆

R=̊P,Γ ⇒ ∆ R=̊P, xRy, xP ′yΓ ⇒ ∆ R=̊P, xR′y, xPyΓ ⇒ ∆
E=̊

Γ ⇒ ∆

4.2 Example of use

To give some intuitions about the us of the calculus, suppose we want to prove the

obvious equivalence R−−=̊R, we have:

Ax
R−−=̊R,Γ⇒ R−−=̊R xRy, xR−−′y ⇒ R−−=̊R xR−−y, xR′y ⇒ R−−=̊R

E=̊⇒ R−−=̊R

The first sequent is an axiom by a rule of FOL sequent calculi. For the rest of the

sequents in the antecedent we notice that a formula of the type A′ is tractable by

only AxR′. So if we consider the middle sequent, we conclude that we have to find

a way to transform the xRy into an xR−−y, so that we can use the last one in

conjunction with the xR−−′y to use the AxR′ rule. So we prove the middle sequent

by:

AxR−
xRy,R−−′, xR−y, ⇒ ∆

AxR′
xRy,R−−′, xR−−y ⇒ ∆

IR−
xRy,R−−′ ⇒ R−−=̊R



54 Chapter 4. Relation Algebra and Sequent Calculi

Where the first sequent is an axiom by AxR− and indeed the second is an axiom by

AxR′. For the sequent on the right R−−, xR′yR−−=̊R the proof is similar.

We notice we have to use a bit of creativity in the proof, but we are still limited in

what we can use. This limit comes from the rules of the sequent calculus: indeed

one could say that we have obtained some rules of the form

A,Γ ⇒ ∆ B,Γ ⇒ ∆
Γ ⇒ ∆

where one is free to chose what relations to chose for A,B. Yet in searching for a

proof of R=̊P we will always be limited by the necessity to reconstruct R from P

and vice-versa, so to use the AxR′ rule. This makes the possible rules to use limited

to the relation operations in R,P . And for the same reasons also the possible

instantiations of A,B from our rules will be limited to the subterms of R,P .

4.3 Simplifying the calculus

We could argue that the calculus we obtained is overburdened by rules, so in this

section we will quickly try to reduced the number of rules needed.

One of the first things to notice is that the addition of the =̊ symbol, while clearly

necessary in a FOL domain to distinguish between different meanings of equality,

in the calculus plays a very limited role. Indeed if the only sequents that are to

be proved are of the form ⇒ R=̊P , then we might as well omit any rule for the

=̊ and instead accept that we are always proving equivalent sequents of the form

⇒ ∀x∀y ((xRy → xPy) ∧ (xPy → xRy)). This means that for any R,P we would

always have a proof starting like this:

xPy ⇒ xRy →
⇒ xPy → xRy

xRy ⇒ xPy →
⇒ xRy → xPy ∀,∧

⇒ ∀x∀y ((xRy → xPy) ∧ (xPy → xRy))

This leads to observe that to prove ⇒ R=̊P , what we want is to prove R ⇒ P

and P ⇒ R (this can be seen informally as proving two subset inclusions). This is
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interesting because by inspecting our rules for the relations calculus we notice that

all our rules are modifying the left part of a sequent. This leads to the conclusion

that one possible strategy for proving a sequent of the form R ⇒ P will be to use

the relation calculus rules we derived to construct P from R, to obtain a sequent

P ⇒ P that we can close by using the Ax rule from the G3c calculus.

Furthermore we can simplify the calculus even more by noticing that the famous

equivalences R · P =̊(R− + P−)−, R ⊕ P =̊(R− � P−)−, 1=̊̊1 + 1̊−, 0=̊(̊1 + 1̊−)−,

0̊=̊̊1−, hold in our calculus. As an example we prove the first one, by first proving

xR · Py ⇒ (R− + P−)−:

Ax
..., xRy, xPy, x(R− + P−)−y ⇒ (R− + P−)−

..., xRy, xR−y ⇒ (R− + P−)− ..., xPy, xP−y ⇒ (R− + P−)−
E+

..., xRy, xPy, x(R− + P−)y ⇒ (R− + P−)−
IR−

..., xRy, xPy ⇒ (R− + P−)−
E·

xR · Py ⇒ (R− + P−)−

And then proving (R− + P−)− ⇒ xR · Py:

AxR−
(R− + P−)−, xR−y, xR− + P−y ⇒ xR · Py

I+
(R− + P−)−, xR−y ⇒ xR · Py

..., xR · Py ⇒ xR · Py
I·

(R− + P−)−, xRy, xPy ⇒ xR · Py
..., (R− + P−)−, (R− + P−) ⇒ xR · Py

I+
(R− + P−)−, xRy, xP−y ⇒ xR · Py

E+
(R− + P−)−, xRy ⇒ xR · Py

IR−
(R− + P−)− ⇒ xR · Py

This leads us to the conclusion that we can drop all the rules related to the ⊕, ·, 1, 0, 0̊

operations. Now we can finally define our sequent calculus for relation algebras,

which we will call SeRA. SeRA will be composed by all the rules from G3c (although

only the Ax rule will be useful for proving equivalences between relations), and the

following rules:

x̊1x,Γ⇒ ∆
I̊1Γ ⇒ ∆
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xRy, ẙ1z, xRz,Γ⇒ ∆
E̊1

xRy, ẙ1z,Γ ⇒ ∆

AxR−
xR−y, xRy,Γ ⇒ ∆

xRy,Γ ⇒ ∆ xR−y,Γ ⇒ ∆
IR−Γ ⇒ ∆

yRx, xR`y,Γ ⇒ ∆
I1R`

yRx,Γ ⇒ ∆

xR`y, yRx,Γ ⇒ ∆
I2R`

xR`y,Γ ⇒ ∆

xR + Py, xRy,Γ ⇒ ∆ xR + Py, xPy,Γ ⇒ ∆
E+

xR + Py,Γ ⇒ ∆

xRy, xR + Py,Γ ⇒ ∆
I+

xRy,Γ ⇒ ∆

xR� Py, xRz, zPy,Γ ⇒ ∆
E�

xR� Py,Γ ⇒ ∆

(and z is not free in the conclusions)

xRz, zPy, xR� Py,Γ ⇒ ∆
I�

xRz, zPy,Γ ⇒ ∆

4.4 A comparison with the Maddux sequent calcu-

lus of relation algebras

Historically this is not the first sequent calculus developed for the calculus of relations[5].

In 1983 Roger Maddux developed a sequent calculus, which we will call MaRA, in

which a sequent P ⇒ R had the interpretation of P ⊆ R, and was characterized by

the following rules:
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MAx
Γ, P ⇒ P,∆

M0
x0y,Γ ⇒ ∆

M1
Γ ⇒ x1y,∆

M1̊
Γ ⇒ x̊1y,∆

xRz,Γ ⇒ ∆
Mid

xRy, ẙ1z,Γ ⇒ ∆

Γ ⇒ xRy,∆
ML-

xR−y,Γ ⇒ ∆

Γ, xRy ⇒ ∆
MR-

Γ ⇒ xR−y,∆

Γ, yRx ⇒ ∆ ML`
Γ, xR`y ⇒ ∆

Γ ⇒ yRx∆ MR`
Γ ⇒ xR`y,∆

xRy,Γ ⇒ ∆ xPy,Γ ⇒ ∆
ML+

xR + Py,Γ ⇒ ∆

Γ ⇒ xRy, xPy,∆
MR+

Γ ⇒ xR + Py,∆

xRy, xPy,Γ ⇒ ∆
ML·

xR · Py,Γ ⇒ ∆

Γ ⇒ xRy,∆ Γ ⇒ xPy,∆
MR·

Γ ⇒ xR · Py,∆
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xRz, zPy,Γ ⇒ ∆
ML�

xR� Py,Γ ⇒ ∆

with z not appearing in the conclusion of the ML�

Γ ⇒ xRz,∆ Γ ⇒ zPy,∆
MR�

Γ ⇒ xR� Py,∆

plus the rules for cut elimination, weakening and contraction.

Maddux used this calculus to successfully find a new proof for the older results of

Tarski that a FOL sentence with no more than three variables can be translated into

an equation in the calculus of relations. And furthermore Maddux was also able to

find an algebraic semantics for this calculus.

We first prove that our calculus and MaRA are equivalent if we allow the cut rule

in SeRA. To do so we employ a proof strategy based on showing how the rules of a

calculus are derivable in another one.

Definition 4.4.1. We say that a calculus A is able to simulate a calculus B when

any rule R of B is admissible in A, that is, when the conclusion of R is derivable

in A, if the premises of A are derivable in A.

Theorem 4.4.1. SeRA can simulate MaRA. Furthermore MaRA can simulate the

non-logical part of SeRA.

Proof. We prove that we can simulate all the rules of MaRA using SeRA+Cut.

MAx is the same as in our calculus. M0 as well.

M1̊ is (from now on we will omit the Γ and ∆ for clarity):

Ax
x̊1x ⇒ x̊1x

I̊1⇒ x̊1x

M1 is similar. Mid is immediate with our rule E̊1.

For ML- we have to use a cut:
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⇒ xRy
AxR-

xR−y, xRy ⇒
cut

xR−y ⇒

with the first premise being a premise in ML- and the second premise being our

AxR-.

For MR-:

Ax
xR−y ⇒ xR−y xRy ⇒ xR−y

R-⇒ xR−y

with the first being an axiom and the second being a premise in MR-.

For ML` is the same as in our calculus. for MR`:

⇒ yRx
AxR-

xR−y, yRx ⇒ xR`y
cut

⇒ xR`y

With the first being a premise from Maddux and the second our axiom AxR-.

For ML+ is the same as in our calculus. For MR+:

⇒ xRy, xPy
R∨⇒ xRy ∨ xPy

Ax
xRy, xR + Py ⇒ xR + Py

I+
xRy ⇒ xR + Py

Ax
xPy, xR + Py ⇒ xR + Py

I+
xPy ⇒ xR + Py

L∨
xRy ∨ xPy ⇒ xR + Py

cut⇒ xR + Py

With the first premise being one of the premises of Maddux.

For ML· is the same as in our calculus, for MR·:

⇒ xRy ⇒ xPy
R∧⇒ xRy ∧ xPy

Ax
xRy, xPy, xR · Py ⇒ xR · Py

I·
xRy, xPy ⇒ xR · Py

L∧
xRy ∧ xPy ⇒ xR · Py

cut⇒ xR · Py

For ML� is easy, for MR� is similar to above:
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⇒ xRy ⇒ xPy
R∧⇒ xRy ∧ xPy

Ax
xRy, xPy, xR� Py ⇒ xR� Py

I�
xRy, xPy ⇒ xR� Py

L∧
xRy ∧ xPy ⇒ xR� Py

cut⇒ xR� Py

This concludes the first part of the proof. Now we prove that MaRA can simulate

the non-logical part of SeRA.

To simulate I̊1 we use a cut:

M1̊
Γ ⇒ ∆, x̊1x Γ, x̊1x ⇒ ∆

cut
Γ ⇒ ∆

with the second premise of the cut being a premise of I̊1.

For E̊1 is the same as in MaRA.

For AxR- (we again omit the Γ and ∆):

Ax
xRy ⇒ xRy

ML-
xR−y, xRy ⇒

For IR-:

xRy ⇒
MR-⇒ xR−y xR−y ⇒

cut⇒

With all the premises being our premises in IR-

For I1R`:

Ax
yRx ⇒ yRx MR`
yRx ⇒ xR`y

yRx ⇒ ML`
xR`y ⇒

cut
yRx ⇒

For I2R` is the same.

For E+ is the same as in the calculus of Maddux. For I+:
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Ax
xRy ⇒ xRy, xPy

MR+
xRy ⇒ xR + Py xRy, xR + Py ⇒

cut
xRy ⇒

With the right premise of the cut being a premise in I+.

E� is the same as in our calculus, while I�:

Ax
xRz, zPy ⇒ zPy

Ax
xRz, zPy ⇒ xRz

MR�
xRz, zPy ⇒ xR� Py xRz, zPy, xR� Py ⇒

cut
xRz, zPy ⇒

With this we conclude the proof.

With this theorem we can claim that SeRA has the same expressiveness of the other

main calculus in the literature of relation algebra. But we can go a step further

given that our calculus is cut-free. Indeed Maddux proved that MaRA has some

shortcomings in terms of its cut-elimination rule. That is, there exist some particular

equivalences that can only be proved by the MaRA calculus through a derivation

that used a cut rule.

For example, one such derivation is x(R � 1) � 1y ⇒ xR � 1y. Yet clearly in our

calculus this result is obtained by a cut-free derivation:

Ax
..., xRz′, z′1z, z1y, z′1y, xR� 1y ⇒ xR� 1y

I�
..., xRz′, z′1z, z1y, z′1y ⇒ xR� 1y

1
..., xRz′, z′1z, z1y ⇒ xR� 1y

E�
..., x(R� 1)z, z1y ⇒ xR� 1y

E�
x(R� 1)� 1y ⇒ xR� 1y

Indeed we will always be able to deduce a cut-free proof in our sequent calculus.

Thanks to our previous result that sequent calculi of geometric theories are cut-free

we are able to immediately deduce:

Theorem 4.4.2. If SeRA+Cut ` Γ⇒ ∆ then SeRA ` Γ⇒ ∆
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Yet in our proof of x(R� 1)� 1y ⇒ xR� 1y we can notice that we are introducing

a z′1y at a certain point, that is quite "creative" in its use, as we are instantiating

a relation between variables that didn’t appear before in the proof. This makes

our calculus a bit troubling to use if we want a totally deterministic calculation

unfolding from the sequent to be proved.

One possible objection to this is that sequent calculi that are cut-free are easy to

inspect to determine if there some decidable fragments of the theory. That is, by

looking at the sequent calculi rules for the theory, we can sometimes make some

observations that lead us to a proof of decidability. As an example of this, one

easy result that we can obtain is that if in a sequent A ⇒ B the only operations

appearing are the symbols for + and `, then there is an algorithm that can decide

if the sequent A⇒ B holds or not.

Theorem 4.4.3. Let A,B be two relations, formed by some relations R1, ...Rn, and

with the only symbols appearing in them being + and `. Then xAy ⇒ xBy is

decidable.

Proof. The first thing we notice is that in a derivation of xAy ⇒ xBy with only

+ and ` appearing we will have the subterm property. That is, in a proof of

xAy ⇒ xBy, we will have only the variables x, y appear, and the relations appearing

will be only among A,B and the sub-relations in them.

This is because there is no rule to introduce other variables except x, y (indeed

we cannot use the only rule that introduces new variables, E� because the only

symbols appearing are + and `). Likewise for the relations, we notice that given

our assumptions the only way to close a branch of a sequent proof is through the

Ax rule, that is through recreating a sequent ..., xBy ⇒ xBy. Clearly that xBy will

not have any new relations, and by inspecting our rules we can also be sure we don’t

need any new relations to construct it that is not already in B (this is because there

isn’t any rule that has in its conclusion a relation symbol that is totally eliminated

in its premises).

Thanks to the subterm property we can get a decidable algorithm. If xAy ⇒ xBy
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is provable, with a finite number of relations R1, ...Rn to instantiate with a finite

number of rules, we are guaranteed to eventually reconstruct the relation xBy from

xAy. If xAy ⇒ xBy is not provable, then there si no such reconstruction, so we can

stop when we start to instantiate relations we already have in a previous step.

Even if such result might not appear that interesting, the point to note is that is

possible to get such results by only inspecting the calculus. So the method presented

of extending the sequent calculus with rules for a mathematical theory has the added

benefit of providing new methods for proving results about that theory.

On the other hand, looking back at relations algebras, one might ask which other

decidability results we could find. One easy answer is that also for sequents only

containing + and − we have decidability, but this is because of results coming from

the decidability of Boolean algebras. Another observation stemming from the same

line of thought is that the full theory of RA was proved[23]to be able to express

a fragment of FOL capable of expressing Peano arithmetic. Thus from the well

know undecidability of Peano arithmetic we conclude the undecidability of RA, and

consequently of our calculus.

4.5 Conclusions

In this thesis we wanted to present some of the current developments in proof the-

ory, specifically how to create cut-free sequent calculi for a given theory. After a

brief historical introduction about proof theory, in the first chapter we focused on

explaining the basics of sequent calculi. We explained how to obtain some rules

for propositional, intuitionistic, and first-order logic. Furthermore we gave some

intuitions about what makes a "good" calculus and introduced the cut elimination

rule.

The second chapter was devoted to obtain a technique capable of extending the

sequent calculus for FOL to a sequent calculus for a theory axiomatized in FOL.

Specifically we saw how to obtain rules from geometric axioms, and how these rules
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still preserve the cut-elimination theorem. At the end we gave an application of this

technique, and presented an intuitive exposition of Barr’s theorem.

The third chapter presented a brief digression about how to use Skolem extensions

to get a geometric theory out of any theory. In this way the results from the second

chapter are applicable to an even broader range of theories.

Finally in the fourth chapter we gave a concrete application of these methods for

the well-known theory of the calculus of relations. We obtained some rules from the

axioms originally used by Tarski, and then we simplified them in a more compact

and usable form. At the end we found that our calculus, being cut-free, compares

favourably with the other sequent calculus found in the literature.

We hope that in this work we have achieved a compact but thorough exposition of

these themes. Likewise we think that the work presented here holds some importance

at multiple levels. For example, the technique that allows us to obtain a cut-free

sequent-calculi out of a geometrical theory allows us to derive a quick proof of

Barr’s theorem. This is to testify that the method is not a mathematical island, but

can be connected with previous work from a different field. Even more we have a

constructive proof that the sequent calculi obtained by the method are cut-free. By

using the method we are able to obtain a sequent calculus for many theories, which

might not have had a cut-free calculus before. In particular, we applied the method

to the field of the calculus of relations, a powerful theory with a rich history, and

many current applications in computer science[25]. And by doing so we were the

first to obtain a cut-free calculus for this theory.
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