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Abstract

Connectomes are spatially embedded networks whose architecture has been shaped by

physical constraints and communication needs throughout evolution. Using a decentralized

navigation protocol, we investigate the relationship between the structure of the connec-

tomes of different species and their spatial layout. As a navigation strategy, we use greedy

routing where nearest neighbors, in terms of geometric distance, are visited. We measure

the fraction of successful greedy paths and their length as compared to shortest paths in the

topology of connectomes. In Euclidean space, we find a striking difference between the nav-

igability properties of mammalian and non-mammalian species, which implies the inability of

Euclidean distances to fully explain the structural organization of their connectomes. In con-

trast, we find that hyperbolic space, the effective geometry of complex networks, provides

almost perfectly navigable maps of connectomes for all species, meaning that hyperbolic

distances are exceptionally congruent with the structure of connectomes. Hyperbolic maps

therefore offer a quantitative meaningful representation of connectomes that suggests a

new cartography of the brain based on the combination of its connectivity with its effective

geometry rather than on its anatomy only. Hyperbolic maps also provide a universal frame-

work to study decentralized communication processes in connectomes of different species

and at different scales on an equal footing.

Author summary

Recent advances in network science include the discovery that complex networks have a

hidden geometry and that this geometry is hyperbolic. Studying complex networks through

the lens of their effective hyperbolic geometry has led to valuable insights on the organiza-

tion of a variety of complex systems ranging from the Internet to the metabolism of E. coli
and humans. In this paper, we show that this methodology can also be used to infer high-

quality maps of connectomes, where brain regions are given coordinates in hyperbolic

space such that the closer they are the more likely that they are connected. Additionally, we

find that, even if Euclidean space is typically assumed as the natural geometry of the brain,
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distances in hyperbolic space offer a more accurate interpretation of the structure of con-

nectomes, which suggests a new perspective for the mapping of the organization of the

brain’s neuroanatomical regions.

Introduction

The human brain is arguably one of the most complex systems known to humankind and

understanding its inner workings is one of the great scientific challenges of the 21st century

[1]. Since the seminal contribution of Santiago Ramón y Cajal in the late 19th century, which

revealed that brains are at their core networks of discrete individual cells [2], many efforts have

been devoted to uncover the role of the structure and the dynamics of these neural networks in

the emergence of cognitive functions [3–6]. Building upon the substantial body of work pro-

duced over the past century [7–10], network science offers a new promising perspective on the

brain’s networked architecture, known as connectomics [11–13].

Current neuroimaging technologies combined with new analytical techniques now allow

a systematic extraction of high-resolution neuronal connectivity data in a realistic time [14,

15], and hence an increasing number of structural brain networks, or connectomes, are

becoming available to the scientific community. There is, therefore, mounting evidence that

most connectomes share universal topological properties with other networked complex sys-

tems. For instance, they are modular [16], small-world [17], their distribution of number of

connections per node is heavy-tailed [18], and their most connected nodes form a rich-club

[19]. Interestingly, spatial information about the location of neurons or coarse-grained

regions in the Euclidean physical embedding of the brain unveils that geometry plays a part

in the organization of connectomes [10, 20–22], and might also play a role in communica-

tion processes [23–26]. However, Euclidean distances alone cannot explain the observed

connectivity between brain regions and other factors are necessarily at play [22, 27, 28]. This

opens the possibility to investigate the relationship between the topology of connectomes

and their effective geometry [29, 30], i.e. a geometrical representation that encodes all factors

guiding the existence of connections.

In this paper, we use an exploratory navigation protocol on connectomes—that works at

the interplay between their topology and their effective geometry—to investigate whether

distances between brain regions in the embedding space are related with the likelihood of

the observed connections. More precisely, we consider connectomes from various species

and quantify the efficiency of greedy routing (GR)—a conceptually simple decentralized

navigation protocol [31, 32]—in Euclidean space (the physical anatomical embedding of

brains) and in hyperbolic space (the effective geometry of complex networks in many differ-

ent domains [32–35]). We find a high variability in the efficiency of GR between the connec-

tomes of different species in Euclidean space. In contrast, their navigability is almost perfect

when using maps in the hyperbolic disk. These maps are obtained using techniques in net-

work geometry [36, 37], where connectomes are assumed to exist in an underlying effective

geometry that is coupled to the observed topology of connectomes through a universal prob-

abilistic connectivity law that informs about the likelihood of connections between different

brain regions. Finally, as reported before for embeddings in hyperbolic space produced by

dimensional reduction techniques in machine learning [30], we show that our model-based

hyperbolic maps reflect known neuroanatomical regions and functional clusters of the

human brain, and so are able to uncover information that was not explicitly incorporated

into the embedding of the connectomes.
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Materials and methods

Connectome datasets

We use 26 structural connectome datasets covering several species: C. Elegans [38, 39], Dro-

sophila [40], Zebra Finch [15], Mouse [41, 42], Rat [43], Cat [44–46], Macaque [28, 47–50]

and Human [14, 26, 51–53]. Most of the datasets are publicly available from websites like

icon.colorado.edu or openconnecto.me, while others were generously shared with

us by the authors of the original papers. Out of the 26 connectome datasets, 14 include infor-

mation on the distances between nodes. This information is either provided directly via a dis-

tance matrix, or indirectly via the position of each region center in 3D Euclidean space. In the

latter case, the distance between two nodes is defined as the length of the straight line between

them.

Note that we always used the geodesic distance even though some of the Human datasets

also provide the length of white matter fibers between connected regions. This choice is justi-

fied by the fact that the Greedy Routing protocol (see below) also requires the distance between

nodes that are not connected. That being said, we found that geodesic distances and fiber

lengths are well correlated, thus making the effect of this approximation on the validity of our

conclusions likely to be negligible (see S1 Table for details). Note also that some connectome

datasets are directed. However, we show on S5 Fig that considering the direction of links only

affects marginally the outcome of greedy routing in all but one single connectome (Mouse2),

which will be adressed when we analyze the results below. Consequently, we considered the

undirected and unweighted version of each connectome as a common ground for comparison.

See S1 Appendix for further details on the various datasets.

Greedy routing

We use greedy routing (GR) as a decentralized navigation protocol to explore the relationship

between the topology and the spatial embedding of connectomes. This protocol runs on spatial

networks, where source nodes send signals/packets/messages to target nodes. A source node

passes the signal along to its neighbor that is the closest to the target node in terms of geomet-

ric distance [31]. Once the neighbor receives the signal, it repeats the process until the signal

either reaches the target (success) or gets stuck in a loop (failure). When GR succeeds, the path

followed by the signal is referred to as a greedy path. Most importantly, GR is more likely to

succeed if the topological shortest path between two nodes is congruent with the path of mini-

mal geometric distance in the underlying space (i.e. the geodesic path, which generalizes the

notion of “straight line” to curved space), thus motivating the use of the success rate to quantify

the congruency between a network topology and its embedding space [54]. In other words, GR

quantifies the extent to which the structure of a network is encoded in the position of its nodes

in an underlying geometric space by measuring how much do these positions allow to navigate

a network efficiently. Note that greedy paths do not necessarily follow the exact shortest path

between two nodes.

The success rate of GR is computed as the fraction of successful greedy paths when consid-

ering every ordered source/target pair of nodes belonging to the connected components of a

network. Additionally, greedy paths can be further characterized by their topological stretch,

defined as the length in number of links, or hops (i.e., topological distance), traversed by the

signal when traveling from the source node to the target node, divided by the length of the

topological shortest path between them. A complementary measure is the geometric stretch,

defined as the length of the greedy path measured in terms of the sum of the geodesic distances

between consecutive nodes on the path (i.e., geometrical distance) divided by the geometrical
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length of the corresponding topological shortest path. Note that, contrary to its topological

counterpart, the geometrical stretch can take values lower than 1. Fig 1 illustrates the various

concepts related to GR used in this paper. See S2 Appendix for a critical assessment of the dif-

ferent options to evaluate the efficiency of greedy routing.

Hyperbolic embeddings

We use the framework of networks embedded in hidden metric spaces [36, 37] to relate the

structure of connectomes with their underlying effective geometry. Connectomes are assumed

to exist in an underlying effective geometry that is coupled to their observed topology through

a universal probabilistic connectivity law that informs about the likelihood that different brain

regions are linked. The positions of the brain regions, or neurons, in the hyperbolic disk are

inferred following the procedure described in Ref. [32]. The hyperbolic maps are based on a

purely geometrical model, the H2
model, in which only the distances between nodes determine

their likelihood of being connected [37]. More precisely, each node is assigned a radial posi-

tion, r, and an angular position, θ, corresponding to popularity and similarity dimensions

respectively. As we will justify below when we introduce the correspondence between the S1

and the H2
model, the radial positions of the nodes in the hyperbolic disk is directly related

with their hubness. Each pair of nodes, noted i and j, is connected with probability

pij ¼
1

1þ e
b
2
ðxij� RÞ

; ð1Þ

where xij is the length of the geodesic between the two nodes in the hyperbolic disk (obtained

via the hyperbolic law of cosines), and where the radius of the disk R and the inverse tempera-

ture β are free parameters fixing the expected average degree and clustering coefficient,

respectively.

To understand why the radial and angular coordinates are coined as the popularity and

the similarity dimensions, let us consider the isomorphism given in Ref. [37] between the H2

model and the hidden metric space network model S1
[36], in which the hyperbolic disk is

replaced by a one-dimensional unit sphere plus a hidden degree variable associated to each

node. In the S1
model, nodes keep the same angular position as in the H2

model, but are

assigned a hidden degree κ that is related to the radial coordinate in the hyperbolic disk

Fig 1. Illustration of a successful greedy path on a network embedded in the 2D-plane (indicated by the grid;

distances correspond to the length of the straight line between two nodes). The corresponding topological and

geometrical stretches are respectively 1.33 and approximatively 0.91, thus illustrating how geometrical stretch can be

lower than 1. Notice that the shortest and the greedy paths would coincide if the role of the source and of the target

were exchanged (i.e., seeking a greedy path from the red node to the blue one instead).

https://doi.org/10.1371/journal.pcbi.1007584.g001
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according to

k � eðR� rÞ=2 : ð2Þ

Notice that, in real networks, the hidden degree is typically proportional to the observed

degree in the topology of the network [36]. Consequently, nodes closer to the center of the

hyperbolic disk have a higher expected degree, and are therefore more popular. Moreover,

using the highly accurate approximation xij’ ri + rj + 2 ln (Δθij/2) for the length of geodesics

in the hyperbolic disk—with Δθij being the minimal angular separation between the two

nodes—, Eq 1 becomes

pij ¼
1

1þ
Dyij

mkikj

 !b
;

ð3Þ

where μ plays a role analog to R. From Eq 3, we see that nodes are more likely to be con-

nected if they are angularly close, i.e. if they are similar, except for high-degree nodes which

are likely to be connected regardless of their angular separation (i.e., their “popularity” com-

pensates for their lack of “similarity”). Note that in these models, the triangle inequality of

the underlying metric space—stating that if nodes A and B are both close to node C, then A

and B must be close as well—implies a non-vanishing clustering coefficient in the limit

N!1, where N is the number of nodes.

From this correspondence, we see that the popularity dimension is related to the degrees of

the nodes and is responsible for the hyperbolicity of effective geometry, while the similarity

dimension stands as an aggregate of all other factors affecting the likelihood of connections. In

other words, in the S1
model the contribution of degrees is clearly disentangled from other fac-

tors reflected in the similarity distance which, for networks like connectomes, may include 3D

Euclidean distances among other determinants.

The inferred maps used in this paper are obtained by finding the radial and angular posi-

tions of each node, {ri} and {θi}, that maximize the likelihood that the structure of the connec-

tome has been generated by the H2
=S1

model, i.e. maximizing

L ¼
Y

i<j

½pij�
aij ½1 � pij�

1� aij ; ð4Þ

where {aij} are the entries of the adjacency matrix of the network (aij = aji = 1 if nodes i and j
are connected, aij = aji = 0 otherwise). This task is achieved using the Metropolis-Hastings

algorithm described in Ref. [32].

Null models

We consider three null models to provide perspective on the success rates of greedy routing in

Euclidean and hyperbolic space. The first null model consists in swapping the positions of the

nodes at random (similarly to Ref. [55]). Doing so preserves the spatial distribution of nodes

and the topology of the connectome, but destroys its geometry by decoupling the positions of

the nodes with its structure.

The second null model preserves the positions of the nodes (i.e. the geometry) but changes

the struture of the connectome (i.e. the topology) by swapping pairs of links randomly (also

known as the configuration model [56]). This null model preserves the density, the number of

links and the degree sequence of the connectome but destroys correlations in the way nodes

are connected as well as destroys modular structure or clustering. Each randomized version of
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a connectome was obtained by performing a minimum of 100L successful link swaps, where L
is the number of links in the connectome.

The third null model is identical to the second one with the additional constraint that each

swap is accepted only if it preserves the total cost of the connectome, mesured as the total dis-

tance between every connected pairs of nodes, within a tolerance margin (as done in Ref. [26]).

In addition to preserving the density, the number of links and the degree sequence, this proce-

dure preserves the cost of building connections between nodes, of which the total distance

between them is a reasonable proxy [10].

The first two null models serve as a baseline to be compared with the effect of preserving

the total cost in the connectome (third model). To apply the third null model to the wide range

of connectomes considered here in a comparable manner, we adapted the procedure described

in Ref. [26] in the following way. Two randomly chosen links, one between nodes A and B and

the other one between nodes C and D, are swapped into two new links, one between nodes A

and C and the other one between nodes B and D, only if

jðdAB þ dCDÞ � ðdAC þ dBDÞj < εD; ð5Þ

where dij is the Euclidean or hyperbolic distance between nodes i and j and where

D ¼
PN

i¼1

PN
j¼iþ1

aijdij is the total distance including every connected pair of nodes (i.e. the

total cost). We set ε = 1/60 to reproduce the criterion used in Ref. [26] for their larger

human connectome. We found that our results are fairly robust and do not depend critically

on the precise value of ε.

Results

Navigation in Euclidean space

Before looking into hyperbolic embeddings, we investigate the relationship between the struc-

ture of the connectomes and their natural Euclidean embedding using the 14 datasets for

which distances are known. We first look at the empirical probability of connection and find

that it decreases with Euclidean distance in every dataset, confirming that Euclidean distance

is one of the determinants of link formation, as expected [10, 20–22] (see S1 Fig).

We then turn to GR (GRE) to further investigate the congruency between Euclidean dis-

tances and the structure of the connectomes. Previous work showed that the combination of

topology and anatomical geometry in mammalian cortical networks (macaque, mouse, and

human brains) allows for near-optimal decentralized communication under greedy routing,

in addition to explaining significant variation in functional connectivity [26]. The effect of

rewiring network topology or repositioning network nodes was also showed to cause a 45-60%

reduction in navigation performance, thus suggesting that these brains are naturally config-

ured for near-optimal navigation. As detailed below, our results confirm and build upon some

of the conclusions found in Ref. [26].

Fig 2 shows the success rate and the stretch of GRE where the connectomes have been split

based on their resolution (i.e., neuron or coarse-grained regions), and then ordered according

to their volume (some datasets, like ZebraFinch1, only correspond to a part of the whole

brain).

Although the number of available connectomes is small, an interesting trend is observed.

Since GR quantifies the congruency between the connectome and the underlying geometry,

the variability of the success rate shown on Fig 2(a) suggests that data resolution may have a

role in the navigability properties of connectomes. As summarized in S1 Appendix, the first

five datasets on the left on Fig 2(a) are connectomes with a resolution at the neuron level that
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cover only small volumes of the whole brain (except for C. Elegans which consists in the

whole neural system). These datasets thus miss out on long-distance connections to other

regions of the brain, whereas nodes in the remaining connectomes correspond to mesoscopic

coarse-grained areas including up to several millions individual neurones. The low success

rates of GRE observed in the connectomes at the neuron-level resolution therefore suggests

that their geometry is less congruent with Euclidean geometry. Note that the high success rate

of Mouse2 is likely to be boosted by its unusual large average degree (each node in this connec-

tome is on average connected to about 18% of all nodes, see S1 Appendix), which is itself an

artefact of the fact that we considered every connectome as undirected. As shown on S5 Fig,

this approximation only affects marginally the outcome of greedy routing on every datasets

except for Mouse2, where the success rate in the directed version is approx. 50% lower than in

the undirected version. The increased success rate of Mouse 2 in Fig 2(a) could therefore be an

artefact of the undirected approximation, thus reinforcing the idea that connectomes are not

as navigable at the neuron level than they are at the coarse-grained level. The dependency on

the resolution that our results suggest is therefore not a consequence of the use of undirected

version of connectomes.

In contrast, coarse-grained connectomes that reflect the large-scale topological organization

of connectivity in the brain, and therefore include long-range connections, are marginally

affected by density and appear to be more congruent with Euclidean geometry. This last obser-

vation is in line with the results obtained in Ref. [26] for mammalian connectomes. At the

same time, the stretch remains very low for all organisms, meaning that the successful greedy

paths always follow the shortest paths (topological stretch) closely, and the Euclidean geodesics

(geometric stretch) even more closely, as shown in Fig 2(b).

Fig 2(a) also shows the average success rate obtained with greedy routing on randomized ver-

sions of the connectomes obtained using the three null models presented in the Materials and

Methods section. Our results are in line with the conclusions of Ref. [26] in that cost-preserving

Fig 2. (a) Success rate (SR) of the greedy routing protocol obtained for connectomes for which Euclidean distance between each pair of nodes in the anatomical

embedding is available, as well as for randomized versions of these connectomes generated using the three null models presented in the Materials and Methods section.

The x-axis is broken to highlight the difference between connectomes whose resolution is at the neuron levels (left) from the ones where nodes correspond to coarse-

grained regions of the brain (right). Within these two resolution categories, the ordering of the connectomes from left to right roughly follows the increasing physical

volume they occupy. (b) Average topological and geometrical stretch of the GRE greedy paths in each connectome with the error bars showing the 10% and 90%

percentiles.

https://doi.org/10.1371/journal.pcbi.1007584.g002
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topological randomization (third null model) preserves high navigability performances, but

can only partially account for the high success rates observed for human connectomes. Our

results are also coherent with the conclusions of Ref. [26] in that cost-preserving topological

randomization can account for the high success rates obtained for the macaque (Macaque1 and

Macaque4) and the mouse (Mouse1) connectomes and suggest that this conclusion could be

extended to the drosophila connectome (Drosophila1 and Drosophila2). The datasets Zebra-

Finch1 and C. Elegans stand in-between, with cost-preserving topological randomization pre-

serving a fraction of the low success rates.

As a final remark, we noted that the success rate behaves quite differently depending on

whether we fix a given node as a source or as a target. If defined as the fraction of successful

greedy paths starting from a given source node, we find that these locally outgoing success rates

are rather tightly distributed around the “global” value of SR reported on Fig 2(a). In other

words, greedy paths quickly reach the same set of “central” nodes, thus making the success rate

only weakly dependent on the identity of the source node. On the contrary, if defined as the

fraction of successful greedy paths aimed at a given target node, we find the distribution of the

locally incoming success rates to be highly dispersed whenever the global success rate is not

close to 1. This means that, in such cases, the probability of success of a greedy path depends

strongly on the target node, and only weakly on the source node. In other words, nodes are

not equally reachable: some nodes are more central in Euclidean geometry than others. Fig 3

summarizes these observations using the Drosophila1 and Human5 datasets; results for all 14

datasets are given on S2 Fig. Note that similar observations were independently reported in

Refs. [57] where the concept of sender/receiver asymmetry is used to characterize brain

regions as senders/receivers/neutrals, as well as in Ref. [58] where brain regions are character-

ized based on the information cost when they act as the source or the target of a specific com-

munication path.

Navigation in hyperbolic maps

Using the embedding technique described in the Materials and Methods section, we inferred

the positions in hyperbolic space of all nodes of the 26 connectomes considered in this study.

Fig 3. Distribution of the locally outgoing and incoming success rates for the (a) Drosophila1 and (b) Human5 datasets in Euclidean and hyperbolic space. Results

for the 14 datasets for which distances in Euclidean space are known are given on S2 Fig.

https://doi.org/10.1371/journal.pcbi.1007584.g003
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Doing so, we obtained a geometrical representation for each connectome without a prior

knowledge of the spatial positions of the nodes in Euclidean space. In the hyperbolic represen-

tation, the radial position of a node is directly related to its hubness, with higher degree nodes

closer to the center of the disk. Fig 4(a) shows the hyperbolic map obtained for the Human5

connectome. Notice that the hyperbolic embedding, which is inferred by using the network

topology only, preserves to a large extent the physical separation of the two hemispheres (see

also [30]), with 86% of the nodes in the left hemisphere (blue) and 82% of the nodes in the

right hemisphere (red) located in separate halves of the disk, even if almost 25% of the links

Fig 4. (a) The connectome Human5 embedded in the hyperbolic disk. Nodes belonging to the two different hemispheres are shown in blue and red. See Materials and

methods for details on this representation. (b) Success rate (SR) of the greedy routing protocol for the hyperbolic embeddings of several connectomes (GRH) as well as

for randomized versions of these connectomes generated using the three null models presented in the Materials and Methods section. As in Fig 2, the x-axis is broken to

highlight the difference between connectomes at the neuron level from the ones where nodes correspond to areas of the brain. Within these two resolution categories, the

ordering of the connectomes from left to right roughly follows the increasing physical volume they occupy. (c) Average stretch of the greedy paths in each connectome

with the error bars showing the 10% and 90% percentiles. (d)–(e) A sample of representative neuroanatomical regions from the DK atlas are superimposed over the

inferred positions of nodes shown on (a). (f) Distribution of the average normalized angular separation between every pair of nodes belonging to the same

neuroanatomical regions defined by the DK atlas.

https://doi.org/10.1371/journal.pcbi.1007584.g004
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connect nodes in different hemispheres. This last observation is also clearly reflected on Fig 4

(a) by the overlap of some regions of the two hemispheres.

Fig 4(b) shows that the success rate of greedy routing in the hyperbolic disk (GRH) becomes

very close to 100% for every considered connectome, independently of whether the connec-

tome is at the neuron or coarse-grained region scale. Moreover, Fig 4(c) shows that the greedy

paths are very close to their respective shortest paths with average stretches that never exceed

1.2, and less dispersion than in Euclidean space. These results imply that the network topology

of the connectomes is highly congruent with the embedding model H2
(or equivalently S1

) at

all scales; in other words, the inferred coordinates encode significant information on the struc-

ture of the connectomes, independently of their scale.

Remarkably, reaching these levels of congruency was until now believed to be possible only

for networks having a very clean scale-free degree distribution [37, 54]. As shown in S3 Fig,

the degree of the considered connectomes are in general broadly distributed but far from pure

power laws. Our results therefore significantly expand the class of networks for which high-

quality model-based embeddings in the hyperbolic disk can be obtained. Moreover, the frac-

tion of successful GRH paths does not depend on the specific source or target node, in contrast

with results in Euclidean geometry, and remains extremely high for all nodes in all organisms,

see Fig 3 for representative examples and S2 Fig for all datasets.

Additionnally, Fig 4(b) shows that the almost perfect navigability cannot be fully repro-

duced by neither of the three null models presented in the Materials and Methods section. The

only exception is Macaque4, for which density alone is enough to explain the high success rate.

Otherwise, we conclude that reaching such almost perfect navigability requires a near perfect

congruency between the topology of the connectomes and their inferred geometry that can

hardly be systematically explained by the simple ingredients incorporated in the three null

models. Whatever their exact nature may be, our results show that our embedding method is

able to recover these ingredients, independently of the origin of the connectome dataset.

In fact, it is important to stress that these results are obtained even if the embedding proce-

dure is not based on maximizing the coincidence of shortest paths with geodesics in hyperbolic

geometry, which would trivially imply a large success rate and small geometrical stretch. In con-

trast, we maximized the congruency between each connectome and our geometric model based

on a connection probability which depends on distances between nodes in the embedding

space. The almost perfect success rates shown on Fig 4(b) for GRH therefore suggest a deep,

nontrivial relation between the connection probability given by Eq 1, or equivalently by Eq 3,

and the structure of the connectomes. Although the Euclidean distances do encode structural

information (see S1 Fig and Refs. [10, 20–22]), Fig 2(a) shows that this information is not

enough to explain brain connectivity and varies from one connectome dataset to another. Inter-

estingly, Euclidean distance cannot be used as a direct estimation of the angular separation, Δθij
in Eq 3, which characterizes the similarity between nodes. This observation is further supported

by the fact that the correlation between distances in Euclidean space and inferred angular dis-

tances in the hyperbolic embeddings never exceeds 0.6 (see S2 Table), implying that angular

distances encoding similarity include more information related to the structure of connectomes

than Euclidean distances.

Meaningfulness of hyperbolic embedding of brain networks

As explained above, in the hyperbolic representation the radial position of a node is directly

related to its hubness, with higher degree nodes situated closer to the center of the disk. To fur-

ther explore the structural information unveiled by our hyperbolic maps, we investigate the

neuroanatomical relevance of the similarity dimension. Fig 4(d) and 4(e) overlay the positions

Navigable maps of structural brain networks across species
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inferred for the Human5 dataset in the hyperbolic disk with neuroanatomical regions defined

by the DK atlas [61]. As shown on Fig 4(f), most neuroanatomical regions of Human5 are local-

ized in narrow regions of the similarity space as measured by the angular separation Δθ in the

hyperbolic maps. We see that nodes belonging to the same neuroanatomical region tend to be

strongly concentrated in a narrow angular section, with 84% of the neuroanatomical regions

spanning over less than 20% of the similarity space. This reflects that their nodes are densely

connected and have many common neighbors. Interestingly, many of these localized regions

spread along the radial coordinate, meaning that their internal structure is dominated by a

stratification of degrees and is strongly hierarchical [34]. Contrarily to this trend, a few neuro-

anatomical regions display a dispersed spectrum of angular positions (e.g., rostral middle fron-

tal), denoting more interconnections with other regions and therefore a more prominent role

in providing integration at the system level. Similar conclusions can be made for the Human8

dataset on Fig 5(a) and 5(b). The complete comparison between neuroanatomical regions and

the inferred hyperbolic maps for the full Human1, Human2, Human3, Human5 and Human8

datasets is provided on S6 to S10 Figs. In addition to a visual appreciation of the localization of

the neuroanatomical regions in the hyperbolic disk, these figures provide the angular

Fig 5. Superposition of various neuroanatomical regions and functional clusters on the inferred positions of the nodes in the hyperbolic disk for the Human8

dataset. (a–b) The neuroanatomical regions correspond to the lobes as identified by Ref. [52]. (c–d) The functional clusters correspond to the 17-region parcellation

proposed in Ref. [59] using the name introduced in Ref. [60]. The clusters shown were chosen so that many could fit on a single plot without clutering it; the complete set

of neuroanatomical regions and functional clusters are shown on Fig. S10 Fig.

https://doi.org/10.1371/journal.pcbi.1007584.g005
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distribution of each region, as well as the likelihood of finding clusters at least as angularly

localized as the original ones by randomly selecting the same number of nodes. We found that

in far less than 1% of the 10000 random samples generated for 52 neuroanatomical regions in

Human5 (out of 68) a random selection of nodes resulted in an average angular distance

between them smaller than the one measured for the original regions. Similar results were

obtained for the Human1, Human2, Human3 and Human8 datasets for which the localization

of 22/32, 31/32, 30/52 and 52/64 of the neuroanatomical regions, respectively, could not be

explained by chance. The congruency between neuroanatomical regions and hyperbolic

embeddings observed here is in line with the conclusions of Ref. [30] where a similar matter

was discussed.

The inferred angular positions also offer information about the community structure

of the analyzed connectomes. We compared the communities identified by the critical gap

method (CGM, see S3 Appendix) [33, 34] with the neuroanatomical regions available

for the Human1, Human2, Human3, Human5 and Human8 datasets. We found that the

inferred communities and neuroanatomical regions overlap significantly, with normalized

mutual information (NMI) values between 0.42 and 0.54 for all five datasets. On the one

hand, this further confirms that the inferred angular positions contain meaningful informa-

tion related to the known neuroanatomical regions. Interestingly, this result also suggests

that a new cartography of the brain’s regions that combines connectivity and effective geom-

etry (e.g., inferred angular positions of nodes) could complement other existing classifica-

tions [62].

Beyond neuroanatomical regions, the hyperbolic maps reveal also information related to

functional communities. s. Fig 5(c) and 5(d) superimpose the inferred positions of the nodes

in the Human8 connectome datasets with several clusters of the 17-cluster parcellation pro-

posed by Yeo et al. [59]. The clusters shown were selected to display simultaneously the maxi-

mum number of clusters while avoiding information overload. Results for all the functional

modules in the full 7-cluster and 17-cluster parcellations of Ref. [59] are given on S10 Fig. A

priori, the localization of functional clusters in the hyperbolic embedding of the connectome

was not obvious. However, we found that 14 out of 14 regions of the 7-cluster parcellation

(each hemisphere was considered individually) and 22 out of the 33 regions of the 17-cluster

parcellation (1 region was excluded because it only has one node in the left hemisphere) were

localized angularly in a way that could not be explained by chance (we used the same proce-

dure as for neuroanatomical regions to estimate the average angular distance in the random

case). Quantitative results are reported in S10 Fig.

Altogether, these results suggest that the hyperbolic distance obtained via our embedding

procedure offers a meaningful effective distance as an aggregated measure of all factors that

determine the likelihood of connections. Indeed, S4 Fig shows that Euclidean and hyperbolic

distances tend to be correlated, but the striking difference between the success rates of GRE

and GRH implies that distances in hyperbolic space are not a mere translation of the distances

in Euclidean space. As a corollary, the geometrical representation in hyperbolic space, as in

Fig 4(a), offers a quantitatively meaningful way to visualize and compare the structure of

connectomes.

Discussion

Many real networks are naturally embedded in a physical space that contributes to shape their

structure and organization. This is the case of connectomes, whose architecture has evolved in

3D Euclidean space to perform different functions. However, it is not clear to which extent

the anatomical spatial layout of brain regions is informative of how they are connected. We
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investigated this question by computing the success rate and stretch of greedy routing, a

decentralized routing protocol typically used to explore the navigability properties of

networks.

Our results suggest a dependence of the success rate of GRE on the resolution of the con-

nectomes. We find that neuron-level connectomes (e.g., Drosophila1 and ZebraFinch1) are

significantly less congruent with Euclidean geometry than connectomes in which nodes

correspond to coarse-grained regions of the brain (e.g., Macaque1, Human8). This differ-

ence could be due to the fact that neuron-level connectomes only cover small volumes of the

brain, and therefore lack long-distance connections to other regions of the brain, whereas

coarse-grained connectomes cover most of the brain and therefore capture these long-range

connections. Interestingly, our results also raise the question as to whether perfect navigabil-

ity should be expected at the cellular scale since every neuron may not need to communicate

with every neuron. It will be possible to further explore this hypothesis in the near future as

more comprehensive and more detailed connectomes become available.

Beyond Euclidean space, we showed that all the considered connectome datasets are strik-

ingly congruent with our model in hyperbolic geometry. These results suggest that a universal

connectivity law can successfully describe the topology of connectomes of different species

and at very different scales (e.g., there are several order of magnitude of resolution between

Drosphila1 and Macaque1).

An interesting fact about navigation in hyperbolic space is that it naturally reproduces the

“path motifs” identified in Ref. [63] in which shortest communication paths pass through

nodes of increasing and then decreasing degree (i.e., pass through the rich-club, see Ref. [54]).

The almost-perfect success rates observed on Fig 4(b) therefore mean that greedy routing was

able to recover most of these shortest communication paths, and consequently that the hyper-

bolic maps that we obtained for the 26 datasets naturally encode the information to simulate

the way information flows in the brain.

Moreover, previous studies showed that the topology of connectomes is better reproduced

when distances in Euclidean space are combined with topological information such as degrees,

clustering coefficients or common neighbors (homophily) [22, 27]. Critically, this information

is naturally taken into account in our approach via Eq (3) (degrees) and via the triangle

inequality of the hyperbolic space (clustering and common neighbors). Our hyperbolic frame-

work therefore emcompasses the pivotal points of previous approaches proposed to model the

topology of connectomes. Most importantly, our approach allows a richer description than

most models proposed in the literature since similarity distances are not limited to the Euclid-

ean distances and can account for other factors influencing the existence of connections. In

fact, our results support hyperbolic geometry as a meaningful effective geometry of

connectomes.

Indeed, just as in other contexts [32–34], hyperbolic maps not only explain the large-scale

connectivity of brains but also encode relevant information about their mesoscale organization

that is not explicitly annotated into the embedded topology. These maps therefore offer a com-

plementary and meaningful geometrical representation of connectomes for which the Euclid-

ean physical positions of the nodes need not be known. We illustrated this point by overlaying

known neuroanatomical regions and functional clusters with our hyperbolic embeddings for

human connectomes and found an impressive congruency. Similarly to biochemical pathways

in metabolic networks [33], many brain regions are localized in similarity space with a radial

stratification, which implies a modular and hierarchical architecture. In contrast, a few regions

are more angularly dispersed, which indicates a higher density of inter-regional links and

therefore a fundamental role in providing system-level integration. Altogether, this means that

the positions of nodes in the hyperbolic embeddings carry meaningful information about the
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overall organization of brains. This new geometric information—which could be based on a

spatial clustering of nodes in the hyperbolic disk to combine information about both the con-

nectivity of nodes and their similarity—could therefore be used to enrich newly proposed par-

cellation methods of the human brain based on connectivity [52, 64].

Little is known about large-scale communication processes in the brain [23–26] and a key

concern for graph-theoretic neural signaling models—of which GR is a very simple example—

is the quest for biological plausibility [25]. On the one hand, shortest path routing relies on the

unrealistic assumption that neural elements possess global knowledge of the network topology

while, on the other hand, random diffusion needs bias to travel via efficient routes in realistic

times. GR proposes a compromise scenario in which only the geometrical positions of first

neighbors and of the target node are needed at each step of the routing process. Although

there is some evidence that targeted information processing may play a role in brain commu-

nication dynamics [65], an empirical justification that regions/neurons could possess knowl-

edge on the spatial positioning of their neighbors in relation to a target region/neuron is still

lacking (see Ref. [26] for a detailed discussion). In hyperbolic space, nodes are endowed with

even more information, since distances in hyperbolic space include other factors than merely

anatomical distance. It may therefore not come at a surprise that navigability is higher in

hyperbolic space. However, independently of whether GR is a realistic neural communication

process or not, our results imply that hyperbolic space can quantitively and meaningfully

encode the structure of connectomes, and therefore that network geometry offers a valuable

complementary approach to study the structure of the brain.

Future work will require the adaptation of the network geometry toolbox to increase the

number of realistic features that can be taken into account. For instance, effective distances may

be affected by dynamical ingredients that influence the speed of synaptic transmission and even

be modulated in a task-dependent fashion [66–68]. In particular, myelination of neural fibers

can dramatically change this speed, especially for long white-matter fibers, thereby effectively

shortening Euclidean physical distances. It would therefore be interesting to analyze GR as a

routing protocol in hyperbolic maps of connectomes that are able to modulate effective distances

according to various factors. Additionally, many structural brain networks are characterized by

a heterogeneous distribution of fiber densities. A natural extension of our work would therefore

be to study the effects of weights in neural communication for which new methodologies like a

technique to embed weighted networks in hyperbolic space are still under development.

This study puts forward an interesting new path to further explore the synergy between

neuroscience and network geometry to better understand the inner workings of the brain. In

the future, higher resolution datasets will allow to refine the scope of our conclusions, further

test the formulated hypotheses and, ultimately, lead to a better understanding of the interplay

between the organization of the connectome and its embedding space.

Supporting information

S1 Table. Pearson and Spearman’s rank correlation coefficient between the fiber lengths

provided in the Human datasets and the corresponding geodesic lengths used for greedy

routing. Also shown are estimations of the 95% confidence interval obtained by 10000 resam-

pling of the original data.

(PDF)

S2 Table. Pearson correlation coefficient of the distances between nodes in the 3D Euclid-

ean space and the inferred angular distances in the hyperbolic embeddings.

(PDF)
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S1 Appendix. Overview of the different datasets.

(PDF)

S2 Appendix. Critical assessment of the different options to evaluate the efficiency of

greedy routing.

(PDF)

S3 Appendix. Critical gap method.

(PDF)

S1 Fig. Connection probability in Euclidean geometry for every connectom datasets for

which spatial information is available. The connection probability is computed as the frac-

tion of node pairs that are connected as a function of the Euclidean distance between them.

The distances have been rescaled (“normalized”) to facilitate the presentation of the curves.

(EPS)

S2 Fig. Distribution of the local success rates defined as the fraction of successful greedy

paths starting/aiming at a given source/target node i, for all nodes. These distributions are

shown for Greedy Routing in Euclidean space (blue and red) as well as in the hyperbolic

embeddings (green and black).

(EPS)

S3 Fig. Complementary cummulative degree distribution of the connectome datasets.

(EPS)

S4 Fig. Distances between nodes in Euclidean space compared to the inferred distance

between the same nodes in the hyperbolic embedding for the connectome datasets for

which spatial information is provided. Distances have been rescaled to facilitate the presenta-

tion. Also shown is the Pearson correlation coefficient, ρ, between the two sets of distances.

Note that the horizontal position of some markers have been slightly offset to reduce the over-

lap of the error bars.

(EPS)

S5 Fig. Comparison of the success rate of greedy routing in Euclidean space for the

directed and undirected versions of the 14 connectome datasets for which distances/posi-

tions in Euclidean space are available.

(EPS)

S6 Fig. Neuroanatomical clusters of Human5 superimposed over the inferred positions in

the hyperbolic embeddings. The distribution of the angular positions is also shown, as well as

the ratio hΔθicluster/hΔθirand., where hΔθicluster corresponds to the average angular separation

between nodes of a same cluster, and where hΔθirand. is the average angular separation between

the nodes of a cluster of the same size but composed of nodes chosen at random (10000 sam-

ples simulated to compute hΔθirand.). Also shown is an estimate of the probability P for these

random clusters to have an average angular separation equal to smaller than hΔθicluster (i.e.

estimated by the fraction of the 10000 randomly generated samples). The same information,

but computed using the distances in Euclidean space, is also shown for comparison.

(EPS)

S7 Fig. Neuroanatomical clusters of Human3 superimposed over the inferred positions in

the hyperbolic embeddings. The distribution of the angular positions is also shown, as well as

the ratio hΔθicluster/hΔθirand., where hΔθicluster corresponds to the average angular separation

between nodes of a same cluster, and where hΔθirand. is the average angular separation between
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the nodes of a cluster of the same size but composed of nodes chosen at random (10000 sam-

ples simulated to compute hΔθirand.). Also shown is an estimate of the probability P for these

random clusters to have an average angular separation equal to smaller than hΔθicluster (i.e.

estimated by the fraction of the 10000 randomly generated samples). The same information,

but computed using the distances in Euclidean space, is also shown for comparison.

(EPS)

S8 Fig. Neuroanatomical clusters of Human2 superimposed over the inferred positions in

the hyperbolic embeddings. The distribution of the angular positions is also shown, as well as

the ratio hΔθicluster/hΔθirand., where hΔθicluster corresponds to the average angular separation

between nodes of a same cluster, and where hΔθirand. is the average angular separation between

the nodes of a cluster of the same size but composed of nodes chosen at random (10000 sam-

ples simulated to compute hΔθirand.). Also shown is an estimate of the probability P for these

random clusters to have an average angular separation equal to smaller than hΔθicluster (i.e.

estimated by the fraction of the 10000 randomly generated samples). The same information,

but computed using the distances in Euclidean space, is also shown for comparison.

(EPS)

S9 Fig. Neuroanatomical clusters of Human1 superimposed over the inferred positions in

the hyperbolic embeddings. The distribution of the angular positions is also shown, as well as

the ratio hΔθicluster/hΔθirand., where hΔθicluster corresponds to the average angular separation

between nodes of a same cluster, and where hΔθirand. is the average angular separation between

the nodes of a cluster of the same size but composed of nodes chosen at random (10000 sam-

ples simulated to compute hΔθirand.). Also shown is an estimate of the probability P for these

random clusters to have an average angular separation equal to smaller than hΔθicluster (i.e.

estimated by the fraction of the 10000 randomly generated samples). The same information,

but computed using the distances in Euclidean space, is also shown for comparison.

(EPS)

S10 Fig. Neuroanatomical (lobes and gyri levels identified in Ref. [52]) and functional clus-

ters (7 and 17 cluster parcellation identified in Ref. [59]) of Human8 superimposed over

the inferred positions in the hyperbolic embeddings. The distribution of the angular posi-

tions is also shown, as well as the ratio hΔθicluster/hΔθirand., where hΔθicluster corresponds to the

average angular separation between nodes of a same cluster, and where hΔθirand. is the average

angular separation between the nodes of a cluster of the same size but composed of nodes cho-

sen at random (10000 samples simulated to compute hΔθirand.). Also shown is an estimate of

the probability P for these random clusters to have an average angular separation equal to

smaller than hΔθicluster (i.e. estimated by the fraction of the 10000 randomly generated sam-

ples). The same information, but computed using the distances in Euclidean space, is also

shown for comparison.

(EPS)
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