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Abstract

The Lee-Carter (LC) stochastic mortality model has been widely used for making
future projections of mortality rates. In the framework of the LC model, the response
function is non-linear in parameters. Here, we adapt this LC framework to compute con-
ditional quantiles. The LC quantile model can be defined as quantile non-linear regression
conditioned to age and the calendar year. Two strategies for estimating coefficients based
on interior-point methods are described. We show that the LC quantile model provides
additional information to that furnished by the traditional LC conditional mean. An
application to Spanish mortality data is reported.
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1 Introduction

Social progress has led to a steady increase in human longevity over the last 150 years.
These gains in life expectancy in the late 19th and early 20th centuries reflected improve-
ments in infant mortality rates, but in the last 50 years the increase has been mainly
driven by a fall in death rates among the elderly [Wilmoth, 2000]. And there are no
signs that human longevity has reached its maximum limit; thus, for instance, average
life expectancy increased by 5.5 years between 2000 and 2016 [WHO, 2019]. This rising
longevity and the associated ageing population represent major challenges to those con-
cerned with the planning of pensions, healthcare provision and long-term care systems.
As a result, the analysis and modeling of uncertainty in future mortality has become a
major topic of interest in multiple fields of research.

A number of stochastic mortality models have been developed to analyze mortality
rates. One of the most influential approaches to the stochastic modeling of such rates
is the parametric non-linear regression model proposed by Lee and Carter [1992]. The
Lee-Carter (LC) model proposes estimating the expected mortality rate as the non-linear
combination of age and period parameters. Subsequently, many attempts at developing
mortality models have drawn inspiration from the LC model, including, but not limited
to, Brouhns et al. [2002], Currie et al. [2004], Renshaw and Haberman [2003, 2006], Cairns
et al. [2006] and Plat [2009]. Two recent articles have outlined the common framework
employed by most of these models [Hunt and Blake, 2015; Currie, 2016], the aim of which
has been to estimate the expected mortality rate. Although important, the mean is just
one of the measures of interest of the conditional response distribution. Indeed, analytic
techniques that examine conditional distribution locations other than the mean are re-
quired to provide a more detailed description of the conditional distribution function of
the mortality rate.

In this article, we define the Lee-Carter quantile model for estimating the conditional
quantiles of the mortality rate. The LC quantile model is defined as a quantile regression
that models conditional quantiles as a non-linear function of age and period parameters.
Quantile regression (QR) was first introduced by Koenker and Bassett [1978] to model
conditional quantiles as a function of predictors. QRs have been widely applied in mor-
tality analysis, but most studies have tended to analyze the factors that account for the
conditional quantiles. For instance, Yang et al. [2012] examine the effects of inequality
across the mortality distribution in the US, and Kizhakethalackal et al. [2013] and Swain
et al. [2017] apply quantile regressions to study the factors affecting the child mortality.
A different approach has been adopted recently by Peters [2018] who applies QRs to the
modelling of mortality time-series data. Similarly, Uribe et al. [2018] apply time-series
techniques to model trends in the quantiles of the survival function. Here, we apply QRs
in the framework of stochastic mortality predictive models, making it, to the best of our
knowledge, a novel approach.

Modeling the conditional quantile mortality rates have appealing advantages. First,
the framework employed by the LC quantile model means we can capture all the distri-
butional features of the conditional distribution. For example, the observed pattern of
the mortality rate frequently shows a different variability at different ages [Brouhns et al.,
2002]. This feature would be overlooked by the regression approaches that focus on the
mean. In the LC quantile model the effect of the covariates on the response may vary at
different percentiles of the distribution, and, thus, complex relationships of predictors and
the response may be captured. Second, when the center of the conditional distribution
of the mortality rate is of interest, the LC median regression model provides more robust
estimators than the LC mean regression in presence of outliers. Third, the LC quantile
regression model does not assume any particular form on the error distribution, and so
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LC quantile model is appropriate when errors are not normal distributed. Fourth, the
LC quantile model is stable under monotonic transformations, so conditional quantile log
mortality rate estimates and log conditional quantile mortality rate estimates may be
considered indistinctly. Finally, the tails of the conditional distribution of the mortality
rate can be modeled and used to construct prediction intervals.

The use of quantiles is a major topic in the actuarial science, particularly in the field
of risk measures in risk management. Actuaries have been traditionally interested on the
behavior of loss random variables in the tails of their distributions, evaluated by means of
appropriate high quantiles [Embrechts et al., 2009; Belles-Sampera et al., 2014]. Here, we
argue that the conditional quantiles of the mortality rate distribution are also of great in-
terest by actuaries. Median mortality rate forecasts may be used by actuaries to compute
annuity factors for reserving and pensions, due to the appealing statistical properties of
their estimators. On the other hand, low quantiles of mortality rates have a direct appli-
cation in calculating stressed annuity factors in adverse scenarios.

The LC quantile model is a non-linear parametric regression model. Yet, estimating
the coefficients of a non-linear quantile regression is far from straightforward and here,
to address that challenge, we adopt the interior point method described in Koenker and
Park [1996] to estimate our LC quantile model parameters. Two alternative calibration
strategies are described: a) an iterative process of a sequence of linear optimization prob-
lems, and b) the linearization of the objective function. Subsequently, we apply the model
to Spanish mortality data. Macias and Santolino [2018] previously compared the impact
of two different mortality projection models on life insurance products in Spain, but here
we fit only the LC quantile model to the Spanish male and female populations.

The rest of this article is structured as follows. The Lee-Carter model is described
in Section (2). The quantile regression is described in Section (3). The LC quantile
model is defined and the procedure to estimate the parameters outlined in Section (4).
An application to Spanish mortality data is presented in Section (5). Finally, the main
conclusions are reported in Section (6).

2 Lee-Carter stochastic mortality model

The Lee-Carter mortality model, introduced in 1992 [Lee and Carter, 1992], can be de-
fined as follows:

log(mx,t) = ax + bx · kt + εx,t (1)

where mx,t is the central rate of mortality at age x and year t, ax and bx are the specific
age parameters and kt the time-varying index, x = 0, ..., ω and t = 1, ..., T . Finally, the
error εx,t has mean 0 and variance σε. Infinite solutions exist. For any scalars c and d,

the following transformations {ãx, b̃x, k̃t} = {ax − c · bx,
bx
d
, d · (kt + c)} give unaltered

fitted values. To overcome the lack of identifiability, Lee and Carter [1992] proposed two
constraints

∑
x bx = 1 and

∑
t kt = 0.

The conditional expectation is equal to

E
[
log(mx,t)

]
= ax + bx · kt.

The expectation is the value that minimizes the sum of squared errors. One strategy for
estimating the parameters is to minimize the squared errors. However, this model cannot
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be directly estimated by ordinary least squares because the right-hand side of equation
(1) is not linear with the parameters.

To estimate the coefficients, Lee and Carter [1992] proposed the application of singular
value decomposition (SVD), that is, decomposing the matrix of log mortality rates once
the average over time of log age-specific rates have been subtracted. Doing it, a vector
of coefficient estimates θ̃ is obtained, θ̃ = (ã0, ..., ãω, b̃0, ..., b̃ω, k̃1, ..., k̃T )>. In a second
step, the authors proposed recalibrating k̃t by iterative processes to match the estimated
number of deaths with the observed number of deaths in period t,∑

x

Nx,t =
∑
x

Ex,texp(ãx + b̃x · k̃t)

where Nx,t and Ex,t are the observed number of deaths and the exposure-to-risk in pe-
riod t and at age x. The motivation for this second-stage estimate is to avoid sizable
discrepancies between the numbers of predicted and actual deaths (which are likely to
occur because the first step is based on logarithms of death rates) [Lee and Carter, 1992;
Brouhns et al., 2002].

Brouhns et al. [2002] proposed estimating Lee-Carter model so as to take into greater
variability in older than in younger ages. The logarithm of the observed mortality rates
is much more variable at older ages than at younger ages because of the much smaller
absolute number of deaths at older ages. They suggested modelling the number of deaths
by means of a non-linear Poisson regression model with exposure-to-risk. By so doing, the
variance of the mortality rate is inversely related to the exposure-to-risk. Various authors
have proposed estimating parameters by maximum likelihood. Renshaw and Haberman
[2006], for example, showed how maximum likelihood estimates may be obtained under
the original LC Gaussian error structure or the Poisson error structure using an iterative
process. Villegas et al. [2018] defined a unified framework of stochastic mortality projec-
tion models that include LC and other mortality models and the authors introduced the
R package StMoMo to fit these models via maximum log-likelihood.

3 Quantile regression

Let Y be a continuous random variable (r.v.) with finite expectation and cumulative
distribution function FY defined by FY (y) = P (Y ≤ y). The inverse function of FY is
known as quantile function, Q. The quantile of order α is defined as Qα(Y ) = F−1Y (α) =
inf {y | FY (y) ≥ α} where α ∈ (0, 1). The quantile is a left-continuous increasing func-
tion. If FY is continuous and strictly increasing, the mathematical expectation can be
represented as E(Y ) =

∫ 1
0 Q1−u(Y )du.

Quantile regressions were introduced by Koenker and Bassett [1978]. Let us define the
conditional quantile

Qα(Y |X) = inf
{
y | FY |X(y) ≥ α

}
where X is a row vector of exogenous variables and FY |X the conditional cumulative
distribution. Suppose that the conditional quantile can be defined as

Qα(Y |X) = f(X, θα), (2)

for a certain function f , where θα is a vector of coefficients which depends on α. In the
particular case of the quantile linear regression, we have that f(X, θα) = X>θα.

For a given covariate set, the conditional quantile function fully characterizes the entire
conditional distribution function, unlike the mean which is just one of its characteristic
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quantities. Parameters of quantile regression are estimated by least absolute techniques.
Quantile regression has many of the appealing properties of the ordinary sample quantiles
[Koenker, 2005]. Thus, least absolute regression estimates are less sensitive to the presence
of outliers than ordinary least square regression estimates. Another appealing property is
that the QR is stable under monotonic transformations. For any monotone function g, it
holds that Qα(g(Y |X)) = g(Qα(Y |X)), while in general E[g(Y |X)] 6= g(E[Y |X]). These
two characteristics are specially appealing in the context of mortality rates since there
can be outliers (wars, pandemics, etc.) and often the log transformation is the function
of interest.

3.1 Quantile regression in presence of heteroscedasticity

The constant error variance (homoscedasticity) assumption of the original Lee-Carter
model in (1) has been criticized as unrealistic because of the observed pattern of the mor-
tality rates showing a different variability at different ages [Brouhns et al., 2002]. Quantile
regression models are particularly interesting in the presence of heteroscedasticity.

Let us assume that Y can be represented as

Y = f(X, θ) + ε,

for a certain function f , where f(X, θ) can be thought of as the conditional mean, which
depends on regressors X and the vector of coefficients θ, and ε is the error. Assume that
errors are independent and identically distributed, then the conditional quantile function
(2) can be written as

Qα(Y |X) = f(X, θ) +Qα(ε)

where the vector of coefficients θ does not depend on α. In that case, the quantile func-
tions are simply a location displacement of one another [Koenker, 2005]. Departing from
the assumption of identically distributed errors, we suppose now that Y is represented
as Y = f(X, θ) + σ(X)ε, where σ(X) is a conditional scale that depends on X. The
conditional quantile function would be, in that case, Qα(Y |X) = f(X, θ) + σ(X)Qα(ε).
The more general expression of the quantile function (2) includes both of these situations,
since θα is not restricted to be equal for all α.

Summarizing, quantile regressions can be used in those contexts that the conditional
distribution of Y depends on the regressors in complex ways in which the error is not
independent of regressors. Asymptotic theory for quantile linear regression models under
independent but not identically distributed errors is well developed [Koenker and Bassett,
1982; White and Kim, 2002; Parente and Santos Silva, 2016]. In fact, a number of tests
for heterocedasticity in linear regression models are based on the analysis of variations of
estimated coefficients of quantile linear regressions [Koenker and Bassett, 1982; Wilcox
and Keselman, 2006; Machado and Silva, 2011]. In the context of quantile non-linear
regression models, the pairs-bootstrap estimator of the covariance matrix of coefficient
estimates is widely used [Buchinsky, 1995].

4 Lee-Carter quantile regression

Our interest lies in a non-linear quantile regression model in the framework of the stochas-
tic mortality projection models. We define the Lee-Carter quantile model equivalent to
the LC model (1) as follows
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Qα(log(mx,t)) = aαx + bαx · kαt , (3)

where superscript α indicates the α-quantile associated with the parameters. As in the
case of the Lee-Carter mean regression model, to overcome the lack of identifiability, two
constraints are established, namely

∑
x b

α
x = 1 and

∑
t k

α
t = 0.

Under these constraints, the interpretation of the coefficients is equivalent to that in
the traditional Lee-Carter regression model but here adapted to quantiles. Specifically,

• aαx indicates the expected α quantile of log(mx,t) for age x over time.

• bαx indicates variations to the expected α quantile for age x in relation to the time
trend.

• kαt is the time index that captures the trend over time of the α-quantile for all ages.

4.1 Model fitting

In the same way as the mean is the value that minimizes the sum of squared deviations,
the median minimizes the sum of absolute deviations. A widely used strategy to estimate
the parameters of the mean regression involves minimizing the squared errors by means
of least squares techniques. Similarly, parameters of quantile regression are estimated by
least absolute techniques.

The problem of finding the α sample quantile of an empirical distribution τα may be
written as a problem of minimization of a loss function ρα as follows,

min
τ∈R

n∑
i=1

ρα(yi − τα)

where n is the sample size. The loss function is defined as ρα(ri) = ri(α − Iri<0) for
α ∈ (0, 1), where Iri<0 is an indicator function such that Iri<0 = 1 if ri < 0 and zero
otherwise. Note that in the median case (α = 0.5), this optimization problem is equivalent
to min

∑n
i=1 |yi − τ0.5|. Let us consider the LC conditional α quantile model defined in

expression (3). The set of parameters

θα = (aα0 , ..., a
α
ω, b

α
0 , ..., b

α
ω, k

α
1 , ..., k

α
T )>

is estimated by solving the following optimization problem

min
θα∈Rp

n∑
i=1

ρα(gi(θ
α)) (4)

where gi(θ
α) = yi − f(xi, θ

α), with yi = log(mxi,ti), and f(xi, ti, θ
α) = aαxi + bαxi · k

α
ti . The

set of parameters θα is a vector of dimension p = 2 + 2 · ω + T and the sample size n is
equal to n = (1+ω) ·T . The quantile regression optimization problem can be represented
as

min
θα∈Rp,u≥0,v≥0

α

n∑
i=1

ui + (1− α)

n∑
i=1

vi (5)

subject to
ui − vi = gi(θ

α),
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where ui = gi(θ
α) if gi(θ

α) > 0 or 0 otherwise, and vi = |gi(θα)| if gi(θ
α) < 0 or 0 other-

wise, i = 1, ..., n.

Two alternative strategies can be adopted to estimate parameters based on the inte-
rior point method optimization algorithm explained in Koenker and Park [1996]. Under
the first strategy (Method A), coefficients are estimated by means of an iterative process
of a sequence of linear optimization problems. The interior point method algorithm for
linear problems is used in each sequence of the optimization process. Under the sec-
ond strategy (Method B), the interior point method algorithm for non-linear problems
is applied directly. The two optimization methods are described in Appendix A. The
algorithm used in both strategies is based on Maketon method [Koenker and Park, 1996].
Alternative algorithms may be used to resolve quantile regression problems by interior
point methods, some of them implemented in standard software. For instance, the algo-
rithms implemented in the R package quantreg for quantile linear regressions are based
on Mehrotra’s Predictor-Corrector method [Portnoy and Koenker, 1997; Koenker, 2019].
In the case of non-linear quantile regressions, the algorithm implemented in the function
nlrq is based on the Meketon algorithm, but this function can only be applied to full-rank
design matrices (which is not the case of the LC model framework).

To conclude, a number of studies has recommended to smooth coefficient estimates
of LC conditional mean regression models [Currie et al., 2004; Renshaw and Haberman,
2003]. Smoothing techniques may be applied in the context of quantile regression mod-
els. For example, Koenker et al. [1994] and Yu and Jones [1998] used local lineal fitting
and splines, respectively. Wang et al. [2009] analyzed varying coefficient models for de-
pendent data. The optimization methods described in Appendix A can be adapted to
smooth coefficients estimates. Smoothing methods can be applied after each linear min-
imization problem is optimized (Method A) or after each iterate (Method B). In this
article coefficient estimates are not smoothed in order to evaluate the performance of the
two optimization methods without the impact of exogenous factors, as the application
of smoothing techniques. Estimation techniques of quantile non-linear models are not as
well studied as compared to methods of estimating conditional mean non-linear models.
So, the analysis of the parameter estimation methods of the LC quantile model is of great
interest itself. In addition, LC quantile coefficient estimates can be easily compared with
LC mean coefficient estimates.

4.2 Forecasting the quantile mortality index

This section follows the same approach as that taken in the case of LC conditional mean
models [Lee and Carter, 1992; Brouhns et al., 2002; Renshaw and Haberman, 2006]. The
dynamics of the mortality quantiles are captured by the set of estimated mortality indexes
(kα1 , ..., k

α
T ). If the goal of the LC quantile model is to project mortality quantile rates into

the future, then time-series techniques are required to model quantile mortality indexes.

Our objective in this section is to find the appropriate univariate ARIMA model for
the mortality index kαt , t = 1, .., T . In this approach, kαt follows an ARIMA(p,d,q) with
drift, so that

∆dkαt = δ0 + φ1∆
dkαt−1 + ...+ φp∆

dkt−p + ηt + δ1ηt−1 + ...+ δqηt−q (6)

where ∆ is the difference operator, d the number of non-seasonal differences needed for
stationarity and ηt is a Gaussian noise process with variance ση. The set of parameters is
(δ0, φ1, .., φp, δ1, ..., δq), with δ0 the drift parameter, p the number of autoregressive terms
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and q the number of lagged forecast errors.

5 Application to the Spanish data

In what follows the LC quantile model is fitted to Spanish mortality data to illustrate
its application. The number of deaths observed, exposures and central mortality rates
for the Spanish population by gender were obtained directly from the Human Mortality
Database HMD [2019] for the observation period 1908-2016 and for ages 0-100.

5.1 Mean vs. Median

Mean and median give information of the center of the distribution. While the mean
minimizes the sum of squared errors, the median minimizes the sum of absolute errors.
So, LC quantile regression coefficient estimates are expected to be close to the LC mean
regression coefficient estimates in the case of the median.

We compare the performance of the LC conditional mean model with that of the LC
conditional median (50%-quantile) model. Three alternatives LC mean models were con-
sidered: the original LC model introduced by Lee and Carter [1992](LC Mean); the LC
mean model with Poisson residuals (LC Mean Poisson); and, the LC mean model with
Gaussian residuals (LC Mean Gaussian). The LC Mean model was estimated by SVD
and kt’s were recalibrated in a second step. The LC Mean Poisson and LC Mean Gaus-
sian models were estimated by maximum likelihood of the generalized non-linear model
[Turner and Firth, 2018]. Models were separately calibrated by gender. The sum of ab-
solute errors and the sum of squared errors of the fitted models are reported in Table (1).

Almost identical results were obtained when using the two LC median model estima-
tion methods. A comparison with the LC mean models shows that the sum of absolute
errors is lower for the two LC median models estimated. Note that the performance of the
LC median models is reasonably good, even when the sum of squared errors is analyzed.
More specifically, only the LC Mean Gaussian model presents a lower sum of squared
errors. In contrast, the original LC Mean model and LC Mean Poisson model show the
poorest performance in all cases, albeit that the latter performs slightly better than the
former.

The section that follows reports the results of the LC α-quantile models for the Spanish
male population. Results for the Spanish female are in Appendix B.

5.2 Coefficient estimates and α quantile mortality rates

Coefficient estimates of the LC α-quantile model are shown in Figure (1). LC quantile
models are estimated with Method B for the set of α’s equal to (0.10, 0.50, 0.90). Results
are compared with estimates for the LC conditional mean model (with Poisson error dis-
tribution). Although this is not the LC mean model that performs best, there are two
reasons that justify its selection. First, the LC model with Poisson distributed errors is
widely used and, second, the performance of the LC mean model with Gaussian errors is
similar to that of the LC median model. Thus, the comparison between LC conditional
quantile and conditional mean models is enriched by considering the Poisson error distri-
bution.

Note that aαx increases with α for all ages. This result is expected as aαx collects the
estimated α quantile for age x over time. The largest gap between a0.10x and a0.90x is ob-

8



0 20 40 60 80 100

−
7

−
6

−
5

−
4

−
3

−
2

−
1

a_x

Age

10

50

90

Mean

0 20 40 60 80 100

0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

b_x

Age

10

50

90

Mean

k_t index

year

 

1920 1940 1960 1980 2000 2020

−
1

5
0

−
5

0
0

5
0

1
0

0

10

50

90

Mean

Figure 1: Coefficient estimates for LC α-quantile models fitted to the Spanish male population for
ages 0-100 and the period 1908-2016. Green dash-dotted lines represent coefficient estimates of the LC
10-quantile model, black dotted lines represent coefficient estimates of the LC median model, and red
dashed lines represent coefficient estimates of the LC 90-quantile model. Black dashed lines represent
coefficient estimates of the Poisson LC mean model.
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Males Females
Sum of absolute errors

LC Mean 1596.96 2213.51
LC Mean Poisson 1506.30 1857.93
LC Mean Gaussian 1279.07 1261.80
LC Median (Method A) 1227.25 1234.59
LC Median (Method B) 1226.87 1233.96

Sum of squared errors
LC Mean 478.95 1073.81
LC Mean Poisson 430.08 731.34
LC Mean Gaussian 272.76 245.05
LC Median (Method A) 300.96 255.80
LC Median (Method B) 301.49 256.74

Table 1: Comparison of LC conditional median models and LC conditional mean models fitted to the
Spanish male population for ages 0-100 and the period 1908-2016. LC Mean represents the original
LC mean model introduced by Lee and Carter [1992], LC Mean Poisson represents the LC mean
model with Poisson residuals and LC Mean Gaussian represents the LC mean model with Gaussian
residuals. LC Median (Method A) and LC Median (Method B) represent the LC conditional median
models estimated by method A and method B.

served in the late twenties-early thirties. Similar values are observed for a0.50x and ameanx .
In the case of the bαx and kαt , a clear pattern of variations of coefficients with α is not
observed. In both cases, the estimates seem to present higher oscillations when α is 0.90.

Let us focus on time-varying index estimates. Three peaks are evident over time for
k0.90t , i.e., in the late 1910s (Spanish flu epidemic), around 1940 (Spanish civil war), and
in the late ’80s and early ’90s (mortality associated with HIV, [CNE, 2011]). The first
two peaks are also appreciated for the other time index estimates, particularly for k0.50t .
Note that the trend of the time-varying index provides information of the variation of the
(log) mortality rate over time. A similar decreasing trend (degree of inclination) is ob-
served in all kαt ’s. Thus, in relative terms, the reductions over time of all three α quantile
(log) mortality rate estimates are similar. However, in those periods that mortality rises,
the relative increase is more accentuated for high quantile (log) mortality rate estimates.
Comparing kαt ’s with the mean time-varying index kt, the latter seems to show a slightly
faster decreasing trend in the last two decades of the time series.

Quantile (log) mortality rate estimates for four different years (1908, 1975, 2000, and
2016) are reported in Figure (2). It is apparent that observed mortality rates lay between
the estimated 10 and 90% quantile rates in most cases. Interestingly, in 2000 and 2016,
the estimated mean rates were lower than the observed rates for ages below 40. The
distance is particularly notable for ages below 20 and for calendar year 2016.

5.3 Analysis of heteroscedasticity

The 80%-confidence intervals of the estimated mean mortality rates at ages 20, 40, 60, 80
and 100 are reported in Figure (3). Confidence intervals were based on 5,000 semiparamet-
ric boostrap samples of the Lee-Carter model. The semiparametric bootstrap technique
is described in Brouhns et al. [2005]. We use the function bootstap.fitStMoMo from the
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Figure 2: Quantile (log) mortality rate estimates for years 1908, 1975, 2000 and 2016 from LC α-
quantile models fitted to the Spanish male population. Green dash-dotted lines represent 10-quantile
(log) mortality rate estimates, black dotted lines represent median (log) mortality rate estimates, and
red dashed lines represent 90-quantile (log) mortality rate estimates. Black dashed lines represent
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Figure 3: Mortality rate estimates at ages 20, 40, 60, 80 and 100 from the Poisson LC mean model
fitted to the Spanish male population. Dots show observed mortality rates, solid grey lines show the
corresponding fitted rates and black dashed lines represent 80% confidence interval estimates.

package StMoMo [Villegas et al., 2018]. Figure (3) shows that parameter uncertainty at
80% confidence level has a moderate impact. Confidence intervals could be estimated to a
higher degree of confidence level to see the impact of parameter uncertainty. Additionally,
it is important to consider all sources of uncertainty in mortality projection models. In
Section (5.5) it is shown the high impact of the uncertainty arising from projections of
the time-varying index.

The estimated median, 10 and 90% quantile mortality rates at ages 20, 40, 60, 80 and
100 are reported in Figure (4). Estimated quantile mortality rates seem to capture better
the shape of the observed mortality data. Now, we can see that most of observations lay
on the inter-decile area. The width of the inter-decile range varies with age and calendar
year. For example, at age 100 a declining trend is observed for the the width of the range
between the 10 and 90% quantile rates. This declining trend is not observed for the rest
of ages. At age 20 the inter-decile range increases from the middle of 80’s onwards. The
peaks between the estimated 10 and 90% quantile mortality rates are observed in the late
1910s, around 1940, and in the late ’80s and early ’90s (flu, civil war and HIV). Another
interesting result is that the distance of the median with the 10 and the 90% quantiles is
not symmetric and varies over time.

5.4 Analysis of residuals

The diagnostic of residuals is carried out by estimating raw residuals, i.e., gi(θ̂
α) =

yi − f(xi, ti, θ̂
α) for i = 1, . . . , n. Quantile residuals are then compared with the raw
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Figure 4: Quantile mortality rate estimates at ages 20, 40, 60, 80 and 100 from the LC α-quantile
model fitted to the Spanish male population. Dots show observed mortality rates and solid grey lines
show the corresponding fitted median. Black (short) dashed lines represent 10% quantile mortality
rate estimates and black (large) dashed lines represent 90% quantile mortality rate estimates.
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Figure 5: Diagnostics of residuals by age (left) and year (right) for LC α-quantile models fitted
to the Spanish male population for ages 0-100 and the period 1908-2016. Green dash-dotted lines
represent percentage of residuals with negative sign for the 10-quantile rate estimates, black dotted
lines represent percentage of residuals with negative sign for the median rate estimates, and red
dashed lines represent percentage of residuals with negative sign for the 90-quantile rate estimates.
Black dashed lines represent mean residuals for the Poisson LC mean model.

residuals of the LC mean model. For the LC α quantile models estimated, Figure (5)
[left] reports the percentage of sample observations below the estimated conditional quan-
tile mortality rate according to age. In the case of the LC mean model, the mean of
residuals by age is displayed. Figure (5)[right] reports the percentage of observations be-
low the estimated quantile mortality rates and the mean of residuals by the calendar year.

If we analyze residuals by age (Figure (5)[left]), the performance of the the LC quantile
model is good for all ages and α’s. The percentage of observations below the α quantile
values remains very stable around α for all ages. By contrast, some oscillations are ob-
served for the mean of residuals for young ages in the LC mean model. Remember that
the expected mean of residuals should be null in the case of the LC mean model.

In general, more oscillations are observed when residuals are analyzed by the calen-
dar year (Figure (5) [right]), especially for the LC median model and mean models. In
both cases, results show an increasing trend from the 1960s onwards. In the case of the
LC 10%-quantile model, the percentage shows a slightly increasing trend from the 2000s
onwards. Finally, the period of greatest instability for the 90% quantile is between the
1940s and 1980s. These results seem to indicate that the LC model framework does not
fully capture the trend over time for the entire period under observation. To improve
the model’s performance, a potential solution could involve shortening the observation
window. Another option would be to consider a more complex model framework.
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Figure 6: Forecasting kαt indexes of LC α-quantile models and kt index of Poisson LC mean model for
the period 2017-2050. Blue lines represent point forecasts and shaded area represent 95% prediction
intervals.

5.5 Forecasting mortality indexes and α quantile mortality
rates

Forecasting the time index requires time-series techniques. First, we need to select the
best time series process to model kαt in the framework of the expression (6). We fit ARIMA
models with drift to data and select the best model for each time series based on AIC
criteria. Table (2) shows the selected ARIMA model for each time index and coefficient
estimates.

LC Model ARIMA δ̂0 φ̂1 φ̂2 σ̂ε
10-quantile ARIMA(2,1,0) -2.02 0.13 0.20 25.65
Median ARIMA(1,1,0) -2.00 -0.26 - 57.97
90-quantile ARIMA(1,1,0) -1.93 -0.25 - 118.4
Mean ARIMA(2,1,0) -2.20 -0.19 0.15 22.75

Table 2: Coefficient estimates of the ARIMA model for the time index of LC α-quantile models and
Poisson LC mean model fitted to the Spanish male population for ages 0-100 and the period 1908-2016.

Taking the estimated coefficients as shown in Table (2), each time index is projected
for 34 years in the future. Figure (6) shows the projections of each time index with a
95% confidence interval. Note that randomness -that is, the variance of the noise process-
increases with α as indicated in Table (2). Figure (6) shows that the width of the confi-
dence intervals of kαt ’s increases with α.

Finally, Figure (7) shows predicted α quantile log mortality rates and mean log mor-
tality rates for 2025 (Figure (7)[left]) and 2050 (Figure (7)[right]). Mortality is expected
to improve, especially for the young and middle-aged (under 50 years). In contrast, im-
provements are more moderate among those of a more advanced age. Note that in both
cases, the inter-quantile range between 10 and 90% reaches a maximum at ages below 10,
the distance thereafter decreasing with age. In both cases the predicted mean mortality
rate is clearly lower than the predicted median for ages under 50 years. The difference is
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Figure 7: Forecasting α quantiles of (log) mortality rates for years 2025 and 2050 from Lee-Carter α-
quantile models fitted to the Spanish male population. Green dash-dotted lines represent 10-quantile
predictions, black dotted lines represent median predictions, and red dashed lines represent 90-quantile
predictions. Black dashed lines represent mean predictions with the Poisson LC mean model.

particularly notable at young ages, where the predicted mean mortality rate is lower than
the predicted 10% quantile. This result reflects the fact that the conditional mean only
gives a partial portrait of the mortality rate distribution and emphasizes the need to have
information for the whole conditional distribution of the mortality rate, especially that of
the tails.

5.6 Illustration: annuities

The application of quantile mortality rates is illustrated in the valuation of term imme-
diate annuities. Consider an annuity of 1 per year payable annually at the end of the
year, conditional on the survival of the annuitant to the payment dates. We compute the
present value (PV) of a term immediate annuity. We follow the notation given by Dickson
et al. [2009]. The present value of a term immediate annuity is represented as a

x:n|, where

x is the age of the annuitant and n the number of terms. Under this annuity payments
of 1 are made at times k = 1, 2, ..., n, conditional on the survival of the annuitant. The
conditional probability that annuitant at age x in the year t survives at least age x+ 1 is
computed as px,t = e−mx,t . Quantile and mean mortality rates are used in the valuation
of term immediate annuities. It is worth mentioning that Q1−α (px,t) = e−Qα(mx,t), while
in general E [px,t] 6= e−E[mx,t].

Figure (8) shows the present value of the term immediate annuities. Actuaries are
primarily concerned with the trends in adult ages in extreme scenarios. The a

x:n| is com-

puted for annuitants at ages from 67 to 100 years and the last payment is made when the
annuitant reaches the age of 101, n = (101− x). The valuation of the PV is made at the
beginning of the year 2017. Mortality rates used in the computation of the PV are quan-
tile mortality rate forecasts at levels 5%, 50%, 95%. Results are compared with the PV
when mean mortality rate forecasts are applied. Interest rates used in the valuation are
spot rates provided by the European Central Bank. Negative interest rates were replaced
by zero.

Remark. For any natural number h > 1, the conditional survival probability hpx,t is
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Figure 8: Present value (PV) of a term immediate annuity at ages from 67 to 100 years and the
last payment at age of 101. Dash-dotted line represents PV’s based on 5-quantile mortality rate
predictions, dotted line represents PV’s based on median mortality rate predictions, and dashed line
represents PV’s based on 95-quantile mortality rate predictions. Solid line represents PV’s based on
mean mortality rate predictions with the Poisson LC mean model.

computed as hpx,t = e−(mx,t+mx+1,t+1+···+mx+h−1,t+h−1). Aggregation properties of quantiles
have been extensively studied in the actuarial field [Embrechts et al., 2009; Emmer et al.,
2013; Dhaene et al., 2006]. Let us consider two mortality rates, mx,t and mx+1,t+1. Under
comonotonicity (perfect positive dependence between mx,t and mx+1,t+1), it holds that
Qα(mx,t) +Qα(mx+1,t+1) = Qα(mx,t +mx+1,t+1). In case that the subadditivity property
is satisfied, defined as Qα(mx,t +mx+1,t+1) ≤ Qα(mx,t) +Qα(mx+1,t+1), then Qα(mx,t) +
Qα(mx+1,t+1) is the maximum possible value of the quantile of the aggregation of mx,t

and mx+1,t+1. Consequently, Q1−α(2px,t) = e−(Qα(mx,t)+Qα(mx+1,t+1)) is the minimum
(1 − α) quantile of the probability of the annuitant at age x and time t survives at least
age x + 2. Formally, the subadditive property of quantiles cannot be generalized to all
contexts, but the violation of subadditiviy is infrequent in practice [de Vries et al., 2005].
Some interesting cases satisfying the subadditivity property of quantiles include elliptical
distributions, Archimedean survival dependence structure or independent and identically
distributed and positively regularly varying random variables.

6 Conclusions

In this article, we have proposed a quantile non-linear regression model to predict con-
ditional quantile mortality rates. We have adapted the Lee-Carter model framework to
the context of conditional quantiles and we describe two strategies for estimating the re-
gression coefficients. We show that the LC quantile model fully characterizes the entire
conditional distribution function of the mortality rates, unlike the LC mean model which
only provides the expected mean value.

The application of the methodology is illustrated by means of an example using Span-
ish mortality data. The performance of the LC conditional median model was compared
with that of the LC conditional mean model. The sum of absolute errors and the sum of
squared errors of the fitted models was analyzed, and the LC median model was found
to perform well even when the sum of squared errors was compared. The residuals of the
LC quantile models were evaluated conditioned to age and the calendar year. The results
when conditioned to age, especially for males, were highly satisfactory. However, greater
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instability was observed when conditioned to the year. The performance of the LC mean
model was no better and, on occasions, was markedly worse, indicating that additional
time index terms may be required to model Spanish mortality data.

A Appendix. Optimization strategies

A.1 Sequence of linear optimization problems

Method A draws inspiration from Wilmoth [1993] and Renshaw and Haberman [2006] who
propose an iterative process to estimate sequentially the parameters of the traditional LC
regression model. Similarly, in this section we convert the non-linear optimization prob-
lem (4) in a sequence of three minimization linear problems. The iterative process ends
when the objective function no longer improves. The algorithm can be stated as follows:

Algorithm
Set starting values b̃αx = 1/(1 + ω), k̃αt = 0, for all x and t, and oldobj=big.

(i) Given b̃αx and k̃αt , estimate aαx such as min
∑n

i=1 ρα(log(mx,t)− aαx − b̃αx · k̃αt ).

(ii) Given ãαx and b̃αx , estimate kαt such as min
∑n

i=1 ρα(log(mx,t)− ãx − b̃αx · kαt ).

(iii) Given ãαx and k̃αt , estimate bαx such as min
∑n

i=1 ρα
(
log(mx,t)− ãαx − bαx · k̃αt

)
.

(iv) Given θ̃ = (ãαx , b̃
α
x , k̃

α
t ), compute newobj=

∑n
i=1 ρα(gi(θ̃

α)).

(v) If (oldobj-newobj) ≤ ε then stop, otherwise oldobj←newobj and move to (i), where
ε is the tolerance value.

At steps (i), (ii) and (iii), a linear minimization problem has to be optimized. The
quantile linear regression optimization problem in matrix notation can be represented as

min
θα∈Rp,u≥0,v≥0

α1>n u+ (1− α)1>n v s.t X>θα + u− v = Y. (A.1)

where Y > = (log(m0,1), ..., log(mω,T )), θα is the set of parameters to estimate and X is
an observed matrix of binary variables (obviously, θα and X will depend on the step in
the algorithm). The dual version of this optimization problem is

max
d∈[α−1,α]n

Y >d s.t X>d = 0. (A.2)

To solve the linear problem (A.2) the Meketon algorithm described in Koenker and
Park [1996] is applied. We start with any feasible point d0 = {di}i=1,..,n in the interior of
the constraint set:

1. Compute D = diag(min{α− di, 1 + di − α}).
2. Compute θα = (X>D2X)−1X>D2Y .

3. Compute w = maxi=1...,n

(
max

(1>nD2r
α−di ,

−1>nD2r
1−α+di

))
, where r = Y −X>θα.

4. Update d, such as d← d+ (ν/w)D2r.

5. If
(∑n

i=1 ρα(ri)− Y >d
)
≤ ε then stop, otherwise move to (1), where ε is the toler-

ance level.

The parameter ν is bounded in [0, 1]. Koenker and Park [1996] recommend using a value
close to one and propose setting ν = 0.97. We use this value in our application.
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A.2 Non-linear optimization problem

Method B seeks to solve the non-linear problem (4) directly. Provided that the functions
gi are continuously derivable in θα, a necessary condition for solving (4) is that a vector
d ∈ [α− 1, α]n exists such that

J(θα)>d = 0

and

g(θα)>d =
n∑
i=1

ρα(gi(θ
α))

where J(θα) is the vector of first derivatives of f(xi, θ
α) with respect to θα and g(θα) =

(g1(θ
α), ..., gn(θα))> [El-Attar et al., 1979; Koenker and Park, 1996].

The dual version of (5) can be expressed now as,

max
d∈[α−1,α]n

g(θα)>d s.t J(θα)>d = 0. (A.3)

The affine scaling step method is applied to solve the optimization problem (A.3). Let
us consider the locally linearized expression without a constant term, g(θα) ≈ J(θα)δθα ,
where δθα ∈ Rp is the vector of coefficients.

Suppose that g(θα) and J(θα) do not depend on θα. The Meketon algorithm described
in (A.1) can be applied to estimate δθα , taking into account that we have g, J and δθα

instead of Y , X and θα. The solution is obtained as θα ← θα+λ ·δθα , where the estimated
δθα is the affine scale direction and λ the length of the scale. The length of the affine scale
is chosen in order to minimize

∑n
i=1 ρα(gi(θ

α + λ · δθα)). As g and J depend on θα, the
affine scaling method is applied iteratively. In each iteration, g and J are updated with
the new θα.

Before moving to the next iterate, we need to ensure that the current d is a feasible
point. To continue with the optimization algorithm, d is projected in the null space of
the updated J(θα), dp = (In − J(θα)(J(θα)>J(θα))−1J(θα)>)d, where In is the identity
matrix. The projected dp is now rescaled to ensure that it is bounded in [α−1, α]. Let us
consider h = maxi{(dpi , 0)}. If h > α, then dp ← dp · α/(h+ ε), for a tolerance parameter
ε. Now, we compute c = maxi{(−dpi , 0)} and if c > 1− α, then dp ← dp · (1− α)/(c+ ε).
The projected dp bounded in [α − 1, α] is used as our starting point for the next iter-
ate. The algorithm ends when the new iterate fails to improve the objective function,∑n

i=1 ρα(gi(θ
α)), by a specified tolerance level.

Method B allows us to estimate standard errors. Let us consider θ̂α to be the es-
timated set of coefficients that minimizes the optimization problem (A.3). To compute
the standard errors of δθ̂α , g and J are considered in the solution, g(θ̂α) and J(θ̂α). The
asymptotic theory of quantile linear regressions can be applied to estimate standard errors
and confidence intervals of δθ̂α [Koenker, 2005; Hao and Naiman, 2007]. The covariance

matrix of θ̂α can be approximated by the covariance matrix of δθ̂α .

To conclude, alternative algorithms may be used to resolve quantile regression prob-
lems by interior point methods, some of them implemented in standard software. For
instance, the algorithms implemented in the R package quantreg for quantile linear re-
gressions are based on Mehrotra’s Predictor-Corrector method [Portnoy and Koenker,
1997; Koenker, 2019]. In the case of non-linear quantile regressions, the algorithm imple-
mented in the function nlrq is based on the Meketon algorithm, but this function can only
be applied to full-rank design matrices (which is not the case of the Lee-Carter model
framework).

19



0 20 40 60 80 100

−8
−7

−6
−5

−4
−3

−2
−1

a_x

Age

10

50

90

Mean

0 20 40 60 80 100

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

b_x

Age

10

50

90

Mean

k_t index

year

 

1920 1940 1960 1980 2000 2020

−1
50

−5
0

0
50

10
0

15
0 10

50

90

Mean

Figure B.1: Coefficient estimates for LC α-quantile models fitted to the Spanish female population
for ages 0-100 and the period 1908-2016. Green dash-dotted lines represent coefficient estimates of
the LC 10-quantile model, black dotted lines represent coefficient estimates of the LC median model,
and red dashed lines represent coefficient estimates of the LC 90-quantile model. Black dashed lines
represent coefficient estimates of the Poisson LC mean model.

B Appendix. Analysis for Spanish female popu-

lation

Results for Spanish female data are shown in the Appendix. According to AIC criteria,
the selected ARIMA process to model k0.10t was ARIMA(2,1,0) with drift. In the rest of
cases, including the LC mean regression, the best fit was observed for an ARIMA(1,1,0)
model with drift.
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Figure B.2: Quantile (log) mortality rate estimates for years 1908, 1975, 2000 and 2016 from LC α-
quantile models fitted to the Spanish female population. Green dash-dotted lines represent 10-quantile
(log) mortality rate estimates, black dotted lines represent median (log) mortality rate estimates, and
red dashed lines represent 90-quantile (log) mortality rate estimates. Black dashed lines represent mean
(log) mortality rate estimates with the Poisson LC model and black thick lines represent observed (log)
mortality rates.
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Figure B.3: Mortality female rate estimates and 80% confidence interval for the Poisson LC mean
model (left) and α quantile mortality female rates estimates for LC α-quantile models (right) at ages
20, 40, 60, 80 and 100 and α = (0.10, 0.50, 0.90). Dots show observed mortality rates and solid grey
lines show the corresponding fitted rates.

21



0 20 40 60 80 100

−0
.5

0.
0

0.
5

1.
0

Age

mean

median

10−quantile

90−quantile

1920 1960 2000

−0
.5

0.
0

0.
5

1.
0

Year

mean

median

10−quantile

90−quantile

Percentage of cases below (quantile LC) and expected value (mean LC) 

Figure B.4: Diagnostics of residuals by age (left) and year (right) for LC α-quantile models fitted
to the Spanish female population for ages 0-100 and the period 1908-2016. Green dash-dotted lines
represent percentage of residuals with negative sign for the 10-quantile rate estimates, black dotted
lines represent percentage of residuals with negative sign for the median rate estimates, and red
dashed lines represent percentage of residuals with negative sign for the 90-quantile rate estimates.
Black dashed lines represent mean residuals for the Poisson LC mean model.
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Figure B.5: Forecasting kαt indexes of LC α-quantile models and kt index of Poisson LC mean model
for the period 2017-2050. Blue lines represent point forecasts and shaded area represent 95% prediction
intervals.
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Figure B.6: Forecasting α quantiles of (log) mortality rates for years 2025 and 2050 from LC α-
quantile models fitted to the Spanish female population. Green dash-dotted lines represent 10-quantile
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