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Abstract

Topological quantum field theories (TQFTs) are functors from the category of bordisms to
the category of vector spaces that preserve their monoidal structure. Such functors arose
in Physics but have proven to be useful in various fields of Mathematics. TQFTs give
topological and geometric invariants of manifolds, and thus may help in understanding
and classifying them.

In this work, however, we perform the reverse process: the completely known clas-
sification of 1- and 2-dimensional manifolds will serve as the ground that permits us
comprehend TQFTs in these dimensions and determine their underlying structure. In
particular, we give a detailed description of 1- and 2-dimensional TQFTs in terms of
finite-dimensional vector spaces and commutative Frobenius algebras, respectively.

We conclude by trying to elucidate the relation between TQFTs and Physics. We
discuss the common structural properties shared by Hilbert spaces and spacetimes, which
motivate the connection of quantum theory with general relativity via TQFTs.

Resum

Les teories quàntiques de camps topològiques (TQFTs, de l’anglès) són functors de la
categoria de bordismes a la categoria d’espais vectorials que preserven la seva estructura
monoidal. Aquests functors aparegueren en la F́ısica, però s’ha demostrat la seva utilitat
en altres àrees de les Matemàtiques. Les TQFTs donen invariants topològics i geomètrics
de varietats, i per tant poden ajudar a entendre-les i classificar-les.

En aquest treball, no obstant, procedim de manera inversa: la classificació completa-
ment entesa de varietats uni- i bidimensionals serviran de base per entendre les TQFTs
en aquestes dimensions i determinar la seva estructura subjacent. En particular donarem
una descripció detallada de les TQFTs en dimensió 1 i 2 en termes d’espais vectorials de
dimensió finita i d’àlgebres de Frobenius commutatives, respectivament.

Conclourem tractant de dilucidar la relació entre TQFTs i la F́ısica. Discutirem les
propietats estructurals comunes entre els espais de Hilbert i els espai-temps, fet que motiva
la connexió entre teoria quàntica i relativitat general mitjançant les TQFTs.
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1 Introduction

You should never wear your best when you go out to fight
for freedom and truth.

— Henrik Ibsen, An enemy of the people

I grow old . . . I grow old . . .
I shall wear the bottoms of my rolled.

Shall I part my hair behind? Do I dare to eat a peach?
I shall wear white flannel , and walk upon the beach.
I have heard the mermaids singing, each to each.

I do not think that they will sing to me.

— T. S. Eliot, The Love Song of J. Alfred Prufrock

Yeah, you should think about getting yourself a ! I feel all
exposed and nasty!

— Donkey [in Puss in Boots’ body], in Shrek 3

Topological quantum field theories were introduced by the theoretical physicist E. Wit-
ten in [Wit]. He coined this term to describe a type of quantum field theories1 in which
the expectation values of observables encode information about the topology of spacetime.
Shortly after, M. Atiyah provided a rigorous axiomatization of Witten’s topological quan-
tum field theories (see [Ati]) in purely mathematical terms, inspired on Segal’s axioms
for conformal field theories, which can be found in [Seg]. According to his definition, a
topological quantum field theory of dimension d is a rule that assigns a Λ-module to each
oriented closed smooth d-dimensional manifold and a Λ-module homomorphism to each
smooth (d + 1)-dimensional manifold with boundary, such that some requirements are
satisfied.2

Roughly, in Atiyah’s axiomatization d-dimensional manifolds correspond to the space,
which are mapped to Hilbert spaces (whose vectors are quantum states of a physical sys-
tem), whereas (d+1)-dimensional manifolds correspond to spacetime, which are mapped
to operators between Hilbert spaces (that represent processes from one state to another
one).

Topological quantum field theories (or TQFTs for short) are most elegantly described
using the language of Category Theory. This theory is essentially used to find patterns and
similarities between different mathematical structures. A category consists in a collection
of objects (for example, objects can be sets, vector spaces and other algebraic objects,
but can also be of topological or geometric origin) and a collection of morphisms between
these objects (which are usually applications preserving the structure of the objects, but
can also be of different nature, as we will see when we introduce bordisms). The notion of
morphism can be generalized to that of functor: applications between categories. In this
setting, topological quantum field theories are functors from the category of bordisms to

1As Peskin and Schoeder explain in their book [PS], a quantum field theory is a theoretical model that
“combines three of the major themes of modern physics: the quantum theory, the field concept, and the
principle of relativity.”

2Notice the discrepancies between Atiyah’s formulation and the one we will give: our n-dimensional
topological quantum field theories correspond to Atiyah’s (n− 1)-dimensional ones. We will also require
the ring Λ to be a vector space k.

1



the category of vector spaces.

The concept of bordims (also known as cobordisms) is due to L. Pontrjagin and R.
Thom; as Dieudonné points out in [Die], Pontrjagin’s article [Pon1] “may be consid-
ered the germ of the much more extensive theory of cobordism inaugurated by Thom in
1953 [Tho].” Bordism theory was originally studied “as a revival of Poincaré’s unsuc-
cessful 1895 attempts to define homology using only manifolds”, and flourished during
the 1950s and early 1960s, with its various applications in Topology, such as the Hirze-
bruch–Riemann–Roch theorem, the Atiyah–Singer index theorem and the development
of K-theory.

Grosso modo, given two closed oriented smooth manifolds, say Σ1 and Σ2, a bordism
from Σ1 to Σ2 is an oriented smooth manifold of one dimension higher with the disjoint
union Σ1 ⊔ Σ2 as its boundary. Hence the category of bordisms can be constructed with
closed oriented smooth manifolds as the objects and bordisms between such objects as
the morphisms.

Both the category of bordisms and the category vector spaces have a further struc-
ture: they are symmetric monoidal categories. Broadly speaking, a symmetric monoidal
structure is a law that allows to take products understood in a general abstract sense: we
want it to be associative, commutative and to have a unit. For instance, in the category
of bordisms such multiplication will be disjoint union (with the empty set as the unit),
and in the category of vector spaces it will be the tensor product (with the underlying
field as the unit).

The functor defining a TQFT preserves, by assumption, these monoidal structures.
In this case, we talk about symmetric monoidal functors. These functors allow us to
study topological invariants, i.e. topological properties that remain unchanged under
homeomorphisms, as other symmetric monoidal functors have been previously used: an
important construction in Algebraic Topology which precedes TQFTs is the functor of
singular homology, which associates, to each topological space, a graded vector space. This
types of construction have been proven to be extremely useful in classifying topological
spaces: if two topological spaces differ in its image under such functors (say, they have
different homologies), they must be nonhomeomorphic.

Whereas the interest of TQFTs is that they are a useful tool in understanding high-
dimensional manifolds, in lower dimensions—1 and 2—a complete classification of man-
ifolds is known, so we can use these known results in order to get used to the notion of
TQFTs and to grasp its structure in low dimensions. As we will see, there is a one-to-one
correspondence between 1-dimensional TQFTs and finite vector spaces. But the main
focus of this paper will be 2-dimensional TQFTs and its correspondence with Frobenius
algebras.

The origins of Frobenius algebras can be found in G. Frobenius’ work [Fro], but
its name—Frobeniusean algebras to be precise—was first given by C. Nesbitt and T.
Nakayama in a series of papers during the 1930s (for instance [Nak, Nes]). A Frobenius
algebra is a finite-dimensional vector space that is both an algebra and a coalgebra in a
compatible way, specifically such that a certain law, known as Frobenius relation, holds.
These algebras exhibiting duality properties have been used in many fields of Mathemat-
ics, such Number Theory, Algebraic Geometry and Combinatorics.

Frobenius algebras may be more easily understood visually, by translating the oper-
ations that define them into the palpable 2-bordisms. For instance the multiplication
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µ : A⊗A −−→ A can be represented by the bordism par excellence: the pair of pants:

Figure 1.1: A pair of pants.

This work is organized in the following manner: In Section 2 we review the main
concept on topological and smooth manifolds in order to introduce properly the bordisms;
we construct the category of such bordisms and endow it with a monoidal structure. In
Section 3 we present TQFTs and give a method to describe the 1- and 2-dimensional
cases algebraically: we use presentations of categories—in a similar way as groups can be
presented by a set of generators and relations—to understand the categories of bordisms
in low dimensions. Then we will be able to determine 1-TQFTs’ structure. In Section 4
we introduce the historical definition Frobenius algebras and deduce equivalent definitions
that make its correspondence with 2-TQFT easier to prove. And finally, in the last section
we explain in general terms the relation of the mathematical construction on TQFT and
its physical motivation.

2 Bordisms

The theory of bordisms, also called cobordisms, establishes a fundamental equivalence
relation on the class of compact manifolds by means of boundaries, in which two manifolds
are related (cobordant) if their disjoint union is the boundary of a compact manifold one
dimension higher. The foundations of bordism theory can be traced back to works of
Pontrjagin [Pon2] and Thom [Tho].

In this section, we review the main definitions concerning topological and smooth
manifolds. We also discuss orientations and boundaries in order to describe the category
of bordisms and its main properties. In particular, we explain its symmetric monoidal
structure. Main references for this section are [Tu] and [Koc].

2.1 Topological manifolds

Definition 2.1. A topological space M is locally Euclidean of dimension n if every
point has a neighborhood U such that there is a homeomorphism φ from U to an open
subset of Rn. We call the pair (U, φ) a chart. A collection of charts that cover M is
called atlas.

Definition 2.2. A topological manifold is a Hausdorff, second countable, locally Eu-
clidean space. We say it has dimension n (and we call it n-manifold) if it is locally
Euclidean of dimension n.

Remark. The empty set ∅ can be regarded as an n-manifold. 0-manifolds are defined to
be disjoint unions of points.

The only compact connected manifold in dimension 1 is the circle, S1, and in dimension
2 the well known classification theorem of surfaces states that every compact connected
2-manifold is either
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(1) a sphere, S2,

(2) a connected sum of g tori, T2# · · ·#T
2, or

(3) a connected sum of k projective planes, RP2# · · ·#RP
2.

A classification of 3-manifolds is not yet known. The are, though, some partial re-
sults: Poincaré conjectured in 1904 that every compact simply-connected 3-manifold is
homeomorphic to S

3. This remained unproven for almost a century, but in the mean-
while generalizations on higher dimensions have been shown: every compact n-manifold
homotopy equivalent to S

n is homeomorphic to S
n. Smale proved it for n > 4 in 1961

(see [Sma]) and Freedman for n = 4 in 1982 ([Fre]). Finally Perelman proved Poincaré’s
original conjecture for n = 3 in 2003 ([Per]).

In dimension 4 manifolds cannot be classified. The idea to understand this is that every
finitely presented group is the fundamental group of a 4-manifold. Finitely presented
groups cannot be classified and therefore, as homeomorphic manifolds have isomorphic
fundamental groups, 4-manifolds cannot either. However, Freedman classified simply
connected 4-manifolds in the paper of 1982.

2.2 Smooth manifolds

We want to require topological manifolds to have a further structure, making them into
geometric objects:

Definition 2.3. A C∞-atlas on a topological space M is an atlas U = {(Ui, φi)} on M
whose transition maps

φij = φj ◦ φ
−1
i |φi(Ui∩Uj) : φi(Ui ∩ Uj) −−→ φj(Ui ∩ Uj)

are C∞.

We will say that a chart (U, φ) is compatible with U if the union U ∪ (U, φ) is a
C∞-atlas. We will say that U is maximal if any compatible chart belongs to U .

A smooth manifold is a topological manifold with a maximal C∞-atlas.

One may ask if every topological manifold admits a smooth structure. This is the case
in dimensions 1, 2 and 3. The first counterexample in higher dimensions was found by
Kervaire in 1960; in [Ker] he constructs a 10-dimensional topological space not admitting
smooth structures. Since then other counterexamples in dimension 4 have been found.

The notion of continuous map between topological spaces is similarly enriched to the
geometric setting:

Definition 2.4. A continuous map f : M −−→ N between to smooth manifolds is said
to be a smooth map if for all charts (U, φ) and (V, ψ) of M and N respectively, the
composition

ψ ◦ f ◦ φ−1|φ(U∩f−1(V )) : φ(U ∩ f
−1(V )) −−→ ψ(V )

is C∞.

Smooth manifolds and smooth maps form a category, denoted Man∞. In this category
isomorphisms are known as diffeomorphisms. Note that, for a smooth map to be a
diffeomorphism, there has to be an inverse which is also smooth.
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A natural question is whether a topological manifolds can be equipped with different
geometric structures such that the resulting smooth manifolds are nondiffeomorphic. This
is not possible in dimensions 1, 2 and 3. In 1956 Milnor found smooth manifolds home-
omorphic but nondifferomorphic to the standanrd Euclidean 7-sphere (known as exotic
spheres), and subsequently, in 1963 along with Kervaire, he showed that there are 28 non-
diffeomorphic oriented 7-spheres (see [Mil1] and [KM]). A surprising result is that, while
R
n with n 6= 4 has only a smooth structure (up to diffeomorphism), R4 has uncountably

many. This was proven by Donaldson and Freedman in 1984 (their results are explained
in [DK] and [FQ]).

One can attach to every point p of a smooth manifold M a tangent space TpM . This
is a real vector space that intuitively contains all the possible directions in which one can
tangentially pass through p. This definition relies on a manifold’s ability to be embedded
into an ambient vector space. However, it is more convenient to define the notion of a
tangent space depending only on the manifold.

Definition 2.5. For M a smooth manifold, denote by F(M) the set of smooth func-
tions on M , given by functions f :M → R such that the composition

fi := f ◦ ϕ−1
i : ϕi(Ui)→ R

is differentiable for any chart (Ui, ϕi).

The set F(M) has the structure of a real vector space with the point-wise operations:

(f + g)(p) := f(p) + g(p) , (λf)(p) := λ · f(p)

as well as a ring structure, with the multiplication

(fg)(p) := f(p) · g(p).

Definition 2.6. The tangent space TpM of M at a point p is the set of all derivations
at p. These are the real linear maps D : F(M) −→ R such that

D(fg) = D(f) · g(p) + f(p) ·D(g).

From now on all our manifolds will be smooth compact manifolds.

2.3 Orientations

We want to endow manifolds with orientation. First we define:

Definition 2.7. An orientation of the real vector space R
n is a choice of sign (+ or −)

for every ordered basis, such that two ordered basis have the same sign if and only if the
linear transformation from one to the other has positive determinant. In other words, an
orientation is a choice of an ordered basis, which we assign to be positive (the sign of the
other ordered basis are then uniquely determined).

Therefore a vector space R
n can only have 2 possible orientations.

Remark. The 0-dimensional vector space {0} has only a basis (the empty set). Thus an
orientation in this case is simply a choice of either + or −.

5



Definition 2.8. We say that the standard orientation of RRR
n is the one that assigns

a + sign to the ordered basis ((1, 0, . . . , 0), (0, 1, . . . , 0), (0, 0, . . . , 1)). The standard ori-
entation of {0} is +.

With the concept of tangent space TpM of a manifoldM at a point p we can define the
orientation of a manifold to be a smooth choice of orientations of the tangent spaces.
The smoothness condition is equivalent to asking that the differentials of the transition
maps φij = φj ◦ φ

−1
i should all preserve orientations.

Definition 2.9. A manifold M is said to be orientable if it admits an orientation.

Not every manifold is orientable. For example the real projetive plane RP
2 and the

Klein bottle K are nonorientable surfaces. All our manifolds will be hereafter orientable, so
we will refer to them simply as manifolds. For example, in dimension 2, all the surfaces
that we will consider are disjoint unions of the sphere, S2 (a surface of genus 0), and
connected sums of g tori, #

g
i=1 T

2 (surfaces of genus g).

Figure 2.1: Orientable surfaces of genus 0, 1 and 2.

A connected manifold has 2 possible orientations and so a manifold with k connected
components has 2k possible orientations. The empty manifold ∅ has only one orientation.

Given an oriented manifold M , we denote M the same manifold with opposite orien-
tation.

2.4 Manifolds with boundary

All the concepts described in the preceding subsections can be extended to manifolds
with boundaries if we allow the charts φ : U −−→ R

n have as image open subsets of
H
n = {(x1, . . . , xn) |xn ≥ 0}, for example:

Definition 2.10. A topological manifold with boundary is a Hausdorff, second
countable, locally homeomorphic to H

n space.

And similarly for the other definitions.

A point p ∈M is in the boundary if a chart maps it to a point in ∂Hn = {(x1, . . . ,Xn) |
xn = 0}. The set of such points is denoted ∂M and is a submanifold without boundary
of M with dim ∂M = dimM − 1.

Remark. A manifold without boundary has the empty space ∅ as boundary. In this case
we say its a closed manifold.

1-dimensional connected manifolds with boundary are the segment [0, 1] and the sphere
(empty boundary). In dimension 2, these are closed orientable manifolds with a finite
number of open discs that have been removed. Hence surfaces with boundary are classified

6



by its number of boundary components (S1) and its genus g (before removing the discs).
For example:

Figure 2.2: Connected manifold with 5 boundary components and genus 2.

Given an oriented manifold with boundary M , we may wonder how is the orientation
of ∂M “with respect to M”:

Definition 2.11. Let Σ be a closed submanifold ofM of codimension 1. At a given point
p ∈ Σ, if (v1, . . . , vn−1) is a positive basis for TpΣ, then a vector w ∈ TpM is positive
normal if (v1, . . . , vn−1, w) is a positive basis for TpM . Similarly, if (v1, . . . , vn−1) is a
negative basis for TpΣ, then a vector w ∈ TpM is positive normal if (v1, . . . , vn−1, w) is
a negative basis for TpM .

Remark. The two given definitions of positive normal vector are equivalent. The second
definition is redundant except in the case when there is no positive basis, that is to say
when dimM = 1, dimΣ = 0 and the only basis of TpΣ (the empty set) is negative.

Let us give a visual example:

Figure 2.3: In the first manifold (with positive basis (N,E)) positive normal vectors point
outwards for counterclockwise-oriented S1 and inwards for clockwise-oriented S1. In the second
manifold (with positive basis (V )) positive normal vectors point in the same direction of V
for positive-oriented points and in the opposite direction of V for negative-oriented points.

Now we can classify the connected components of the boundary of a manifold:

Definition 2.12. Let M be a manifold with boundary. We say that a connected com-
ponent of ∂M is an in-boundary if one of its positive normal vector point inwards.
Analogously, a connected component of ∂M is an out-boundary if one of its positive
normal vector point outwards.

It can be proven that this definition does not depend on the choice of the positive
normal vector. So we have that the boundary ∂M can be expressed as a disjoint union
of its in-boundaries and out-boundaries.

7



2.5 Bordisms

A bordism (or cobordism) between two manifolds Σ1 and Σ2 is essentially a manifold of
one higher dimension with boundary Σ1 ⊔ Σ2. We are interested in oriented bordisms:

Definition 2.13. Let Σ1 and Σ2 be two closed oriented (n−1)-manifolds. An (oriented)
bordism from Σ1 to Σ2 is an oriented n-manifold M , together with two smooth maps

ιin : Σ1 −−→M ←−− Σ2 : ιout

such that ιin [resp. ιout] is an orientation-preserving diffeomorphism that maps Σ1 [resp.
Σ2] onto the in-boundaries [resp. out-boundaries] of M .

For instance, if n = 1, bordisms are disjoint unions of segments (and loops) connecting
two discrete sets of points (therefore if one has an even number of points, so must the
other, and vice versa). If n = 2, bordisms are closed orientable surfaces between disjoint
unions of S1: each connected component is determined by the number of its in-boundaries,
the number of its out-boundaries and its genus.

We will draw the bordisms with the in-boundaries to the left and the out-boundaries
to the right, e.g., in dimension 2:

Σ1
Σ2

The arrows are the positive normal vectors on the boundary, and if we omit them it is to
be understood that they point from left to right.

As an example, let us consider the unit interval I = [0, 1] with standard orientation
(i.e. from left to right). We can assign to each component of its boundary, 0 and 1, four
possible orientations:

• If both 0 and 1 are positive, 0 is an in-boundary and 1 an out-boundary of I. Thus
I is a bordism from 0 to 1:

0 1

• If 0 is positive and 1 negative, both are in-boundaries. Thus I is a bordism from
0 ∪ 1 to ∅:

∅

0

1

• If 0 is negative and 1 positive, both are out-boundaries. Thus I is a bordism from
∅ to 0 ∪ 1:

∅

0

1

8



• If both 0 and 1 are negative, 0 is an out-boundary and 1 an in-boundary of I. Thus
I is a bordism from 1 to 0:

1 0

It may be natural to ask if for any two given closed manifolds there exists a bordism
connecting them:

Definition 2.14. Two closed oriented (n−1)-manifolds Σ1 and Σ2 are said to be cobor-
dant3 if there is a bordism Σ1 −−→M ←−− Σ2.

With what we have seen above, it is straightforward to see that two 0-dimensional
manifolds are cobordant if the sum of their signs, i.e. the number of positively oriented
components minus the number of negatively oriented components, is equal. However any
two 1-dimensional manifolds are cobordant: Suppose Σ1 and Σ2 are the disjoint unions
of n and m circles respectively. Then we can always construct such bordisms:

..
.

Σ1

n ..
.

Σ2

m

Cobordancy is in fact an equivalence relation: cylinders give the reflexive property;
gluing (see below), the transitive property; and the reflexive property is given by switching
the ιin and ιout maps. Disjoint union makes the set of equivalences classes into an Abelian
group, denoted as Ωn, with n the dimension of the boundary manifolds. The above
observations translate to Ω0 = Z and Ω1 = 0 respectively. As Thom points out in [Tho,
Thm. IV.13], for n < 8,

Ω0 = Z, Ω1 = Ω2 = Ω3 = 0, Ω4 = Z, Ω5 = Z/2Z, Ω6 = Ω7 = 0.

2.6 The category of bordisms

We want to consider a category with closed manifolds as objects and oriented bordisms
as morphisms connecting them. In order to construct such category we will first define
an equivalence relation between two bordisms as follows:

Definition 2.15. Two bordismsM and N , both from Σ1 to Σ2, are said to be equivalent
if there is a diffeomorphism ϕ :M −−→ N making the following diagram commute:

Σ1

M

Σ2

N

ϕ∼=

3Etymologically two manifolds being cobordant would mean that they collectively bound something
(i.e. their disjoint union is the boundary of something), as “bord” means edge, boundary, in French. This
explains the alternative nomenclature cobordism.
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It follows that this is an equivalence relation, and it defines equivalence classes of
bordisms between two given manifolds. Our category will have these equivalence classes
as morphisms.

In order to define the composition of morphisms, we will use the procedure of gluing
two bordisms:

Definition 2.16. Given two bordisms M and N with a common boundary Σ (with
morphisms ιMout : Σ −−→ M and ιNin : Σ −−→ N), the bordism that results from gluing M

and N along Σ is
M ⊔Σ N :=M ⊔N/∼,

where ∼ is the following equivalence relation: given two points p ∈ M , q ∈ N , p ∼ q if
and only if there exists a point x ∈ Σ such that ιMout(x) = p and ιNin(x) = q.

The following result may be found in [Mil2, Thm. 1.4]:

Theorem 2.17. Let M and N be two bordisms from Σ1 to Σ2 and from Σ2 to Σ3 re-
spectively. There exists a smooth structure on M ⊔Σ2 N such that each inclusion map
M −֒→ M ⊔Σ2 N , N −֒→ M ⊔Σ2 N is a diffeomorphism onto its image, and it is unique
up to diffeomorphism fixing Σ1, Σ2 and Σ3.

The identity morphisms will be given by cylinders:

Definition 2.18. Given a closed oriented manifold Σ, we define the cylinder to be
CΣ := Σ × [0, 1] oriented in such a way that Σ × {0} is its in-boundary and Σ × {1} its
out-boundary. Hence, with the canonical maps

ιin : Σ ∼−−→ Σ× {0} −֒→ CΣ ←−֓ Σ× {1} ∼←−− Σ : ιout

CΣ is a bordism from Σ to itself.

It can be shown that gluing a bordism M with the cylinder of one of its boundary
gives a bordism equivalent to M .

These results allow us to define the category of bordisms in the following manner:

Definition 2.19. The category of bordisms of dimension n, Bordn, is defined as
follows:

(1) Its objects Σ are closed oriented (n− 1)-manifolds,

(2) its morphisms M : Σ1 −−→ Σ2 are equivalence classes of bordisms from Σ1 to Σ2,

(3) the identity morphisms 1Σ : Σ −−→ Σ are the equivalence classes of cylinders CΣ,
and

(4) the composition N ◦ M : Σ1 −−→ Σ3 of two morphisms M : Σ1 −−→ Σ2 and
N : Σ2 −−→ Σ3 is the equivalence class of M ⊔Σ2 N .

From now on we will refer to equivalence classes of bordisms simply as bordisms.
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2.7 Monoidal structure on the category of bordisms

We end this section by presenting the symmetric monoidal structure on the category of
bordisms. A monoidal structure on a category is a tensor product operation, sending
a pair of objects A and B to an object A⊗ B in a functorial way and satisfying certain
compatibility axioms that mimic the properties of the tensor product on the category of
vector spaces. In particular, there is a unit element involved. Such a tensor product
is symmetric if there is a natural isomorphism when exchanging the factors, called
symmetric braiding. We refer to the Appendix for a precise definition. Here, we
review some prototypical examples of symmetric monoidal categories which will provide
sufficient intuition on symmetric monoidal structures.

• The category of sets Set with the disjoint union ⊔ as tensor product and the empty
set ∅ as the unit.

• The category of sets Set with the Cartesian product × as tensor product, any one-
element set {•} as the unit, and the natural map σ that interchanges the two factors
of × as the symmetric braiding.

• Similarly, the category of topological spaces, Top, (whose morphisms are continuous
maps) with ×, {•} and σ.

• The category of vector spaces over a field k, Vectk, (whose morphisms are linear
maps) together with the ordinary tensor product ⊗, the field k as the unit, and the
natural map σ that interchanges the two factors of ⊗ as the symmetric braiding.

• The category of (Z-)graded vector spaces over a field k, grVectk: Its objects are
collections of k-vector spaces V = {Vn}n∈Z, and its morphisms are collections of
linear vector maps f = {fn : Vn −−→ Wn}n∈Z. The tensor product is defined by
V ⊗W = {

⊕

i+j=n Vi ⊗Wj}n∈Z, the unit is {Vn}n∈Z with V0 = k and Vn = {0}
if n 6= 0, and the symmetric braiding κ (known as Koszul braiding) is given by
v ⊗ w 7−−→ (−1)|v||w|w ⊗ v, where | · | denotes the degree (|v| = n if v ∈ Vn).

• An important category used in Algebraic Topology, the category of chain complexes
(or differential graded vector spaces), Chk: Its objects are pairs (C•, ∂•) where C• is
a graded vector space and ∂• = {∂n : Cn −−→ Cn−1}n∈Z is a collection of linear maps
(called boundary operators) such that ∂n ◦∂n+1 = 0 for all n ∈ Z. A morphism from
(C•, ∂

C
• ) to (D•, ∂

D
• ) is a collection of linear maps f• = {fn : Cn −−→ Dn} (called

chain map) such that

· · · Cn−1 Cn Cn+1 · · ·

· · · Dn−1 Dn Dn+1 · · ·

∂Cn−1 ∂Cn ∂Cn+1 ∂Cn+2

∂Dn−1 ∂Dn ∂Dn+1 ∂Dn+2

fn−1 fn fn+1

commutes. The tensor product C• ⊗D• is defined as in the previous example and
∂C• ⊗ ∂

D
• = ∂C⊗D

• is given by

∂C⊗D
i+j (v ⊗w) = ∂Ci (v)⊗ w + (−1)iv ⊗ ∂Dj w.

11



The unit is (C•, 0) with C0 = k and Cn = {0} if n 6= 0. The symmetric braiding is κ
defined as before. (Note that κ is a chain map—it commutes with ∂C⊗D

• —whereas
σ is not.)

We now turn our attention to the category of bordisms. Given two closed oriented
(n− 1)-manifolds Σ and Π, the disjoint union Σ⊔Π is a closed oriented (n− 1)-manifolds
as well. Similarly, given to bordisms M : Σ1 −−→ Σ2 and N : Π1 −−→ Π2, the disjoint
union M ⊔N is a bordism from Σ1 ⊔Π1 to Σ2 ⊔Π2. By considering the empty manifold
∅n as a bordism from ∅n−1 to itself, it follows that the tuple (Bordn,⊔,∅) is a monoidal
category.

The diffeomorphism Σ ⊔ Π ∼−−→ Π ⊔ Σ induces a bordism TΣ,Π (known as twist bor-

dism) from Σ ⊔Π to Π ⊔Σ via the cylinder morphism:

Σ ⊔Π ∼−−→ Π ⊔ Σ −֒→ CΠ⊔Σ ←−֓ Π ⊔ Σ.

These bordisms are the components of the symmetric braiding, and indeed they satisfy
the conditions in A.7. Thus, (Bordn,⊔,∅, T ) is a symmetric monoidal category.

3 Topological quantum field theories

A topological quantum field theory is a functor from the category of bordisms to the
category of vector spaces. Atiyah defined TQFTs in [Ati] by requiring some additional
axioms. Those axioms can be summarized by stating that the functor must be symmetric
monoidal, as we will see in our definition. In the next sections we confer TQFTs the
structure of category, with natural transformations as morphisms. As a first application
we determine the structure of one-dimensional topological quantum field theories and
establish a one-to-one correspondence between these theories and finite-dimensional vector
spaces.

3.1 Definition and properties

A symmetric monoidal functor is a functor F between categories that preserves the sym-
metric monoidal structures. In particular, there are natural isomorphisms

ΦA,B : F (A) ⊗2 F (B) −−→ F (A⊗1 B)

for all objects A, B of the domain category, as well as a natural isomorphism

ϕ : I2 −−→ F (I1)

in the target category, comparing the unit objects I1 and I2 of the domain and target
categories respectively. We refer to the Appendix for a precise definition. The idea of
considering symmetric monoidal functors in order to study topological and geometric
invariants is not new to topological quantum field theories. Before describing TQFTs, let
us review some instances where such functors play important roles.

First, we examine a basic construction which assigns, in a symmetric monoidal fashion,
a vector space to each set, thus obtaining a symmetric monoidal functor from the category
of sets (Set,×, {•}) to the category of vector spaces (Vectk,⊗,k). Let F : Set −−→ Vectk
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be defined by sending a set A to k[A], the k-vector space spanned byA. A map f : A −−→ B
is then sent to the unique linear map f̂ defined by f̂(a) = f(a), ∀a ∈ A. We choose the
components of Φ to be the isomorphism

ΦA,B : k[A]⊗ k[B] −−→ k[A×B]
∑

i

λiai ⊗
∑

i

µjbj 7−−→
∑

i,j

λiµj(ai, bj)

and ϕ to be the isomorphism ϕ : k −−→ k[{•}], λ 7−−→ λ•.

A fundamental construction that arises in Algebraic Topology is the homology functor.
In a purely algebraic setting, the homology functor

H•(−,k) : Chk −−→ grVectk

is given by
Hn(C•,k) = ker ∂n/ im ∂n+1 and Hn(f•,k)([v]) = [f(v)].

Here [v] denotes the equivalence class of v ∈ Cn. The unit of Chk is sent to the unit of
grVectk, and the Künneth theorem (see [Hat]) states that

Hn(C• ⊗D•,k) ∼= Hn(C•,k)⊗Hn(D•,k).

This makes H•(−,k) into a symmetric monoidal functor.

In the topological setting, there is the functor of singular chain complexes. This is the
functor

S• : Top −−→ Chk

defined by sending a topological space to the direct sum of the k-vector spaces generated
by all the continuous maps σn from the n-simplex ∆n to X:

Sn(X,k) :=
⊕

σn

k[σn].

This graded vector space is equipped with boundary operators ∂Xn defined by

∂Xn ([p0, . . . , pn]) :=
n
⊕

i=0

(−1)i[p0, . . . , p̂i, . . . , pn],

where we represent σ by its vertices [p0, . . . , pn].

On continuous maps, S•(f,k) is defined by

Sn(f,k)(σn) = f ◦ σn.

This commutes with ∂X• and so it is indeed a chain map.

The composition of the above two functors yields a symmetric monoidal functor, the
singular homology functor

H•(−,k) : Top −−→ grVectk.

For more details on this topic you can refer to [NP, Hat].

The example of monoidal functors we are interested in are TQFTs, which are functors
from Bordn to Vectk, and are related to homology functors in the sense that they give
invariants of topological spaces (given two homeomorphic spaces their homologies will be
isomorphic).
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Definition 3.1. A topological quantum field theory (or TQFT) of dimension n is
symmetric monoidal functor from (Bordn,⊔,∅, T ) to (Vectk,⊗,k, σ).

Essentially this means that if Z is a TQFT then

(1) Z(1Σ) = 1Z(Σ) for any object Σ in Bordn,

(2) Z(N ◦M) = Z(N) ◦ Z(M) for any bordisms M : Σ1 −−→ Σ2 and N : Σ2 −−→ Σ3,

(3) Z(Σ ⊔Π) = Z(Σ)⊗Z(Π) for any objects Σ and Π in Bordn,

(4) Z(M ⊔N) = Z(M)⊗Z(N) for any bordisms M : Σ1 −−→ Σ2 and N : Π1 −−→ Π2,

(5) Z(∅) = k, and

(6) Z(TΣ,Π) = σZ(Σ),Z(Π) for any objects Σ and Π in Bordn.

Note that, according to definitions A.9 and A.10, the equalities in (3), (4) and (5) are to
be understood as isomorphisms.

Before studying TQFTs of dimension 1 and 2, we describe some general properties, so
that we get used to the notion of TQFT. To prove the first proposition, we define a type
of bordism:

Definition 3.2. Given an object Σ in Bordn, we define the U-tubes to be the bordisms

: Σ ⊔ Σ −−→ ∅

and

: ∅ −−→ Σ ⊔Σ.

Remark. It may seem unnecessary to use Σ (i.e. Σ with the opposite orientation). How-
ever, it cannot be guaranteed the existence of a bordism Σ ⊔ Σ −−→ ∅ (and vice versa).
For instance, in Bord1, there is no bordism from {+,+} to ∅. On the other hand, the
two bordisms we give always exist—they can be constructed by reversing the orientation
of one of the (out- or in-)boundaries of the cylinder CΣ.

Proposition 3.3. Let Z : Bordn −−→ Vectk be a TQFT. For any object Σ in Bordn,
the vector space Z(Σ) is finite-dimensional.

Proof. Let U := Z(Σ) and V := Z(Σ). The images of the U-tubes are

β := Z
( )

: U ⊗ V −−→ k and γ := Z
( )

: k −−→ V ⊗ U.

The diffeomorphism

∼=

14



gives two bordisms of the same class, and by taking images, we have that

1U = (β ⊗ 1U ) ◦ (1U ⊗ γ).

We can choose finitely many vi ∈ V, ui ∈ U such that γ(1) =
∑

i vi⊗ui (every element
of U ⊗ V can be expressed in this way). Using the above expression, and writing 〈u|v〉
for β(u, v), we have that for any u ∈ U ,

u = (β ⊗ 1U )((1U ⊗ γ)(u⊗ 1))

= (β ⊗ 1U )
(

u⊗
∑

i

vi ⊗ ui

)

=
∑

i

〈u|vi〉 ⊗ ui =
∑

i

〈u|vi〉 · ui.

Thus, {ui} spans U and therefore U is finite-dimensional. Observe that this also gives a
natural isomorphism between U and V ∗, the dual vector space to V , namely, u 7−−→ 〈u|−〉.
(See Subsection 4.3 where we discuss nondegenerate pairings.) In other words,

Z(Σ) = Z(Σ)∗.

TQFTs produce invariants of manifolds in the following sense: a manifold M can be
viewed as a bordism from ∅ to itself, so its image under a TQFT is a linear map k −−→ k

that can be thought as a scalar. A simple example is the following:

Proposition 3.4. Let Z be a TQFT and Σ a closed manifold. Then

Z(Σ× S
1) = dim(Z(Σ)).

Proof. Using the notation of the previous proof, if {vi} is a basis of V and {uj} a basis
of U then γ(1) =

∑

i,j λijvi⊗uj for some coefficients λij. As before, we can find that, for
any vector u ∈ U , u =

∑

i,j λij〈u|vi〉 · uj. In particular uj =
∑

i,k λik〈uj |vi〉 · uk for the
elements of the basis, so

∑

i

λik〈uj |vi〉 = δjk =

{

1 if j = k

0 if j 6= k.

The diffeomorphism

∼=

gives the expression
Z(Σ× S

1) = β ◦ σU,U ◦ γ.

Therefore

Z(Σ × S
1)(1) = β

(

σU,U

(

∑

i,j

λijvi ⊗ uj

))

=
∑

i,j

λij〈uj |vi〉 =
∑

j

1 = dim(U).

We may wonder if Z(M⊔N) = Z(N ◦M) for bordisms with only in- and out-boundary
respectively, say M : Σ −−→ ∅ and N : ∅ −−→ Π. Indeed, if f = Z(M) : Z(Σ) −−→ k and
g = Z(N) : k −−→ Z(Π), then

Z(M ⊔N)(v ⊗ 1) = f(v)⊗ g(1) = 1⊗ f(v)g(1)

whereas
Z(N ◦M)(v) = g(f(v)) = f(v)g(1),
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so they are essentially the same.

3.2 The category of TQFTs

In Category Theory one can define the functor category between two given categories
C and D, Fun(C,D), to be the category whose objects are functors F : C −−→ D and
whose morphisms are natural transformations between these functors. If the categories
are monoidal and one only allows the objects to be monoidal functors and the mor-
phisms to be monoidal transformations, the category is a monoidal functor category,
MonFun(C,D). Similarly one can define the symmetric monoidal functor category
between two symmetric monoidal categories, SymMonFun(C,D).

With this nomenclature, TQFTs form a symmetric monoidal functor category from
Bordn to Vectk:

TQFTk
n = SymMonFun(Bordn,Vectk).

3.3 Presentation of bordisms in low dimensions

Now we would like to determine the structure of TQFTk
1 and TQFTk

2 (see [CR] and
[Koc] respectively). We can do so because a classification of manifolds of dimension 0, 1
and 2 are completely understood (but not in higher dimensions).

In order to describe TQFTk
1 and TQFTk

2 first we need to understand Bord1 and
Bord2: similarly to Group Theory, one can give a presentation of a category C
(and particularly of a symmetric monoidal category) by a set of objects, generators and
relations:

(1) The set of objects, O, is a set of objects such that every object in C is isomorphic
to one in O,

(2) The set of generators, G, is a set of morphisms in C that generate via composition
every morphism f in C, i.e. f = g1 ◦ · · · ◦ gn for some gi ∈ G. If we talk about [sym-
metric] monoidal categories we allow G to generate all morphisms via composition
and “tensoring”:

f = (g11 ⊗ · · · ⊗ g
r1
1 ) ◦ · · · ◦ (g1n ⊗ · · · ⊗ g

rn
n )

for some gji ∈ G.

(3) The set of relations, R. A relation is the equality of two decompositions of a given
morphism f in terms of the generators, i.e. equalities of the form

g1 ◦ · · · ◦ gn = h1 ◦ · · · ◦ hm.

In the symmetric monoidal setting:

(g11 ⊗ · · · ⊗ g
r1
1 ) ◦ · · · ◦ (g1n ⊗ · · · ⊗ g

rn
n ) = (h11 ⊗ · · · ⊗ h

r1
1 ) ◦ · · · ◦ (h1m ⊗ · · · ⊗ h

rm
m ).

The set R is a set of relations such that every relation can be derived from the
relations in R.

First let us find the presentation of Bord1:
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(1) The set of objects consists of disjoint unions of positively oriented points, •+, and
negatively oriented points, •−, e.g.

∅, •+, •− ⊔ •+, •+ ⊔ •+ ⊔ •− ⊔ •+ . . .

The orientation is important as there is no preserving-diffeomorphism between •+
and •−, and the order of the disjoint unions is important as well, as there is no
isomorphism (i.e. cylinder) from •+ ⊔ •− to •− ⊔ •+.

(2) All connected bordisms are isomorphic to one of these:

+ + − −

+

−
∅

−

+
∅

+

−
∅

−

+
∅

∅∅ ∅∅

Thus, every connected bordism is generated by

, , , , and .

Although generators will generate all bordisms via tensor products (i.e. disjoint
unions) as well as compositions, this does not mean that we are done: there are
disconnected bordisms that cannot be expressed as a disjoint union of bordisms, for
example the twist:

+ +

+ +

Similarly to how we defined the twist bordisms in subsection 2.7, given a permuta-
tion σ ∈ Sn, we can define the permutation bordism associated to σ to be the
bordism induced by the diffeomorphism

Σ1 ⊔ · · · ⊔ Σn
∼−−→ Σσ(1) ⊔ · · · ⊔ Σσ(n),

where in this case, Σi are oriented points. These bordisms can be generated by the
twist bordisms Σi ⊔ Σj −−→ Σj ⊔ Σi, just like every permutation can be generated
by the transpositions. Now it is easy to see why the following lemma holds:

Lemma 3.5. Every bordism can be expressed as the composition of a permutation
bordism, a disjoint union of connected bordisms, and another permutation bordism.

For example the following bordism

17



+

+

−

−

+

−

−

+

can be expressed as

+

+

−

−

+

−

−

+

So in conclusion a nice set of generators is

, , , , , ,

, , and .

(3) The set of relations is the following:

(a) All the relations involving the identity morphisms:

=

=

=

= =

We have omitted the orientations, but one must take them into account, so in
fact there are 14 equalities above.

(b) A set of relations involving the twists. The first four ones refer to the fact that
the twist is its own inverse:

=

18



(c) The other ones refer to the naturality of the twists: for any pair of bordisms it
is the same to apply the twist before their disjoint union as to apply it after the
reversed disjoint union. We only need the relations involving the generators,
and in fact, as every disjoint union of two bordisms can be understood as a
composition of disjoint unions with the identity bordisms, it suffices to write
the cases with a generator in disjoint union with an identity:

=

=

=

=

Relacions que involucren els bordismes de “twist”:

Notice how, for example in the first relation, we expressed the twists , i.e.
(•⊔•)⊔• −−→ •⊔ (•⊔•), decomposed using the generators . (As we pointed
out, every permutation bordism can be generated by these generators.)

(d) And finally some relations characteristic to Bord1 (since the other ones are
due to the symmetric monoidal structure of Bord1):

i. The snake relations:

= =
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ii. The commutativity and the cocommutativity relations:

= =

One can prove that this set of relations is complete (i.e. that every other possible
relation can be derived from it), and obviously it is not by no means minimal.

In a similar fashion we can find a presentation of Bord2:

(1) The set of objects of Bord2 consists of disjoint unions of circles, since every closed
connected 1-manifold is diffeomorphic to S

1. Observe that the disjoint unions we
consider can be the disjoint unions of the same circle, say Σ, so we don’t have
to worry about orientations as we did before—there is an orientation-preserving
diffeomorphism between a circle and the same circle with the opposite orientation.

We will write n to denote the disjoint union of n copies of Σ (and 0 = ∅). Our
set of objects is {0,1,2, . . . }.

(2) To determine a set of generators first observe that, as we have seen, a connected
bordism in Bord2 is uniquely determined by the number of in- and out-boundaries
(say n and m resp.) and its genus (say g), so it can be expressed as the composition
of a bordism n −−→ 1 with genus 0 (called in-part), a bordism 1 −−→ 1 of genus g
(topological part) and a bordism 1 −−→m of genus 0 (out-part):

..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
..
.

with n− 1 copies of in the in-part, g copies of in the topological part and

m− 1 copies of in the out-part. If n = 0 the in-part should be instead, and
if m = 0 the out-part should be .

Therefore we have that every connected bordism is generated by

, , , and .

And finally using Lemma 3.5 as before, we have that the set of generators is

, , , , and .

(3) We now give the set of relations:

(a) Firstly, the ones relating to the identity morphisms:
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=

= =

==

=

=

= =

(b) The relation that expresses the fact that the twist is its own inverse:

=

(c) The relations expressing the naturality of the twist:

=

=

=
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=

= =

= =

=

(d) And the relations characteristic of Bord2:

i. The unit relations and the counit relations:

= =

= =

ii. The associativity and the coassociativity relations:

=

=
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iii. The commutativity and the cocommutativity relations:

=

=

iv. And the Frobenius relation:4

= =

To prove that all these relations hold, it is enough to see that in each case the
bordisms have the same number of in- and out-boundaries and the same genus, 0.
A proof of the completeness can be found in [Koc].

The point of having the presentation (O,G,R) of a [symmetric monoidal] category C
is that, given another [symmetric monoidal] category D, a [symmetric monoidal] functor
F : C −−→ D is uniquely determined (up to [symmetric monoidal] isomorphism) by a
choice of the images of the objects in O and the morphisms in G such that the relations
of R still hold in D, that is to say, if f = g is a relation of R, then F (f) = F (g) in D.

3.4 Structure of 1-dimensional TQFTs

The presentation of Bord1 we have seen leads to a proof of the following statement,
which establishes a one-to-one correspondence between 1-dimensional TQFTs and finite
dimensional vector spaces in a functorial way.

Theorem 3.6. There is a symmetric monoidal equivalence of categories

TQFTk
1 ≃ FinVectisok

where FinVectisok is the category of finite-dimensional k-vector spaces with invertible lin-
ear maps as morphisms (and with the tensor product ⊗ and the symmetric braiding σ).

Proof. First, consider the symmetric monoidal functor

F : TQFTk
1 −−→ FinVectisok

[Z : Bord1 −−→ Vectk] 7−−→ VZ = Z(•+)

which is well-defined in virtue of Proposition 3.3.

Conversely, we contruct the symmetric monoidal functor

G : FinVectisok −−→ TQFTk
1

V 7−−→ [ZV : Bord1 −−→ Vectk]

in the following manner:

4The names of these relations will be understood later, when we introduce the Frobenius algebras.
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(1) For the objects in O, we define ZV (•+) = V and ZV (•−) = V ∗. The image on the
other objects is defined by the “monoidality” of the functor, e.g.:

ZV (•+ ⊔ •−) = V ⊗ V ∗.

(2) For the generators in G, we define

ZV

( )

: V ⊗ V ∗ −−→ k

v ⊗ ϕ 7−−→ ϕ(v)

ZV

( )

: V ∗ ⊗ V −−→ k

ϕ⊗ v 7−−→ ϕ(v)

ZV

( )

: k −−→ V ∗ ⊗ V

λ 7−−→ λ
∑

i

e∗i ⊗ ei

ZV

( )

: k −−→ V ⊗ V ∗

λ 7−−→ λ
∑

i

ei ⊗ e
∗
i

where {ei} is a basis of V and {e∗i } its dual basis. The images of the identity
bordisms are fixed by the property (1) of functors (i.e. they are the identity maps),
and the images of the twist bordisms are fixed by the symmetricity of the functor
(i.e. they are defined by the symmetric braiding σ).

(3) We need to show that the relations in R still hold when taking images. The relations
involving the identities and the twists are satisfied for the same reason in the previous
paragraph.

The commutativity and cocommutativity relations are straightforward to prove.
For one of the snake relations we have, for instance,

ZV

( )

(v) =

(

ZV

( )

⊗ 1V

)

◦

(

1V ⊗ZV

( ))

(v ⊗ 1) =

=

(

ZV

( )

⊗ 1V

)

(

∑

i

v ⊗ e∗i ⊗ ei

)

=
∑

i

e∗i (v)⊗ ei =

=
(

∑

i

e∗i (v)
)

· ei = v = ZV

( )

(v),

and similarly for the other three.

We want to see that the compositions of these functors are equal (to be precise, natu-
rally isomorphic) to the identities. On one hand we have

[Z : Bord1 −−→ Vectk] VZ = Z(•+) [ZVZ : Bord1 −−→ Vectk]
F G

with ZVZ (•+) = VZ = Z(•+) and ZVZ (•−) = V ∗
Z = Z(•+)

∗ = Z(•−). (Recall the last
observation in the proof of 3.3.) And on the other hand,

V [ZV : Bord1 −−→ Vectk] VZV
= ZV (•+) = V.G F

Now we have to define how the functors F and G act on morphisms. Let α : Z =⇒ Y
be a symmetric monoidal natural transformation between two 1-TQFTs, Z and Y, and
denote VZ = Z(•+) and VY = Y(•+) (and therefore V ∗

Z = Z(•−) and V ∗
Y = Y(•−)).

With this notation, α has in particular the two components α•+ : VZ −−→ VY and
α•− : V ∗

Z −−→ V ∗
Y . One can see that α•+ is in fact an isomorphism, with inverse α̃•+

defined as the composition
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VY VZ ⊗ V
∗
Z ⊗ VY VZ ⊗ V

∗
Y ⊗ VY VZ

γZ⊗1VY 1VZ⊗α•−
⊗1VY 1VZ⊗βY

where the maps γZ and βY are

γZ = Z

( )

: k −−→ VZ ⊗ V
∗
Z and

βY = Y

( )

: V ∗
Y ⊗ VY −−→ k.

For instance, α̃•+ ◦ α•+ = 1VZ , since the following commutes:

VY VZ ⊗ V
∗
Z ⊗ VY VZ ⊗ V

∗
Y ⊗ VY VZ

VZ VZ ⊗ V
∗
Z ⊗ VZ VZ

γZ⊗1VY 1VZ⊗α•−
⊗1VY 1VZ⊗βY

α•+

γZ⊗1VZ

1VZ⊗1V ∗
Z
⊗α•+

1VZ
⊗α

•−
⊗α

•+

1VZ⊗βZ

1VZ

1VZ

where the rightmost rhomboid is due to the naturality of α, and the curved identity is
due to the snake relation and the functoriality of Z. Therefore we can assign F (α) = α•+ .

Conversely, given an invertible linear map f : V −−→ W , we define G(f) to be the
symmetric monoidal natural transformation αf : ZV =⇒ ZW with components αf •+ = f ,

αf •− = (f−1)∗ (and the other ones defined by monoidality).

Some authors, cf. [CR], prefer to formulate this equivalence of categories using DPk,
the category of dual pairs. This is the category consisting of two k-vector spaces V and
W equipped with two linear maps γ : k −−→ V ⊗W and β : W ⊗ V −−→ k such that

(1V ⊗ β) ◦ (γ ⊗ 1V ) = 1V and (β ⊗ 1W ) ◦ (1W ⊗ γ) = 1W .

This is equivalent to stating that V and W are duals of each other, but with this new
category there is no symmetry break with the treatment of •+ and •−: A TQFT Z would
be sent to the pair (Z(•+),Z(•−)).

On the other hand, a morphism (V1,W1, γ1, β1) −−→ (V2,W2, γ2, β2) in DPk consists
of a pair (f : V1 −−→ V2, g : W1 −−→W2) such that

(f ⊗ g) ◦ γ1 = γ2 and β1 = β2 ◦ (g ⊗ f).

Therefore a natural transformation between TQFTs α would be mapped to the pair
(α•+ , α•−).

4 Frobenius algebras and structure of 2-dimensional TQFTs

The structure for two-dimensional topological quantum field theories is, of course, much
more complex than in the one-dimensional case. Still, it admits a surprisingly transpar-
ent and intuitive description in terms of commutative Frobenius algebras. These algebras
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with special duality properties were originally considered in representation theory of finite
groups. With important roles on Number Theory, Algebraic Geometry, and Combina-
torics, they have been more recently used to study Hopf algebras, coding theory and
cohomology rings of compact manifolds. Their key role in topological quantum field the-
ory is one of the most recent expressions of this algebra structure, with applications to
the study of knots and other low-dimensional manifold theories.

In this section, we review the correspondence between two-dimensional TQFTs and
Frobenius algebras, by means of an equivalence of symmetric monoidal categories. This
correspondance was first described by Dijkgraaf in his Ph.D. thesis [Dij], although we
have mainly followed [Koc].

4.1 Preliminary concepts

Definition 4.1. A k-algebra is a k-vector space A equipped with two linear maps
µ : A⊗A −−→ A and η : k −−→ A (called multiplication and unit respectively) such that
the following diagrams commute:

A⊗A⊗A

A⊗A

A

A⊗A

1A⊗µµ⊗1A

µ µ

A⊗A

k⊗A A

µη⊗1A

A⊗A

A⊗ k A

µ1A⊗η

We will write µ(a⊗ b) = ab and η(1) = 1 when there is no confusion.

Observe how a k-algebra (A,µ, η) is a ring (A,+, ·) with + the addition inherited from
the k-vector space structure and · defined

· : A×A −−→ A

(a, b) 7−−→ µ(a⊗ b).

So we can talk about ideals of a k-algebra, and just as a reminder:

Definition 4.2. Given a k-algebra A, a k-vector subspace a ⊂ A is a left ideal [resp.
right ideal] if ax ∈ a [resp. xa ∈ a] for every a ∈ A and x ∈ a.

4.2 First definition of Frobenius algebras

The first definition of Frobenius algebras can be found in [BN] and reads:

Definition 4.3. A Frobenius k-algebra is a finite-dimensional k-algebra A equipped
with a linear map ε : A −−→ k (called Frobenius form) whose nullspace
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null(ε) := {a ∈ A|ε(a) = 0}

contains no nontrivial left ideals.

Observe that, since every nontrivial left ideal contains a nontrivial principal left ideal
(i.e. a ideal of the form Ax = {ax|a ∈ A} with x ∈ null(ε)),5 the condition of the
definition is equivalent to requiring the nullspace to contain no nontrivial principal left
ideal; in other words:

∀x ∈ A, ε(Ax) = 0 =⇒ x = 0.

With either the definition or this characterization we can give some examples of Frobe-
nius algebras:

(1) First consider R-algebra of complex numbers, C, with µ being its usual multiplica-
tion and 1 ∈ R as the unit.6 Any nonzero linear map ε : C −−→ R is a Frobenius
form: indeed, as null(ε) 6= C because ε is nonzero, and due to the fact that every
field has only two ideals –viz. {0} and the field itself–, (C, ε) satisfies the definition
of Frobenius algebra. In particular, we could have ε(z) := Re(z).

(2) Consider the set of n × n matrices over a field k, Matn×n(k), which is a k-algebra
with the usual multiplication and the identity matrix as the unit. It is a Frobenius
algebra with the trace as its form. Let us prove the contrapositive of the condition
above: LetM be a nonzero matrix. To check that there exists a matrix N such that
Tr(NM) 6= 0, consider the natural basis of Matn×n(k) consisting of the matrices
Eij with eij = 1 as the only nonzero entry. We have

EijEkl = δjkEil

Tr(EijEkl) = δjkδil.

If M =
∑

ij λijEij with λkl 6= 0, then

Tr(ElkM) =
∑

ij

λij Tr(ElkEij) =
∑

ij

λijδkiδlj = λkl 6= 0.

(3) As a last example let k[G] be the vector space spanned by a finite (multiplicative)
group G = {g0 = 1, g1, . . . , gn}, whose elements are formal linear combinations with
coefficients in k. It is a k-algebra with the multiplication inherited from the group
structure and g0 as the unit. Consider the linear map ε defined on the basis as
follows:

ε(gi) = δi0 =

{

1 if gi = 1

0 otherwise.

Like in the previous example, let x =
∑n

i=0 aigi with some aj 6= 0. Then

ε(g−1
j x) =

n
∑

i=0

aiε(g
−1
j gi) =

n
∑

i=0

aiδji = aj 6= 0,

and thus (k[G], ε) is a Frobenius algebra.

We want to find equivalent definitions of the Frobenius algebras that set us closer to
its correspondence to 2-TQFTs.

5For instance, given a nontrivial left ideal a ⊂ null(ε), choosing a nonzero element x ∈ a gives Ax ⊂ a.
6With this common abuse of language we state that η(1) = 1, and hence η(x) = x ∀x ∈ R.
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4.3 Second definition of Frobenius algebras

Before introducing a second definition we review the notion of pairing and its dual coun-
terpart.

Definition 4.4. A pairing between to k-vector spaces V and W is a linear map
β : V ⊗W −−→ k. We will write β(v ⊗ w) = 〈v|w〉. Similarly, a copairing between
V and W is a linear map γ : k −−→ V ⊗W .

Definition 4.5. A pairing β : V ⊗W −−→ k is said to be nondegenerate in its first
variable if it exists a copairing γV : k −−→W ⊗ V such that the composition

V V ⊗W ⊗ V V
1V ⊗γV β⊗1V

is equal to the identity map 1V . Analogously, β is said to be nondegenerate in its
second variable if it exists a copairing γW : k −−→W ⊗ V such that the composition

W W ⊗ V ⊗W W
γW⊗1W 1W⊗β

is equal to the identity map 1W . If β is nondegenerate in both its components, it is simply
said to be nondegenerate.

Lemma 4.6. If β : V ⊗W −−→ k is a nondegenerate pairing, then γV = γW .

Proof. Consider the map λ defined to be

k W ⊗ V ⊗W ⊗ V W ⊗ V .
γW⊗γV 1W⊗β⊗1V

On one hand we can factor γW ⊗ γV as (1W ⊗ 1V ⊗ γV ) ◦ γW , so we have

λ = (1W ⊗ β ⊗ 1V ) ◦ (1W ⊗ 1V ⊗ γV ) ◦ γW = (1W ⊗ ((β ⊗ 1V ) ◦ (1V ⊗ γV ))) ◦ γW = γW

as (β ⊗ 1V ) ◦ (1V ⊗ γV ) = 1V by nondegeneracy. And on the other hand we can factor
γW ⊗ γV as (γW ⊗ 1W ⊗ 1V ) ◦ γV , so, similarly,

λ = (1W ⊗ β ⊗ 1V ) ◦ (γW ⊗ 1W ⊗ 1V ) ◦ γV

= (((1W ⊗ β) ◦ (γW ⊗ 1W ))⊗ 1V ) ◦ γV = γV .

In this case we will call the copairing simply γ.

Definition 4.7. Let A be a k-algebra. A pairing β : A⊗A −−→ k is said to be associative
if ∀a, b, c ∈ A, 〈ab|c〉 = 〈a|bc〉, i.e. the following commutes:

A⊗A⊗A

k

A⊗A A⊗A

µ⊗1A

β

1A⊗µ

β
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Now we can give the second definition of Frobenius algebras:

Definition 4.8. A Frobenius k-algebra is a finite-dimensional k-algebra A equipped
with a nondegenerate associative pairing β : A⊗A −−→ k (called Frobenius pairing).

We want to prove the equivalence of both definitions. First some lemmas:

Lemma 4.9. Let V and W be two vector spaces and let β : V ⊗W −−→ k be a pairing.
The following are equivalent:

(1) β is nondegenerate in W , and

(2) 〈v|w〉 = 0 ∀v ∈ V =⇒ w = 0 and W is finite-dimensional.

Similarly, the following are equivalent:

(3) β is nondegenerate in V , and

(4) 〈v|w〉 = 0 ∀w ∈W =⇒ v = 0 and V is finite-dimensional.

Proof. We will show the first equivalence (the other one is analogous). To prove that (1)
implies (2), suppose that β is nondegenerate with associated copairing γ. Suppose that
γ(1) =

∑n
i=0 vi⊗wi for some vectors vi ∈ V , wi ∈W . Then, by nondegeneracy, for every

vector w ∈W ,

w

n
∑

i=0

wi ⊗ vi ⊗ w
n
∑

i=0

〈vi|w〉wi = w.
γ⊗1W 1W⊗β

This shows that {wi} spans W , which is therefore finite-dimensional. Also, if we suppose
that 〈v|w〉 = 0 for all v ∈ V , in particular 〈vi|w〉 = 0, so w = 0.

To prove the opposite implication, assume that W is finite-dimensional with a basis
{w1, . . . , wn}. The first property of (2) guarantees that 〈−|wi〉 are linearly independent
(in V ∗):

n
∑

i=0

λi〈−|wi〉 = 0 =⇒

n
∑

i=0

λi〈v|wi〉 = 0 ∀v ∈ V =⇒

〈

v
∣

∣

∣

n
∑

i=0

λiwi

〉

∀v ∈ V =⇒
n
∑

i=0

λiwi = 0 =⇒ λi = 0,

and thus there exist vectors vi, . . . , vn such that 〈vi|wj〉 = δij .

We define a copairing γ : k −−→ W ⊗ V by saying γ(1) =
∑n

i=0wi ⊗ vi. Now, given a
vector

∑n
j=0 λjwj ∈W ,

n
∑

j=0

λjwj
∑

i,j

wi ⊗ vi ⊗ λjwj
∑

i,j

λj〈vi|wj〉wi =
n
∑

i=0

λiwi.
γ⊗1W 1W⊗β

So β is nondegenerate.
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We are only interested when V and W are of the same finite dimension (in fact, we
will use V = W = A). Notice that, in this case, the condition (2) says that the map
W −−→ V ∗, w 7−−→ 〈−|w〉 is injective and therefore an isomorphism. Taking duals we
get the isomorphism V −−→ W ∗, v 7−−→ 〈v|−〉, which corresponds to (4). We can state a
weaker version of the previous lemma:

Lemma 4.10. Let V and W be two vector spaces of the same finite dimension and let
β : V ⊗W −−→ k be a pairing. The following are equivalent:

(1) β is nondegenerate,

(2) 〈v|w〉 = 0 ∀v ∈ V =⇒ w = 0, and

(3) 〈v|w〉 = 0 ∀w ∈W =⇒ v = 0.

The next lemma will be useful:

Lemma 4.11. Let A be a k-algebra. There is a one-to-one correspondence between linear
forms A −−→ k and associative pairings A⊗A −−→ k.

Proof. Given a linear form ε : A −−→ k we can construct a pairing

βε : A⊗A −−→ k

x⊗ y 7−−→ ε(xy),

which is obviously associative, and given an associative pairing β : A ⊗ A −−→ k we can
construct a linear form

εβ : A −−→ k

x 7−−→ 〈1|x〉 = 〈x|1〉.

Observe that

ε 7−−→ βε 7−−→ εβε =
[

x 7−−→ βε(1⊗ x) = ε(1x)
]

= ε

and that
β 7−−→ εβ 7−−→ βεβ =

[

x⊗ y 7−−→ εβ(xy) = 〈1|xy〉 = 〈x|y〉
]

= β.

Theorem 4.12. Definitions 4.3 and 4.8 are equivalent.

Proof. By Lemma 4.11, it is sufficient to see that null(ε) contains no nontrivial left ideals
if and only if its corresponding pairing β is nondegenerate. Lemma 4.10 says that β
is nondegenerate if and only if 〈A|x〉 = 0 =⇒ x = 0, or equivalently, if and only if
ε(Ax) = 0 =⇒ x = 0. As we observed above, this is the same as saying that null(ε)
contains no nontrivial left ideals.

Notice that in Definition 4.3 we could have defined Frobenius algebras in terms of
right—instead of left—ideals.

Before proceeding to state a third definition, we can express the three previous exam-
ples in terms of pairings and copairings:
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(1) According to the proof of Lemma 4.11, the pairing of (C,Re) is defined β(z ⊗w) =
Re(zw). Its associated copairing is given by

γ(1) = 1⊗ 1− i⊗ i.

Let us check that β is nondegenerate in its first variable (and therefore simply
nondegenerate) with γ:

a+ bi (a+ bi)⊗ 1⊗ 1− (a+ bi)⊗ i⊗ i

Re(a+ bi)⊗ 1− Re(ai− b)⊗ i = a+ bi.

1C⊗γ

β⊗1C

(2) In our second example, the pairing is β(M ⊗ N) = Tr(MN). The copairing must
be γ(1) =

∑

i,j Eij ⊗ Eji, since

Eij
∑

k,l

Eij ⊗ Ekl ⊗ Elk

∑

k,l

Tr(EijEkl)Elk =
∑

k,l

δjkδilElk = Eij

1Mat⊗γ

β⊗1Mat

for each element of the basis.

(3) Finally, in k[G] the pairing is

β(gi ⊗ gj) =

{

1 if gigj = 1

0 otherwise.

and its associated copairing γ(1) =
∑n

i=0 g
−1
i ⊗ gi:

gi

n
∑

j=0

gi ⊗ g
−1
j ⊗ gj

n
∑

j=0

ε(gig
−1
j )gj =

n
∑

j=0

δijgj = gi
1k[G]⊗γ β⊗1k[G]

for each element of G (which is the basis of [G]).

4.4 Third definition of Frobenius algebras

The definitions of Frobenius algebras we will give now resembles the most to the presen-
tation of TQFTk

2 we found. First we need some definitions:

Definition 4.13. A k-coalgebra is a k-vector space A equipped with two linear maps
δ : A −−→ A⊗A and ε : A −−→ k (called comultiplication and counit respectively) such
that the following diagrams commute:

31



A

A⊗A

A⊗A⊗A

A⊗A

δδ

δ⊗1A 1A⊗δ

A⊗A

A k⊗A

ε⊗1Aδ

A⊗A

A A⊗ k

1A⊗εδ

We can give some examples to illustrate this definition:

(1) Consider a 2-dimensional vector space with basis {c, s}. It has the structure of
coalgebra with the following definitions for δ and ε:

δ :

{

c 7−−→ c⊗ c− s⊗ s

s 7−−→ c⊗ s+ s⊗ c,

ε :

{

c 7−−→ 1

s 7−−→ 0.

This is known as the trigonometric coalgebra: If we let c and s be the linearly
independent functions cos and sin respectively, there are the equivalences

δ(cos)(x⊗ y) = cos(x+ y),

δ(son)(x⊗ y) = sin(x+ y),

ε(cos) = cos(0) and

ε(sin) = sin(0).

(2) Given an arbitrary set S and a field k, k[S] is a k-coalgebra with the comultiplication
and the counit defined on the basis as

δ : x 7−−→ x⊗ x

ε : x 7−−→ 1

for all x ∈ S.

(3) As the notion of a coalgebra is the dual of that of an algebra (i.e. it is defined
by “reversing the arrows”), one could ask if given an algebra A, the dual, A∗, is a
coalgebra. Whereas this is not true in general, it is in the finite-dimensional case:
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We define the comultiplication and the counit as the transposes of the multiplication
and unit respectively, i.e.

δ : A∗ −−→ (A⊗A)∗

f 7−−→ f ◦ µ and

ε : A∗ −−→ k

f 7−−→ f(η(1)).

Notice that δ is well-defined since there is always a canonical isomorphism between
(A ⊗ A)∗ and A∗ ⊗ A∗ if A is finite-dimensional (see [Rom, Thm. 14.7]). However
given a coalgebra (A, δ, ε), its dual is always an algebra, since there is always a
canonical monomorphism A∗⊗A∗ −֒→ (A⊗A)∗ that lets us define the multiplication
µ in A∗ as

µ : A∗ ⊗A∗ (A⊗A)∗ A

f ⊗ g [f ⊙ g : x⊗ y 7−−→ f(x)g(y)] (f ⊙ g) ◦ δ.

δ∗

The unit is defined as η(1) = ε.

Definition 4.14. We say that two linear maps µ : A ⊗ A −−→ A and δ : A −−→ A ⊗ A
satisfy the Frobenius relation if the following diagram commutes:

A⊗A A A⊗A

A⊗A⊗A

A⊗A⊗A

µ δ

δ⊗1A

1A⊗δ

1A⊗µ

µ⊗1A

The third definition of Frobenius algebras is:

Definition 4.15. A Frobenius k-algebra is a quintuple (A,µ, η, δ, ε) such that

(1) (A,µ, η) is a k-algebra,

(2) (A, δ, ε) is a k-coalgebra, and

(3) the Frobenius relation holds for µ and δ.

To show that this definition is equivalent to the previous ones, firstly we assume
(A, ε) to be a Frobenius algebra (according to Definition 4.3) and we want construct a
comultiplication δ such that (A, δ, ε) is a k-coalgebra. To do so we have at our disposal
µ, η, β and γ as well as ε.

We define δ to be the composition

A A⊗A⊗A A⊗A.
γ⊗1A 1A⊗µ
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To prove its coassociativity (i.e. the first property in the definition of k-coalgebra), we
will use the following:

Lemma 4.16. The following diagram commutes

A⊗A

A⊗A⊗A⊗A A⊗A⊗A

A

A⊗A⊗A⊗A A⊗A⊗A

γ⊗1A⊗1A

1A⊗1A⊗µ

1A⊗β

1A⊗1A⊗γ

µ⊗1A⊗1A

β⊗1A

µ

Proof. All these kind of statements involving commutative diagrams will be proven by
“diagram chasing.” Let us prove the uppermost part of the diagram:

A⊗A

A⊗A⊗A⊗A A⊗A⊗A

AA

γ⊗1A⊗1A

1A⊗1A⊗µ

1A⊗β

µ

(1)

γ⊗1A

(1)

1A

(2)

(1) are found by adding and removing identity maps, and (2) is a consequence of the
nondegeneracy of β.

Lemma 4.17. The following diagram commutes

A A⊗A

A⊗A⊗A

A⊗A⊗A

γ⊗1A 1A⊗µ

1A⊗γ µ⊗1A

(i.e. we could have constructed δ in a “symmetrical” way.)
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Proof. We use the notation A⊗n = A⊗
n
· · · ⊗A to declutter the diagrams.

A A⊗A

A⊗A⊗A

A⊗A⊗A

A⊗5

A⊗4

A⊗4

γ⊗1A 1A⊗µ

1A⊗γ

(3)

µ⊗1A

(4)

1 A
⊗
1 A

⊗
1 A

⊗
γ

(1)

1A⊗
µ⊗1A⊗

1A

(1)

1A⊗β⊗1A
(1)

1A⊗1A⊗µ⊗1A
(2)

1A⊗
β⊗1A

(2)

γ
⊗
1
A
⊗
1
A
⊗
1
A

(3)

Lemma 4.16 gives (1); the associativity of β gives (2); rearranging identities gives (3);
and finally again using Lemma 4.16 we have (4).

Lemma 4.18. The comultiplication δ we constructed is coassociative, i e. the following
diagram commutes:

A

A⊗A

A⊗A⊗A

A⊗A

δδ

δ⊗1A 1A⊗δ

Proof. Lemma 4.17 gives us two equivalent definitions of δ,

A A⊗A⊗A A⊗A and
γ⊗1A 1A⊗µ

A A⊗A⊗A A⊗A.
1A⊗γ µ⊗1A
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So we have

A

A⊗3

A⊗A

A⊗4

A⊗A⊗A

A⊗4

A⊗A

A⊗3

A⊗5

1A
⊗
γ

µ⊗
1A

γ⊗
1
A

(3)

1
A⊗
µ

(3)

γ⊗
1
A⊗

1
A

1
A⊗
µ⊗

1
A

1A
⊗
1A
⊗
γ

(3)

1A
⊗
µ⊗

1A

(2)

γ
⊗
1
A
⊗
γ

(1)

1A
⊗
1A
⊗
µ⊗

1A

(1)

1
A⊗
µ⊗

1
A⊗

1
A

(2)

δ δ

δ⊗1A 1A⊗δ

where (1) have been found rearranging identities, (2) by associativity of µ and (3) again
rearranging identities.

Now we shall prove the remaining property of k-coalgebras.

Lemma 4.19. The following diagrams commute:

A⊗A k

A

A

A⊗A

k

A⊗A

µ ε

β

ε

1A⊗η

η⊗1A

β

β

Proof. These diagrams are given in the proof of 4.11.

Lemma 4.20. The Frobenius form ε is a counit for the comultiplication δ, i.e.:
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A⊗A

A

A⊗A

A

δ

δ ε⊗1A

1A⊗ε

1A

(Observe how from now on, the diagrams will not distinguish A, k⊗A, A⊗ k, etc.)

Proof. Let us proof the uppermost diagram:

A⊗A

A A

A⊗A⊗A

δ ε⊗1A

1A

(3)

1A⊗γ

(1)

µ⊗1A(1)

β⊗1A

(2)

(1) are the definition of δ, (2) is given by Lemma 4.19, and (3) by nondegeneracy of
β.

Lemmas 4.18 and 4.20 state that A is a k-coalgebra with δ and ε. Now we show that
the Frobenius relation is satisfied.

Lemma 4.21. µ and δ satisfy the Frobenius relation:

A⊗A A A⊗A

A⊗A⊗A

A⊗A⊗A

µ δ

δ⊗1A

1A⊗δ

1A⊗µ

µ⊗1A

Proof. Again, we will prove only the uppermost diagram.
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A⊗A

A⊗3

A⊗A

A⊗4

A⊗3

A

γ⊗
1A
⊗
1A(1)

1A
⊗
µ⊗

1A(1)

1
A⊗
µ1A⊗1A⊗µ

(2)

1A⊗µ

(2)

µ

(3)

γ⊗1A (3)

δ

(4)

δ⊗1A

The definition of δ gives (1); the associativity of µ, (2); a rearrangement of identities, (3);
and again the definition of δ, (4).

This lemma is analogous to 4.19:

Lemma 4.22. The following diagrams commute:

k A⊗A

A

k

A⊗A

A

A⊗A

η δ

γ

η

γ

γ

1A⊗ε

ε⊗1A

Proof. Firstly,

A

k A⊗A

A⊗A⊗A

A⊗A

η

δ

γ

(2)

1A⊗1A

(3)

η⊗
1A
⊗
1A(2)

1
A⊗
γ

(1)

µ⊗
1
A

(1)

where (1) is by definition of δ, (2) is found rearranging identities and (3) is the property
of units in an algebra. Then,

k A A

A⊗A

η

(1)

1A

(2)

γ 1A⊗ε
δ(1)
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(1) is due to the property we just proved, and (2) is given by Lemma 4.20. The other
part of the diagram is proven analogously.

Now, at last, we have all the tools to proof the following two theorems, that state the
equivalence of the three definitions of Frobenius algebras.

Theorem 4.23. Given a Frobenius k-algebra (A, ε) in the sense of 4.3, there exists a
unique linear map δ : A −−→ A⊗A, such that A is Frobenius k-algebra (A, ε) in the sense
of 4.15 with δ as comultiplication and ε as counit.

Proof. With our construction of δ, and lemmas 4.18, 4.20 and 4.21, we only need to
prove the unicity. Suppose there is another linear map ω satisfying the hypotheses of
the theorem. We can construct the following diagram starting from the upper half of the
Frobenius relation diagram (in this case the central square):

A⊗A⊗A

A A

A⊗A

A

A⊗A

η⊗1A

(1)

ω⊗1A

1A⊗β

(2)

1A

(3)

1A

(5)

ωµ

1A⊗µ

1A⊗ε

(1)

We extended the diagram adding the morphisms (1). Lemma 4.19 gives (2); (3) is due
to the fact that η is the unit of the algebra; and (4) to the fact that ε is the counit of the
coalgebra. Notice that the outer morphisms of the diagram state that ω ◦ η is a copairing
that makes β nondegenerate. But we saw that this copairing is unique; in particular
ω ◦ η = γ. The left part of the previous diagram becomes

A⊗A⊗A

A

A⊗A

A

A⊗A

η⊗1A

ω⊗1A

γ⊗1A

1A

ωµ

1A⊗µ

Now the outer morphisms say that (1A ⊗ µ) ◦ (γ ⊗ 1A) = ω, but this is precisely the
definition of δ!

Theorem 4.24. Let A be a k-vector space equipped with a multiplication µ : A⊗A −−→ A
with unit η : k −−→ A and a comultiplication δ : A −−→ A⊗A with counit ε : A −−→ k, and
such that the Frobenius relation holds for µ and δ. Then

39



(1) A is finite-dimensional,

(2) µ is associative, so (A,µ, η) is a k-algebra,

(3) δ is coassociative, so (A, δ, ε) is a k-coalgebra and

(4) ε is a Frobenius form, so (A, ε) is a Frobenius k-algebra.

Proof. Let us define a pairing β := ε ◦ µ and prove that it is nondegenerate with the
copairing defined γ := δ ◦ η. To do so, we repeat the proof of the previous lemma,
extending the Frobenius relation diagram with η and ε, etc.:

A⊗A⊗A

A A

A⊗A

A

A⊗A

η⊗1A

δ⊗1A

1A⊗βγ⊗1A

1A 1A

δµ

1A⊗µ

1A⊗ε

To prove the nondegeneracy of β on the other variable we should use the other coun-
terpart of the Frobenius relation. By Lemma 4.9, A is therefore finite-dimensional.

Notice that the previous diagram also says that µ = (1A ⊗ β) ◦ (δ ⊗ 1A) and
δ = (1A ⊗ µ) ◦ (γ ⊗ 1A). This allows us to prove the associativity of µ and the coas-
sociativity of δ. For the associativity:

A⊗A⊗A

A⊗A A⊗A

A

A⊗4

A⊗3

1A⊗µ

µ

1
A
⊗
δ⊗

1
A

(1)

1A⊗
1A⊗

β
(1)

µ
⊗
1
A
⊗
1
A

(2)

1
A
⊗
β

(2)

µ⊗1A

(3)

δ⊗1A

(3)

µ

(4)
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(1) is due to the equality we mentioned; (2) to a rearrangement of identities; (3) to
the Frobenius relation; and (4) to µ = (1A ⊗ β) ◦ (δ ⊗ 1A) as well. The proof of the
coassociativity of δ is analogous.

Finally, as µ is associative, clearly β := ε ◦ µ is associative as well, so (A, β) is a
Frobenius k-algebra.

Let us translate our three examples in this third definition:

(1) As {1, i} is a basis of C as a R-vector space, we may wonder if the trigonometric
coalgebra structure is compatible with the Frobenius R-algebra (C,Re). First ob-
serve that if we set c = 1 and s = i the trigonometric counit coincides with Re.
It is straightforward to see that the Frobenius relation holds for the multiplication
µ(z ⊗ w) = zw and trigonometric comultiplication; for example

1⊗ i 1⊗ 1⊗ i− i⊗ i⊗ i 1⊗ i+ i⊗ 1

1⊗ i i 1⊗ i+ i⊗ 1

1⊗ i 1⊗ 1⊗ i+ 1⊗ i⊗ 1 1⊗ i+ i⊗ 1

δ⊗1C 1C⊗µ

µ δ

1C⊗δ µ⊗1C

and similarly for the other three combinations of the basis vectors.

(2) To find the comultiplication compatible with (Matn×n(k),Tr), we use the construc-
tion above, i.e., for every element of the basis, δ must be given by the following
composition:

Eij
∑

k,l

Ekl ⊗ Elk ⊗ Eij

∑

k,l

Ekl ⊗ ElkEij =
∑

k,l

Ekl ⊗ δkiElj =

n
∑

l=1

Eil ⊗Elj .

γ⊗1Mat

1Mat⊗µ

(3) The definition of the coalgebra (k[S], δ, ε), with S = G, is not compatible the Frobe-
nius structure of k[G] formulated above. However (k[S], µ, η, δ, ε) is a bialgebra, an-
other kind of vector space that is both an algebra and a coalgebra, but satisfying
other relations (which can be found in [DNR, §4.1]). Instead, the comultiplication
associated with our Frobenius algebra must be given by

gi

n
∑

j=0

g−1
j ⊗ gj ⊗ gi

n
∑

j=0

g−1
j ⊗ gjgi.

γ⊗1k[G] 1k[G]⊗µ

4.5 Commutative Frobenius algebras

Recall the symmetric braiding σ that interchanges the factors of ⊗:

σV,W : V ⊗W −−→W ⊗ V.

We are interested when V =W = A (and we will write σA = σA,A).
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Definition 4.25. A k-algebra (A,µ, η) [resp. k-coalgebra (A, δ, ε)] is said to be commu-
tative [resp. cocommutative] if the following diagram commutes:

A⊗A A

A⊗A

σA µ

µ









































resp.

A A⊗A

A⊗A

δ σA

δ

Definition 4.26. A Frobenius k-algebra (A,µ, η, δ, ε) is said to be commutative if
(A,µ, η) is a commutative k-algebra.

We could have defined a Frobenius algebra to be commutative if (A, δ, ε) was a cocom-
mutative coalgebra instead, as this proposition shows:

Proposition 4.27. A Frobenius k-algebra (A,µ, η, δ, ε) is commutative if and only if
(A, δ, ε) is a cocommutative k-coalgebra.

Proof. Suppose (A,µ, η) is commutative, and consider the composition

A A⊗A A⊗A.
δ σA

If we show that this is a comultiplication with ε as counit and that it satisfies the Frobenius
relation with µ, by means of Theorem 4.24, (A, σA ◦δ, ε) will be a coalgebra, and therefore
δ = σA ◦ δ due to unicity (see Theorem 4.23).

A

A⊗A

A

A⊗A

δ

σA

ε⊗1A

1A⊗ε

(1)

1A

(2)

The naturality of the symmetric braiding σ (recall the Definition A.7) gives (1); hence,
as ε is the counit of δ we have (2). Similarly one can see that (1A ⊗ ε) ◦ (σA ◦ δ) = 1A.

Now we see the first equality of the Frobenius relation holds (the other is analogous):
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A⊗A

A⊗A⊗A

A⊗A⊗A

A⊗A

A⊗A

A

A⊗A⊗A

A⊗A⊗A

A⊗A

(1)
δ⊗1A

σA⊗1A

1A⊗µ

1A⊗σA

1A⊗σA

µ
⊗
1
A

(2) σA

(2)

σA
⊗
1A

(3)

µ⊗1
A

(3)

σA

(4)
1A
⊗
δ

(4)

µ

(5)

δ

(5)

µ

(6)

The “loop” (1) can be added because σA ◦ σA = 1A; naturality of σ justifies (2); in (3)
a symmetric braiding is added to the multiplication µ (it is commutative); (4) is another
instance of naturality of σ; (5) is given by the Frobenius relation of µ and δ; and finally
(6) is again due to the commutativity of µ.

The converse implication of the theorem is proven exactly the same (by “reversing the
arrows”).

In our examples, the only commutative Frobenius algebras are C and k[G] provided
that G is Abelian.

4.6 The category of Frobenius algebras

We have to define the morphisms in order to construct the category of Frobenius algebras.
First we describe the simpler categories of algebras and coalgebras.

Definition 4.28. A k-algebra homomorphism f : A1 −−→ A2 between two k-algebras,
(A1, µ1, η1) and (A2, µ2, η2), is a linear map such that the following diagrams commute:

A1 ⊗A1

A2 ⊗A2

A1

A2

k

A1

A2

f⊗f

µ1

µ2

f f

η1

η2
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It is obvious that k-algebras together with k-algebra homomorphisms form a category,
Algk, which is a symmetric monoidal category with ⊗.

Definition 4.29. A k-coalgebra homomorphism f : A1 −−→ A2 between two k-
coalgebras, (A1, δ1, ε1) and (A2, δ2, ε2), is a linear map such that the following diagrams
commute:

A1

A2

A1 ⊗A1

A2 ⊗A2

k

A1

A2

f

δ1

δ2

f⊗f f

ε1

ε2

Similarly we define the symmetric monoidal category CoAlgk.

By combining these two notions we define Frobenius algebra homomorphisms:

Definition 4.30. A Frobenius k-algebra homomorphism f : A1 −−→ A2 between
two Frobenius k-algebras, (A1, µ1, η1, δ1, ε1) and (A2, µ2, η2, δ2, ε2), is a map that is both
a k-algebra homomorphism and a k-coalgebra homomorphism.

This gives us the symmetric monoidal category of Frobenius k-algebras, FAk. If we
require the objects to be commutative Frobenius algebras, we have the subcategory cFAk.

4.7 Equivalence of categories

Lastly, we state and prove the equivalence between two-dimensional TQFTs and Frobenius
algebras.

Theorem 4.31. There is a symmetric monoidal equivalence

TQFTk
2 ≃ cFAk.

Proof. First, consider the symmetric monoidal functor

F : TQFTk
2 −−→ cFAk

[Z : Bord2 −−→ Vectk] 7−−→ AZ = Z(1)

(recall that n is the disjoint union of n circles). By monoidality of F we have that
F (n) = A⊗n

Z . To endow AZ with the structure of Frobenius algebra, we define

µZ := Z

( )

: AZ ⊗AZ −−→ AZ ,

ηZ := Z
( )

: k −−→ AZ ,

δZ := Z

( )

: AZ −−→ AZ ⊗AZ and

εZ := Z
( )

: AZ −−→ k.
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We also have that

1AZ
= Z

( )

: AZ −−→ AZ

by functoriality of F , and since F is a symmetric monoidal functor,

σAZ
= Z

( )

: AZ ⊗AZ −−→ AZ ⊗AZ .

With these definitions, observe how the unit relations of Bord2 translate (via F ) to
µZ ◦ (ηZ ⊗ 1AZ

) = 1AZ
= µZ ◦ (1AZ

⊗ ηZ) (i.e. ηZ is a unit for µZ); counit relations of
Bord2 similarly translate to the fact that εZ is a counit for δZ ; and the (until now unjus-
tifiedly called) Frobenius relation of Bord2 translates to the Frobenius relation of 4.14.
Therefore, by Theorem 4.24, (AZ , µZ , ηZ , δZ , εZ) is a Frobenius k-algebra. Similarly, the
commutativity relation of Bord2 translates to fact that AZ is a commutative Frobenius
k-algebra. So in conclusion F is well-defined.

Conversely, we construct the symmetric monoidal functor

G : cFAk −−→ TQFTk
2

A 7−−→ [ZA : Bord2 −−→ Vectk]

in the following manner (recall that we found a presentation (O,G,R) of Bord2, so ZA
will be determined by the images of the objects in O and the morphisms in G, provided
that the relations of R still hold):

(1) For the objects in O, we define ZA(1) = A, and thus ZA(n) = A⊗n.

(2) For the generators in G, we define:

ZA

( )

:= µ : A⊗A −−→ A,

ZA

( )

:= η : k −−→ A,

ZA

( )

:= δ : A −−→ A⊗A and

ZA

( )

:= ε : A −−→ k.

(3) We have to show that the relations in R are satisfied when taking images. The rela-
tions involving and must hold because G is a symmetric monoidal functor,
that is,

ZA

( )

:= 1A : A −−→ A

ZA

( )

:= σA : A⊗A −−→ A⊗A.

The other relations, when taking images, yield expressions satisfied by commutative
Frobenius algebras that we saw in previous subsections.

Due to the way F and G are constructed, it is obvious that one is the inverse of the
other.

Now we should define the functors F and G on morphisms. Let α : Z =⇒ Y be a sym-
metric monoidal natural transformation between two 2-TQFTs, Z and Y. In particular
α has components α0, α1 and α2 making the following diagrams commute:
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Z(2)

AZ ⊗AZ

Y(2)

AY ⊗AY

Z(1)

AZ

Y(1)

AY

Z(0)

k

Y(0)

k

Z(1)

AZ

Y(1)

AY

α2

Z
( )

Y
( )

α1

µZ

µY

α0

Z( )

Y( )

α1

ηZ

ηY

As α is monoidal, we have that α2 = α1 ⊗ α1 and α0 = 1k, so the above diagrams are
the ones in the definition of k-algebra homomorphism. Similarly we see that α1 is a
k-coalgebra homomorphism. Therefore F (α) = α1 is well-defined.

Conversely, given a Frobenius k-algebra homomorphism f : A −−→ B, the functor
G can map it to the symmetric monoidal natural transformation αf : ZA =⇒ ZB with
components αfn = f⊗n. It is obvious that F and G are inverse to each other in the
morphism level as well.

5 Digression on Physics

Dr. von Neumann, ich möchte gerne wissen, was ist dann
eigentlich ein Hilbertscher Raum?7

— Question asked by Hilbert himself in a talk by
von Neumann, 1929, Göttingen.

In this last section we try to shed some light on how the mathematical concept of topo-
logical quantum field theories was historically meant to reconcile Quantum Physics and
General Relativity. This section is based on Baez’s paper [Bae] and we refer to the original
reference for further details.

The key to grasp the importance of TQFTs as proposed by Witten and Atiyah is to
understand that both quantum processes and spacetime can be described categorically in
a similar way. At first glance, general relativity and quantum theory “use different sorts
of mathematics,” says Baez: “one is based on objects such as manifolds, the other on
objects such as Hilbert spaces.”

Under the assumption that neither space nor spacetime have a fixed topology—an
idea that general relativity put on the table—manifolds of dimension n are used to model
spacetime, and submanifolds of dimension (n − 1), space at a given instant.8 Thus a
bordism can represent an evolution of the space along time. For instance the pair of
pants would represent the collision of two different spaces that merge in a new one:

7Loosely translated as “Dr. von Neumann, I would like to know, what is actually a Hilbert space?,”
this quote can be found in [ML1].

8There are many models with n different from the usual 4, for example in string theory spacetime is
10-dimensional, while in M-theory it is 11-dimensional.
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Figure 5.1: Spacetime as a bordism.

On the other hand, we want to establish a connection between quantum states and
vector spaces. In fact, Quantum Mechanics is mathematically formulated by means of
complex Hilbert spaces, a kind C-vector spaces with further structure: the possible states
of a quantum system are associated with the unit vectors of a Hilbert space. Moreover,
the processes that occur between such sets of states are described by bounded linear
maps (or more commonly operators). Therefore TQFTs, in this case, will be understood
as functors from Bordn to Hilb, the category of the aforementioned vector spaces.

The resemblances between these two categories become more apparent when we con-
sider the Feynman diagrams, which are used to visualize operators: intuitively these
diagrams exhibit the analogy between Quantum Physics and Topology.

Figure 5.2: Feynman diagram understood as a 2-bordism.

Later in the 1970s, as it is said in [BS], “Penrose realized that generalizations of
Feynman diagrams arise throughout quantum theory, and might even lead to revisions
in our understanding of spacetime.” Furthermore, in string theory Feynman diagrams
are substituted by worldsheets, 2-dimensional bordisms that describe the embedding of a
string in spacetime; and similarly in the loop quantum gravity (LQG) theory, et cetera.

5.1 The category of Hilbert spaces

Definition 5.1. A Hilbert space is a C-vector space H equipped with a positive definite
inner product whose induced norm makes H a complete metric space.

Let us unravel this definition: An inner product is a sesquilinear, conjugate-symmetric
map 〈−|−〉 : H ×H −−→ C; in other words, it satisfies

(1) 〈ψ|aφ + bχ〉 = a〈ψ|φ〉 + b〈ψ|χ〉 and

(2) 〈ψ|φ〉 = 〈φ|ψ〉

for all vectors ψ, φ, χ ∈ H and all scalars a, b ∈ C (where a denotes the complex conjugate
of a). These two properties imply that 〈aψ + bφ|χ〉 = a〈ψ|χ〉 + b〈φ|χ〉. Antilinearity on
the first variable and linearity on the second is the usual convention in Physics, but it is
sometimes defined conversely.
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The inner product is said to be positive definite if 〈ψ|ψ〉 ≥ 0 with the equality if and
only if ψ = 0. The induced norm is ‖ψ‖ =

√

〈ψ|ψ〉. Now the definition should be clear.
Refer to [Rud, Chapter 12] for more details.

These structures are the objects of the category of Hilbert spaces, denotedHilb. As for
its morphisms, one would expect a reasonable choice to be linear operators that preserve
the inner product, i.e. unitary operators: linear maps T : H1 −−→ H2 such that

〈T (ψ)|T (φ)〉H2 = 〈ψ|φ〉H1

for all ψ, φ ∈ H1. However, many of the operators that arise in Quantum Physics are not
unitary.

We require the morphisms only to be bounded linear operators.9 Since it can be shown
that in finite dimensions every linear map is bounded, the category of finite-dimensional
Hilbert spaces is equivalent to FinVectC, and hence the inner product is superfluous. If
we allow Hilbert spaces to have any dimension, possibly infinite, the category Hilb is not
equivalent to VectC, but to the subcategory of Hilbertizable vector spaces—those that
can be equipped with the topology of a certain Hilbert space. Bounded linear maps do
not preserve inner products, though, only the topology they provide. The fact that we
require the objects to be Hilbert spaces, and not just vector spaces with a specific kind of
topology, is that inner products allow us to imbue Hilb with some new structure, namely
it makes it a †-category.

5.2 †-categories

Given a category C, we can define a new category by formally reversing the direction of
the morphisms. This is known as the opposite category of C and is denoted as Cop. In
other words,

(1) Cop has the same objects as C,

(2) Each morphism f : A −−→ B in Cop is in one-to-one correspondence with a morphism
f : B −−→ A in C, and

(3) the composition in g ◦ f in Cop is defined to be the composition f ◦ g in C.

This construction allows us to define †-categories:

Definition 5.2. A †-category (or dagger category) is a category C equipped with a
functor

† : Cop −−→ C

which

(1) is the identity on objects and

(2) is an involution, i.e. † ◦ † = 1C .
10

The image f † : B −−→ A is said to be the †-adjoint of f : A −−→ B.

9This means that there exists a constant M ≥ 0 such that ‖T (ψ)‖ ≤ M‖ψ‖ for every vector ψ ∈ H1,
and is equivalent to continuity for linear operators.

10This is a harmless abuse of notation; we actually mean that † ◦ −op ◦ † ◦ −op = 1C .
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The common operation in Quantum Physics that makes Hilb into a †-category is the
Hermitian conjugate or adjoint : given a bounded linear operator T : H1 −−→ H2 we define
its Hermitian conjugate to be unique bounded linear operator T † : H2 −−→ H1 satisfying

〈T †(φ)|ψ〉H1 = 〈φ|T (ψ)〉H2

for all ψ ∈ H1, φ ∈ H2.
11

Therefore the inner product serves to regard Hilb as a †-category, and in fact, con-
versely, one can recover the inner product solely form the †-structure of Hilb. By means
of the canonical correspondence between elements of a Hilbert space H and linear maps
C −−→ H,

ψ [Tψ : 1 7−−→ ψ]

T (1) T

the inner product of H can be expressed in terms of morphisms C −−→ H:

T †
ψ ◦ Tφ : C −−→ C

1 7−−→ T †
ψ(φ) = 〈1|T

†
ψ(φ)〉C = 〈(T †

ψ)
†(1)|φ〉H = 〈Tψ(1)|φ〉H = 〈ψ|φ〉H .

Dirac’s bra-ket notation is commonly used to denote such morphisms: T †
ψ = 〈ψ| and

Tφ = |φ〉.

The category of bordisms is a †-category as well: the definition of the †-adjoint mor-
phisms is simpler in this case. Given a bordism M : Σ1 −−→ Σ2 we set as its adjoint
M † := M : Σ2 −−→ Σ1, that is, the bordism M with opposite orientation. Notice that,
since the orientations of Σ1 and Σ2 remain unchanged, the in-boundary becomes the
out-boundary and vice versa.

If bordisms represent spacetime, the † functor is to be understood as a time reversal
operation: IfM : Σ1 −−→ Σ2 describes a process in time where the space Σ1 is transformed
into the space Σ2, M is the reverse process from Σ2 to Σ1, switching past and future.

TQFTs can be enriched by requiring it to preserve the †-structure:

Definition 5.3. A †-functor (or dagger functor) is a functor between †-categories,
F : (C, †) −−→ (D, ‡), such that it commutes with the †-structures, i.e.

F ◦ † = ‡ ◦ F op,

where F op : Cop −−→ Dop is the functor induced by F .

TQFTs that satisfy this condition are called unitary TQFTs. In our case that would
mean that, if Z is a TQFT,

Z(M ) = Z(M)†,

which is the Hermitian axiom in Atiyah’s paper, [Ati]. This establishes an analogy be-
tween time reversal in general relativity and taking the adjoint of an operator between
Hilbert spaces.

In Quantum Physics, operators that describe the time evolution of a quantum system
are usually assumed to be unitary—operators T such that 〈T (ψ)|T (φ)〉 = 〈ψ|φ〉, or equiv-
alently, such that T † = T−1—a common hypothesis known as unitarity. However, if one

11The proof of uniqueness can be found in [Rud, §12.9], and it is key to show that † is an involution:
〈T ††(ψ)|φ〉 = 〈φ|T ††(ψ)〉 = 〈T †(φ)|ψ〉 = 〈φ|T (ψ)〉 = 〈T (ψ)|φ〉, hence T †† = T .
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accepts the possibility of topology changes in space along time, then, as Baez points out,
other operators should be considered: It can be shown that a bordism M : Σ −−→ Σ is
unitary (i.e. M = M) if it involves no topology changes on Σ—or in other words, if it is
a cylinder. (The converse is true only for n ≤ 3.) Therefore

absence of topology change implies unitary time evolution [italics are Baez’s].
This fact reinforces a point already well-known from quantum field theory on
curved spacetime, namely that unitary time evolution is not a built-in feature
of quantum theory but rather the consequence of specific assumptions about
the nature of spacetime.

5.3 Quantum entanglement

It is time to talk about how spacetime and Hilbert spaces fit into the monoidality of their
associated categories.

We saw that the tensor product in Bordn is the disjoint union. This corresponds
in our analogy with stating that a disjoint union of two spacetimes is to be understood
simply as letting them evolve in parallel, being independent from one another.

In the other hand, the fact that the monoidality of Hilb comes from the usual tensor
product of vector spaces (instead of the Cartesian product), opens the Pandora’s box of
many paradoxes in Quantum Physics, in particular quantum entanglement. Intuitively,
the state of a joint system, a system consisting on two separate parts, is uniquely de-
termined by the state of each part. However, one of the most lurid discoveries in the
twentieth century—discussed by Einstein, Podolsky and Rosen in their famous paper
[EPR] and by Schrödinger shorty after—is that, whereas that is true in Classical Physics,
in the quantum scenario there exist entangled states: systems that cannot be described by
the sum (or, more rightly, the product) of its constituent parts, but by the superposition
of such. Put in other words, tensor product best describes quantum systems, while in the
classical context Cartesian product is enough.

This is another evidence for the similarity between Hilb and Bordn. To name another
one, consider the Wootters–Zurek argument (see [WZ]), which states that no quantum
system can be cloned. If joint system could be expressed with Cartesian product, there
would be the canonical diagonal map ∆ : H −−→ H × H that duplicated information.
However, as Hilb is monoidal with the tensor product, the possibility of cloning would
imply the existence of an operator H −−→ H ⊗H; but it can be proven that there is no
canonical way to define such map.
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Appendix

A Monoidal Categories

In this appendix we collect some basic notions and properties on Category Theory, with
special attention to the theory of symmetric monoidal structures. All the concepts and
results that appear in this section can be found in [ML2].

A.1 Basic Definitions in Category Theory

Definition A.1. A category C consists of

(1) a collection of objects Ob(C) and

(2) a collection of morphisms HomC(A,B) for every A,B ∈ Ob(C) (if f ∈ HomC(A,B)
we write f : A −−→ B)

equipped with

(1) a morphism 1A : A −−→ A for any object A ∈ Ob(C) (called identity morphism)
and

(2) a morphism g ◦ f : A −−→ C for any pair of morphisms f : A −−→ B and g : B −−→ C
(called composition morphism),

such that the following laws hold:

(1) Unit law: f ◦ 1A = f = 1B ◦ f for any morphism f : A −−→ B.

(2) Associative law: (h ◦ g) ◦ f = h ◦ (g ◦ f) for any triple of morphisms f : A −−→ B,
g : B −−→ C and h : C −−→ D.

We will often write A ∈ C instead of A ∈ Ob(C).

An isomorphism is a morphism f : A −−→ B with an inverse, i.e. a morphism
g : B −−→ A such that g ◦ f = 1A and f ◦ g = 1B .

Definition A.2. Given two categories C,D, a functor F : C −−→ D consists of

(1) an application F : Ob(C) −−→ Ob(D) and

(2) an application F : HomC(A,B) −−→ HomD(F (A), F (B)) for any pair of objects
A,B ∈ Ob(C),

such that

(1) F (1A) = 1F (A) for any object A ∈ C, and

(2) F (g ◦ f) = F (g) ◦ F (f) for any pair of applications f : A −−→ B and g : B −−→ C in
C.
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Given a category C we can define the identity functor 1C : C −−→ C with 1C(A) = A
and 1C(f) = f , and given two functors F : C −−→ D and G : D −−→ E we can define the
composition functor G◦F : C −−→ E with G◦F (A) = G(F (A)) and G◦F (f) = G(F (f)).
One can easily prove that the unit and associative law hold.

Definition A.3. Given two functors F,G : C −−→ D, a natural transformation
α : F =⇒ G consists of

(1) a morphism αA : F (A) −−→ G(A) in D for every object A ∈ C (called component
of α at A),

such that

(1) for every morphism f : A −−→ B in C we have the following commutative diagram
in D:

F (B)F (A)

G(A) G(B)

F (f)

αBαA

G(f)

Given a functor F : C −−→ D we can define the identity natural transformation
1F : F =⇒ F with components (1F )A = 1F (A), and given two natural transformations
α : F =⇒ G and β : G =⇒ H we can define the composition natural transformation
β ◦ α : F =⇒ H with components (β ◦ α)A = βA ◦ αA. One can easily check that the
corresponding commutative diagrams commute, and, again, that the unit and associative
laws hold.

Definition A.4. Given two functors F,G : C −−→ D, a natural isomorphism α : F =⇒ G
is a natural transformation with an inverse, i.e. a natural transformation β : G =⇒ F
such that β ◦ α = 1F and α ◦ β = 1G. That is to say, according to the last paragraph,
that every component of α is an isomorphism.

Definition A.5. A functor F : C −−→ D is an equivalence if it has a weak inverse, i.e.
a functor G : D −−→ C such that there exist two natural isomorphisms α : G ◦ F =⇒ 1C
and β : F ◦G =⇒ 1D. We write C ≃ D to indicate that there is an equivalence between C
and D.

A.2 Monoidal Categories

In order to define monoidal categories we need to set the notion of Cartesian product of
categories as follows: given two categories C and D,

(1) Ob(C × D) = Ob(C)×Ob(D),

(2) HomC×D(A × B,A′ × B′) = HomC(A,A
′) × HomD(B,B

′) for any A,A′ ∈ C,
B,B′ ∈ D,
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(3) composition is done component-wise, i.e. (f, g) ◦ (f ′, g′) = (f ◦ g, f ′ ◦ g′), and

(4) identity morphisms are defined component-wise, i.e. 1(f,g) = (1f , 1g).

We define the empty product category, 1, to be the category with only an object and only
its identity morphism.

Thus we can write (C × D)× E = C × D × E = C × (D × E) and C × 1 = C = 1× C.

Definition A.6. A monoidal category is a categoryM equipped with

(1) a functor ⊗ :M×M−−→M called the tensor product (we write ⊗(A,B) = A⊗B
and ⊗(f, g) = f ⊗ g),

(2) a functor I : 1 −−→M called unit (we write the image of the only object in 1 simply
as I ∈ Ob(M)),

(3) a natural isomorphism, α, called associator

M×M×M

M×M

M

M×M

1M×⊗⊗×1M

⊗ ⊗

α

(i.e. with components αA,B,C : (A⊗B)⊗ C −−→ A⊗ (B ⊗ C))

(4) and two natural isomorphisms, λ and ρ, called unit isomorphisms

M×M

1×M M

⊗I×1M

λ

M×M

M× 1 M

⊗1M×I

ρ

(i.e. with components λA : I ⊗A −−→ A and ρA : A⊗ I −−→ A respectively),

such that the following diagrams commute for any A,B,C,D ∈ M:

(1) The pentagon diagram:
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(A⊗B)⊗ (C ⊗D)

((A⊗B)⊗ C)⊗D

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

A⊗ (B ⊗ (C ⊗D))

αA,B,C⊗DαA⊗B,C,D

αA,B,C⊗1D

αA,B⊗C,D

1A⊗αB,C,D

(2) and the triangle diagram:

(A⊗ I)⊗B

A⊗B

A⊗ (I ⊗B)

ρA⊗1B 1A⊗λB

αA,I,B

These two diagrams are known as coherence conditions and are to ensure that all
diagrams involving α, λ and ρ commute.

Now we want to define monoidal categories with commutative tensor products. To do
so first we define the twist functor T : C × D −−→ D × C as follows:

(1) T (A×B) = B ×A for any objects A,B in C and D respectively,

(2) T (f × g) = g × f for any morphisms f, g in C and D respectively.

Definition A.7. A symmetric monoidal category is a monoidal categoryM equipped
with a natural isomorphism, β, called symmetric braiding

M×M

M×M M

⊗T

⊗

β

(i.e. with components βA,B : A⊗B −−→ B ⊗A), such that

(1) it satisfies the symmetric condition: β is its own inverse, i.e. its components
satisfy βB,A ◦ βA,B = 1A⊗B ,

(2) and makes the hexagon diagram commute for any objects A,B,C ∈ M:
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(A⊗B)⊗ C

A⊗ (B ⊗ C) (B ⊗ C)⊗A

B ⊗ (C ⊗A)

(B ⊗A)⊗ C B ⊗ (A⊗ C)

αA,B,C

βA,B⊗C

αB,C,A

βA,B⊗1C

αB,A,C

1B⊗βA,C

Definition A.8. A [symmetric] monoidal category is said to be strict if αA,B,C , λA and
ρA are identity morphisms, i.e. if (A⊗B)⊗ C = A⊗ (B ⊗ C) and I ⊗A = A = A⊗ I.

In the end of this section we will present a theorem stating that [symmetric] monoidal
categories and strict [symmetric] monoidal categories are essentially the same.

A.3 Monoidal Functors

Definition A.9. A monoidal functor between two monoidal categories (M1,⊗1, I1)
and (M2,⊗2, I2) is a functor F :M1 −−→M2 equipped with

(1) a natural isomorphism, Φ,

M1 ×M1

M2 ×M2

M2

M1

⊗1F×F

⊗2 F

Φ

(i.e. with components ΦA,B : F (A)⊗2 F (B) −−→ F (A⊗1 B))

(2) and an isomorphism ϕ : I2 −−→ F (I1) inM2

such that

(1) the following diagram commutes for any objects A,B,C ∈ M1,
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(F (A)⊗2 F (B))⊗2 F (C)

F (A⊗1 B)⊗2 F (C) F ((A⊗1 B)⊗1 C)

F (A⊗1 (B ⊗1 C))

F (A)⊗2 (F (B)⊗2 F (C)) F (A)⊗2 F (B ⊗1 C)

ΦA,B⊗21F (C)

ΦA⊗1B,C

F (αA,B,C)

αF (A),F (B),F (C)

1F (A)⊗2ΦB,C

ΦA,B⊗1C

(2) and the following diagrams commute for any object A ∈ M1.

I2 ⊗2 F (A) F (A)

F (I1)⊗2 F (A) F (I1 ⊗1 A)

F (A)⊗2 I2 F (A)

F (A)⊗2 F (I1) F (A⊗1 I1)

λF (A)

ϕ⊗2F (A)

ΦI1,A

F (λA)

ρF (A)

F (A)⊗2ϕ

ΦA,I1

F (ρA)

We can define a symmetric monoidal functor in a similar fashion:

Definition A.10. A symmetric monoidal functor is a monoidal functor, F , between
two symmetric monoidal categories (M1,⊗1, I1) and (M2,⊗2, I2) that makes the follow-
ing diagram commute for any A,B ∈ M1:

F (A)⊗2 F (B)

F (B)⊗2 F (A)

F (A⊗1 B)

F (B ⊗1 A)

βF (A),F (B)

ΦA,B F (βA,B)

ΦB,A

A.4 Monoidal Natural Transformations

Finally we can extend the notion of monoidality to natural transformations:
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Definition A.11. A monoidal natural transformation between two functors
(F :M1 −−→M2,Φ, ϕ) and (G : M1 −−→ M2,Γ, γ) is a natural transformation
µ : F =⇒ G that makes the two following diagrams commute for any objects A,B ∈ M1:

F (A)⊗2 F (B) F (A⊗1 B)

G(A) ⊗2 G(B) G(A ⊗1 B)

I2 F (I1)

I2 G(I1)

ΦA,B

µA⊗2µB µA⊗1B

ΓA,B

ϕ

µI1

γ

Definition A.12. A symmetric monoidal natural transformation is a monoidal
natural transformation between two symmetric monoidal functors.

The equivalence between [symmetric] monoidal categories and strict [symmetric] mo-
noidal we talked about is to be understood in the sense of the following definition.

Definition A.13. A [symmetric] monoidal functor F :M1 −−→M2 between [symmetric]
monoidal categories is a [symmetric] monoidal equivalence if there is a [symmetric]
monoidal functor G :M2 −−→M1 such that there exist two [symmetric] monoidal natural
isomorphisms µ1 : G ◦ F =⇒ 1M1 and µ2 : F ◦G =⇒ 1M2 .

The following result can be found in [ML2, Chapter XI, §3].

Theorem A.14 (Mac Lane’s Theorem). Given a monoidal category M, there exists
a strict monoidal category M̃ for which there is a monoidal equivalence
F :M −−→ M̃. Similarly, given a symmetric monoidal category M, there exists a strict
symmetric monoidal category M̃ for which there is a symmetric monoidal equivalence
F :M−−→ M̃.
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[Dij] Dijkgraaf, R. H. A geometrical approach to two-dimensional Conformal Field
Theory. Ph.D. thesis, University of Utrecht, 1989.

[DK] Donaldson, S. K. and Kronheimer, P. B. The geometry of four-manifolds. Oxford
Mathematical Monographs. The Clarendon Press, Oxford University Press, New
York, NY, 1990. Oxford Science Publications.
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Math. Helv., 28:17–86, 1954.

[Tu] Tu, L. W. An Introduction to Manifolds. Universitext. Springer-Verlag, New York,
NY, second edition, 2011.

59

http://arxiv.org/abs/math/0303109


[Wit] Witten, E. Topological quantum field theory. Comm. Math. Phys., 117(3):353–
386, 1988.

[WZ] Wootters, W. and Zurek, W. A single quantum cannot be cloned. Nature,
299:802–803, 1982.

60


	Introduction
	Bordisms
	Topological manifolds
	Smooth manifolds
	Orientations
	Manifolds with boundary
	Bordisms
	The category of bordisms
	Monoidal structure on the category of bordisms

	Topological quantum field theories
	Definition and properties
	The category of TQFTs
	Presentation of bordisms in low dimensions
	Structure of 1-dimensional TQFTs

	Frobenius algebras and structure of 2-dimensional TQFTs
	Preliminary concepts
	First definition of Frobenius algebras
	Second definition of Frobenius algebras
	Third definition of Frobenius algebras
	Commutative Frobenius algebras
	The category of Frobenius algebras
	Equivalence of categories

	Digression on Physics
	The category of Hilbert spaces
	-categories
	Quantum entanglement

	Monoidal Categories
	Basic Definitions in Category Theory
	Monoidal Categories
	Monoidal Functors
	Monoidal Natural Transformations


