
UNIVERSITAT DE BARCELONA

FUNDAMENTAL PRINCIPLES OF DATA SCIENCE MASTER’S
THESIS

Deep learning for predictive maintenance
of rolling bearings

Author:
Laia Domingo Colomer

Supervisor:
Dr. Jordi Vitrià

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Fundamental Principles of Data Science

in the

Facultat de Matemàtiques i Informàtica

June 25, 2020

http://www.ub.edu
https://github.com/laiadc/
https://algorismes.github.io/
http://mat.ub.edu

iii

UNIVERSITAT DE BARCELONA

Abstract
Facultat de Matemàtiques i Informàtica

MSc

Deep learning for predictive maintenance of rolling bearings

by Laia Domingo Colomer

The monitoring of machine health has become of great importance in the industry
in the recent years. Unexpected equipment failures can lead to catastrophic conse-
quences, such as production downtime and costly equipment replacement. Rolling
bearings are one of the most delicate components of rotating equipment, being a
common cause of machine failures. For this reason, predictive maintenance tech-
niques of rolling bearings are fundamental to preserve the health of a machine. In
this project, we present a deep learning approach to predict bearing failures in their
early development. All methodologies are data-driven, therefore they do not assume
any expert knowledge on the field nor require any information about the equip-
ment’s operating conditions. For this reason, this approach is versatile and can be
used to diagnose multiple machines.

HTTP://WWW.UB.EDU
http://mat.ub.edu

v

Acknowledgements
I would like to express my deep gratitude to my supervisor Dr. Jordi Vitrià, for his
valuable support, suggestions and ideas during the development of this project. His
enthusiastic dedication to the project allowed me to enjoy and learn from this expe-
rience.

I would also like to thank my Accenture supervisor Dr. Jesús Gabaldón for his un-
conditional support and for helping me understand the business perspective. This
project would not have been possible without his help and efforts.

I would also like to thank my Accenture colleagues Paula Lopes Romero and Jan
Hayer for making me feel part of their community and sharing their expertise with
me.

Finally I wish to thank my parents, partner and friends for their unconditional sup-
port and encouragement throughout this study.

vii

Contents

Abstract iii

Acknowledgements v

Introduction xi

1 Problem introduction 1
1.1 Introduction to rolling element bearings 1

1.1.1 Failure identification . 2
1.1.2 Bearing damage severity level 3

1.2 Fault diagnosis techniques . 4
1.3 Problem description . 4

1.3.1 Data structure . 5

2 Mathematical description of the models 7
2.1 First concepts . 7

2.1.1 Artificial neural networks . 8
2.1.2 Optimization . 8
2.1.3 Convolutional neural networks 9

2.2 Early detection of the failure . 10
2.2.1 Autoencoder . 10
2.2.2 Anomaly detection . 12

2.3 Classification of the failures . 12
2.3.1 Siamese network . 13

Network structure . 13
Contrastive loss . 14

2.3.2 Triplet strategies . 15
Triplet mining . 15

2.3.3 Comparison of both methods . 17
2.4 Continuous learning . 18

2.4.1 Elastic weight consolidation . 18
Learning a second task after the first 19
Diagonalized Laplace approximation [36] 20
Learning the third task after the first two 21
Error in EWC . 22

3 Implementation details 25
3.1 Data sets . 25

3.1.1 IMS data set . 25
3.1.2 Paderborn data set . 26

3.2 Preprocessing techniques . 26
3.3 Models architecture . 27

3.3.1 Autoencoder . 27

3.3.2 Siamese network . 28
3.3.3 Triplet learning network . 29
3.3.4 Elastic weight consolidation . 29

3.4 Web application . 30

4 Results 31
4.1 Autoencoder . 31

Outer ring failure . 32
Inner ring failure . 33
Rolling element failure . 33
Healthy bearing . 33

4.2 Siamese network . 34
Pretraining . 35
Training . 35

4.3 Triplet learning network . 36
Pretraining . 36
Training . 36

4.4 Comparison of classification models . 37
4.5 Elastic weight consolidation . 37

4.5.1 EWC-concept drift . 38

5 Conclusions 41

Bibliography 43

xi

Introduction

Predictive maintenance is a set of techniques which use condition-monitoring tools
to control the performance of a machine and detect possible defects before it fails.
This set of methods are crucial to apply appropriate maintenance to equipment. Too
early maintenance can cause spending money unnecessarily, while too late mainte-
nance can cause catastrophic damage to equipment.

Rolling bearings are critical components used extensively in rotating equipment and,
if they fail unexpectedly, can result in a catastrophic failure with associated high re-
pair and replacement costs. Therefore, monitoring their health status is of great
interest. Moreover, the growing availability and lowering costs of sensor devices
and associated technology have enabled companies to install sensor devices on all
key equipment and machinery. This motivates the use of data-driven approaches to
predict bearing failures in rotating equipment.

The goal of this project is to provide a solution to predict the bearing health sta-
tus. More precisely, we aim to design a deep learning model which can detect
the early development of a bearing failure. Moreover, the model should be able
to tell the component of the bearing where the failure is happening. This approach
is data-based, which means that it assumes nothing about the physical model of
the system, in contrast to model-based approaches, which require expert knowl-
edge on the system dynamics. The code from all the experiments can be found in
https://github.com/laiadc/PFM_Bearing_Fault_Detection.

The report is organised as follows. Chapter 1 offers an introduction to rolling el-
ement bearings and describes the problem we aim to solve. Chapter 2 provides
a mathematical description of all the models and techniques used in this project.
Chapter 3 describes the data sets used to train the models and provides implemen-
tation details for such models. We proceed in Chapter 4 with the implementation of
the algorithms and the assessment of the results. Finally, we conclude in Chapter 5
with the conclusions of this project.

https://github.com/laiadc/PFM_Bearing_Fault_Detection

1

Chapter 1

Problem introduction

The goal of this chapter is to present the problem that will be treated in this project.
In particular, this chapter begins with an introduction to rolling element bearings
and possible failures. Then, some fault diagnosis techniques are discussed. Finally,
the challenges and requirements of the problem are explained.

1.1 Introduction to rolling element bearings

Rolling element bearings are mechanical elements present in most rotating machines.
Their purpose is to reduce the rotational friction and to support axial and radial
loads. Rolling bearings are critical components used extensively in rotating equip-
ment and, if they fail unexpectedly, they can result in a catastrophic failure with
associated high repair and replacement costs. In fact, about 40% of inductive indus-
trial motor failures result from bearing failures [1].

Rolling elements consist of four different components: outer ring, rolling element,
cage and inner ring, as shown in figure 1.1.

FIGURE 1.1: Rolling element bearing components. Figure from [1]

In general, rolling element bearings have low starting friction and remain unaf-
fected by operating temperature. Therefore, if the installation and maintenance is
performed correctly, the usual cause of bearing failures is metal fatigue. However,
as bearings usually undergo harsh conditions, other sources of failure exist. Some
examples of bearing failures sources are loss of lubrication, corrosion, misalignment,
overheating, excessive loading and contamination [2].

2 Chapter 1. Problem introduction

1.1.1 Failure identification

Vibration analysis is decisive in diagnosing the damage of a rolling element bearing.
By comparing the evolution of the spectral amplitudes, one can predict the future
degree of deterioration. A failure in one of the bearing components will produce
a pronounced peak in a characteristic frequency of the frequency spectrum. This
characteristic frequency will allow quick and easy identification of the failure. The
four possible bearing failing frequencies (or characteristic frequencies) are [3]:

• Ball Pass Frequency Outer (BPFO):
Corresponds to the number of balls that pass through a given point of the outer
ring during a full rotation shaft.

BPFO =
fr · NB

2

(
1− d

D
cos α

)
(1.1)

• Ball Pass Frequency Inner (BPFI):
Corresponds to the number of balls that pass through a given point of the inner
ring during a full rotation shaft.

BPFI =
fr · NB

2

(
1 +

d
D

cos α
)

(1.2)

• Ball Spin Frequency (BSF):
Number of turns a roller makes during a full rotation shaft.

BSF =
fr · D

2d

(
1− (

d
D

cos α)2
)

(1.3)

• Fundamental Train Frequency (FTF):
Number of turns a bearing cage makes during a full rotation shaft.

FTF =
fr

2

(
1− d

D
cos α

)
(1.4)

where fr is the shaft speed, NB is the number of rolling elements (or balls), α is
the angle of the load from the radial plane, and D = D1+D2

2 . These quantities are
illustrated in Figure 1.2. Usually, instead of having the bearing failing frequencies,
the bearing failing coefficients are given. These coefficients are defined as the bearing
failing frequencies divided by the shaft speed fr.

FIGURE 1.2: Rolling element bearing failing frequencies.

1.1. Introduction to rolling element bearings 3

As mentioned above, the bearing failing frequencies can be used to diagnose
bearing failures. Figure 1.3 illustrates how bearing failure modes can be detected
using vibration analysis. A failure mode in a certain bearing component will appear
as a pronounced peak in its bearing failing frequency. This peak will be seen in
the frequency spectrum of the signal. Two amplitude thresholds will be defined for
each bearing component. These thresholds are specific of each machine and can even
be discussed with the client. Then, if the amplitude of a certain peak is above the
first threshold, a warning alarm is sent. If the amplitude peak is above the second
threshold, a critical alarm is sent.

FIGURE 1.3: Example of failure detection using vibration analysis.

1.1.2 Bearing damage severity level

If the bearings have been properly installed, outer ring failures are the most frequent
failures, followed by inner ring, rolling elements and finally cage failures. Bearings
with defects in the outer ring generally have a longer expected life than bearings
with defects in the inner ring. Moreover, the amplitude of the outer ring fault fre-
quencies is usually higher than the amplitude of the inner ring fault. The explana-
tion for this is that the sensors measuring the signal are mounted closer to the outer
ring, hence a signal from the inner ring has first to travel through the rolling ele-
ments, the cage and the outer ring. This journey attenuates the signal, resulting in
lower amplitude peaks. Bearing failures can usually be classified into three different
deterioration stages [2]:

• In the initial phase, the deterioration is visible in high-frequency bands. The
amplitude peaks tend to be low.

• In the intermediate phase, the harmonics of the high-frequency bands slowly
increase its magnitude.

• In the final stage, background noise becomes visible in acceleration at high
frequency. Moreover, new bearing failures may develop, indicating greater
defect severity.

4 Chapter 1. Problem introduction

1.2 Fault diagnosis techniques

This section briefly describes multiple techniques that have been used to identify
and classify bearing faults. Fault diagnosis approaches can be classified into two
categories: model-based and data-based [4]. Model-based approaches try to mathe-
matically model the underlying physical process in order to understand and predict
the true behaviour of the system. An example of model-based technique is vibration
analysis using the bearing failure frequencies, as described in section 1.1.1. These
techniques require expert knowledge as well as some detailed information of the
system. In the example of section 1.1.1, one needs to know both the shaft speed and
the bearing failure coefficients to perform the spectrum analysis. On the other hand,
data-based models do not require expert knowledge in the field and do not rely on
understanding the physical process of the system. Such methodologies are receiving
increased attention in recent years due to the abundance of data and the advance-
ment of processing techniques.

Data based methodologies have been broadly studied over the years. Classical ap-
proaches in the time domain are time series models such as ARMA models, spec-
tral Kurtosis and Singular-Value decomposition [5]. Most of these techniques are
application-specific, which may be an inconvenient due to varying operational con-
ditions.

To achieve a better performance at versatile operating conditions and noisy environ-
ments, machine learning and deep learning-based methods are becoming increas-
ingly popular to meet this demand. In the field of machine learning, dimensionality
reduction algorithms such as principal component analysis (PCA) [6] or singular
value decomposition (SVD) are employed as feature extractors. Then, algorithms
such as Random Forests [7], KNearest Neighbours [8] and Support Vector Machines
[9] are employed to classify failure types. In the field of deep learning, Convolu-
tional Neural Networks [10, 11] rose to popularity due to the power of the feature
extraction layers. Also, Recurrent Neural Networks and Long Short-Term Memory
Neural Networks [12, 13, 14] were used to predict the remaining useful time of bear-
ings. This section has only provided a brief overview of the most popular methods
in the fault diagnosis field. For a more detailed discussion see, [4] which provides an
excellent overview of the current literature on studies that apply machine learning
and deep learning techniques to bearing fault diagnosis.

1.3 Problem description

The goal of this project is to design a model to classify the health state of a rolling
element bearing. That is, to identify whether there is a failure and if so, identify
the position of such failure. Moreover, there are some further requirements, listed
below:

• In the case where the shaft velocity is known and the bearing failure coeffi-
cients are provided, a model-based approach is enough to classify the bearing
failure mode. Therefore, the goal of this approach is to be able to classify the
bearing health state when the shaft velocity is unknown or even variable. The
model must thus be robust to different rotating velocities.

1.3. Problem description 5

• The bearing failure coefficients are also supposed to be unknown. Therefore,
the approach must not use such coefficients as features to feed the model.

• The model must be able to detect failure modes at early stage so that one can
take appropriate actions before the machine breaks.

• Usually, little historical data is available to train the models. Therefore, the
model must be able to work with small training data sets.

1.3.1 Data structure

In the final section of this chapter, the structure of the data used for training and
testing the model is presented.

In this project, we will use public data sets, from various universities or research
centres. As we said in the previous section, we are interested in detecting the health
state at the early stages of the failure development. For this reason, the data sets
will contain vibration signal snapshots (for example 1-second recordings) at spe-
cific intervals of time. Signals were recorded using an accelerometer installed on the
bearing housing. Hence, the vibration signal will be given as a waveform. That is,
each snapshot contains the acceleration magnitude as a function of time. Figure 1.4
shows an example of a waveform.

FIGURE 1.4: Example of a waveform snapshot.

Signals are recorded until the bearing failure is completely developed and the
machine has to be stopped. Therefore, the only known information is the bearing
failure at the end of the experiment, but we do not know when the failure started.
Hence, we will have to look for some strategy that allows to label these data sets
with the failure mode at the beginning of its development.

Finally, in order to ensure that the model is robust to different operation conditions
(in particular to different rotating velocities), several data sets will be mixed during
training.

7

Chapter 2

Mathematical description of the
models

This chapter aims to provide some mathematical background on the models used
in the project. According to the problem requirements described in section 1.3, the
problem will be split into three subproblems:

1. Early detection of the failure
Recall that one of the requirements is to be able to classify the bearing failure at
the early stages of its development. For this reason, an early detection model
will be developed. This model will be then used to put the labels to the training
data for the bearing failures classification model. This model will be based on
a one-dimensional convolutional autoencoder.

2. Classification of the failure
Once the labels of the failure modes have been obtained, a classification model
will be trained to determine the position (inner ring, outer ring, rolling element
or cage) of the bearing failure. This model will be trained so that it is robust to
different operation conditions (such as the rotation velocity) and so that it can
be trained with few data samples. In order to accomplish these requirements,
a convolutional neural network will be trained using triplet learning strategies
or using a Siamese network with contrastive loss.

3. Continuous learning of the models
Usually, all the historical data is not provided at the training stage, but it is
acquired progressively with time. Therefore, it is interesting to be able to con-
tinuously train the model as new data arrives. This new data can contain un-
seen behaviour for the model. It is desirable to make the model learn this new
behaviour without forgetting about the previously learnt experiences. To deal
with this problem, we will use a technique called Elastic Weight Consolidation.

The following sections explain the mathematical concepts of these three subprob-
lems and an introduction to neural networks.

2.1 First concepts

This section introduces the basic concepts that will be used in all the models. In
particular, a brief introduction to artificial neural networks is provided. This section
does not aim to provide deep explanations of these concepts, but to give context to
the models used in the project. For further details, references are provided.

8 Chapter 2. Mathematical description of the models

2.1.1 Artificial neural networks

Artificial Neural Networks (ANN) [15] are a widely used method for generaliza-
tion problems, specifically for non-linear function approximation [16]. An ANN is
an information processing paradigm that is inspired by the way biological nervous
systems process information. It is composed of a large number of interconnected
neurons, which work in unison to solve specific problems. ANN are considered
to be deep if there are formed by a large number of neuron layers. In order to use
an ANN for function approximation, it has to go through a training process, where
examples are fed to the architecture.

(A) (B)

FIGURE 2.1: Representation of the architecture of a layer of a neural
network (A) and a complete neural network (B). Figures from [17, 18]

A neuron can be described as a computational unit receiving input
x = (x0, x1, x2, · · · , xm) (x0 called the bias usually set to be +1) and outputs h(x) =
ϕ(Wx) with ϕ being an activation function and W being a matrix of the weights
of the network. Usually, neurons are organised in layers with connections between
two adjacent layers. The most common layer type is called the fully-connected layer
(shown in Figure 2.1 (B)) in which all neurons in two adjacent layers are fully pair-
wise connected but neurons within the same layer share no connections.

The number of layers and neurons in each layer are hyper-parameters one has to
tune. If the neural network is too shallow the network may not be capable of ade-
quately learning the problem whereas too deep networks may not be able to gener-
alise to new data due to having too high complexity. The neural network described
in Figure 2.1 (A) can be written mathematically in the following way:

Σj =Wjx + b

oj =h(x) = ϕ(Σj)

where ϕ is the activation function, Wj is the matrix of weights for layer j and x
is the input vector. oj is an output neuron that, together with other output neurons
{oi}, will be part of the first hidden layer of the network. This hidden layer will take
as an input the outputs {oi}. This process is illustrated in Figure 2.1 (B).

2.1.2 Optimization

Finding the optimal parameters of a neural network can be formulated as an opti-
mization problem, which tries to minimize a loss function. A loss functionL(y, f (x))
= 1

n ∑i `(yi, f (xi)) represents the price paid for the inaccuracy of predictions in a
classification or regression problem. Common loss functions are mean square error

2.1. First concepts 9

(MSE) or mean absolute error (MAE) for regression tasks, and logistic loss and cross-
entropy loss for classification tasks.

In order to minimize the loss function L, many approaches have been proposed.
The most popular method is called gradient descent, which updates the weight pa-
rameters in the direction of the negative gradient of the loss function. This direction
is the one with the highest decrease in the loss function. For more information see
[19].

Finally, the algorithm for calculating the gradients of the network is called back-
propagation. The backpropagation [20] starts from the output layer calculating the
gradients of the previous layer until the input layer. In general, the gradients are cal-
culated based on the multivariate chain rule throughout the computational graph.
The computation of derivatives is done by using Automatic differentiation (AD) [21,
22], which systematically applied the chain rule at the elementary operator level. AD
relies on the fact that all numerical computations are ultimately compositions of a
finite set of elementary operations for which derivatives are known. For this reason,
given a library of derivatives of all elementary functions in a deep neural network, it
is possible to compute the derivatives of the network with respect to all parameters
at machine precision and applying stochastic gradient methods to its training. With-
out AD, the design and debugging of optimization processes for complex neural
networks with millions of parameters would be impossible.

2.1.3 Convolutional neural networks

A type of deep ANN which has proven to produce very successful results in deep
learning is the deep convolutional network. This type of network is specialised in
processing high-dimensional data in the form of spatial arrays, such as time series (in
1D) or images (in 2D). The name stems from the fact that instead of general matrix
multiplication it employs a mathematical convolution in at least one of its layers.
Mathematically, given a convolution kernel K, or filter, represented by a (M × N)
array, the convolution of an array A with K is:

output(x, y) = (A⊗ K)(x, y) =
M−1

∑
m=0

N−1

∑
n=1

K(m, n)A(x− n, y−m)

The output of the convolution is another array that might represent some kind
of information that was present in the initial array in a very subtle way. In this way,
a filter of a convolutional neural network is responsible for detecting one feature
of the network input. The kernel matrix are free parameters that must be learned
to perform the optimal feature extraction. An example of convolution is shown in
Figure 2.2 (A).

10 Chapter 2. Mathematical description of the models

(A)
(B)

FIGURE 2.2: Convolutional filter (A) and a max pooling function (B).
Figures from [23].

Another hyperparameter of the network is the stride size with which the kernel
slides over the input. Typically the convolutional operation is followed by a non-
linear activation function which adds non-linearity to the system. In the last step,
a pooling layer is added in order to progressively reduce the spatial size of the ar-
ray. The usual pooling functions are max pooling and average pooling, which are
applied to the output of the filter convolution. An example of a max-pooling layer
is shown in Figure 2.2 (B).

2.2 Early detection of the failure

As we have mentioned before, one of the important goals of the model is to be able
to identify the failure mode at the early stages of its development. Therefore, to
train a classification model, we need to have a labelled data set containing the full
development of the failure. Since our data only contains the bearing failure which
has appeared at the end of the experiment, we need to find a way to estimate the
beginning of such failure. In order to do so, we will use an unsupervised method
which detects if there has been a deviation from the normal (healthy) behaviour of
the machine. In order to do so, a one-dimensional convolutional autoencoder will
be used.

2.2.1 Autoencoder

An autoencoder neural network is an unsupervised learning algorithm that uses a
loss function that is optimal when setting the target values to be equal to the in-
puts, yi = xi. That is, the neural network attempts to copy its input to its output.
Autoencoders consist of three main parts [24], which are shown in Figure 2.3:

1. Encoder: this part of the model learns how to map the input state to a reduced
space which contains the encoded representation of the data.

2. Bottleneck: It is the layer that contains the compressed representation of the
input data. This is the lowest- dimensions representation of the input data.

3. Decoder: This part of the model learns how to reconstruct the data from the
encoded representation to be as close to the original input as possible.

2.2. Early detection of the failure 11

FIGURE 2.3: Architecture of an autoencoder. Figure from [25]

Mathematically, the structure of the autoencoder can be described as:

Encoder: h := f (x)
Decoder: x̂ := g(h) = g(f (x))

where f is a function that represents the encoder layers, x is the input, g is a
function representing the decoder layers, and x̂ is the output of the autoencoder, an
approximation of x.

Autoencoders are usually trained so that the output of the model is as close as pos-
sible to the original input of the model. For this reason, the training process consists
of minimizing a reconstruction loss, L(x, x̂). This loss is usually the mean square
error or the mean absolute error.

There are many applications to autoencoders, here we describe a couple of them.

• Autoencoders for anomaly detection. [26] Autoencoders can be used to detect
outliers or anomalous data. The autoencoder is trained with a data source until
it learns to reproduce its samples. Then, if a new sample belonging to the same
data source is provided to the autoencoder, the reconstruction error will be low.
On the other hand, if a very different sample (an outlier or anomaly) is fed to
the model, the reconstruction error will be high, since the model will fail at
reconstructing this sample. In this way, the reconstruction error can be used to
detect outliers or anomalous data.

• Data denoising. [24] Denoising or noise reduction is the process of remov-
ing noise from a signal. The denoising autoencoder tries to minimize the loss
L(x, g(f (x̃))), where x̃ is a noisy input and x is the noiseless input. By mini-
mizing this loss function, the autoencoder has to implicitly learn the structure
of the data and undo the corruption, rather than to simply copy the input.

Autoencoder are often designed shallow, i.e. only consisting of a single layer en-
coder and a single layer decoder. However, training deep architectures having mul-
tiple hidden layers can result in a better compression of the data. As deep autoen-
coders are usually more difficult to train, a common strategy is to pre-train shallow
(i.e. with one hidden layer) autoencoders and stack them together. The resulting
deep autoencoder can then be trained again based on the already pre-trained layers.

12 Chapter 2. Mathematical description of the models

The network architecture for autoencoders can vary depending on the use case. Ex-
amples of architectures are simple fully-connected networks, LSTM networks for
sequential data or Convolutional Neural Network for image data (2D) or time series
(1D).

2.2.2 Anomaly detection

In the previous section, we have seen that one of the applications of autoencoders is
anomaly detection. In this project, we will use autoencoders to differentiate between
healthy (normal) and unhealthy (anomalous) bearing signals. The autoencoder will
be trained only with healthy signals so that the model learns the internal structure of
such data. Then, when the model is fed with new healthy data, we expect to have a
low reconstruction error. On the other hand, when the model receives an unhealthy
sample, it will not be able to reproduce it correctly, since it would have never seen
that behaviour before. Therefore, the reconstruction error will be higher, and we will
be able to detect the unhealthy bearing state. The reconstruction error is defined as
the mean absolute error (MAE) of the reconstructed signal:

MAE = |x− x̂| (2.1)

where x is the input sample and x̂ is the reconstructed sample.

In order to detect unhealthy data, we have to define a threshold for the reconstruc-
tion error. Then, if the reconstruction error is above that threshold, the signal will be
considered to be unhealthy. On the other hand, if the reconstruction error is below
the threshold, the signal will be considered as being healthy. To define this thresh-
old, we will study the probability distribution of the mean absolute error (MAE). As
we will see in Chapter 4, the MAE of the validation set can be modelled using a nor-
mal distribution N (µ, σ). To prove this hypothesis we will perform two normality
tests: the Shapiro-Wil test [27] and D’Agostino’s K2 test [28]. Then, a percentile p
will be used to set the threshold. That is, if the probability of having a value y of the
MAE is less than 1− p (according to the MAE distributionN (µ, σ)), the data will be
considered to be unhealthy. Hence, the threshold T will be:

T = q(p|µ, σ) (2.2)

where q is the quantile function of the normal distribution with mean µ and
standard deviation σ. The value of the percentile p is a hyperparameter of the model.

2.3 Classification of the failures

The autoencoder model from the previous section allows to obtain the labels of the
bearing failure modes. Having the labelled data set, we will focus on the core of
this project: a classification model for bearing failures. The model has to be robust
to different operating conditions, such as different machine loads or different rota-
tion velocities. Moreover, the model must not use characteristic information about
the machine, such as the rotation velocity or the characteristic bearing failing coef-
ficients. Finally, the training data is limited, and thus the model should be suitable
for small data sets. For these reasons, a Deep Learning approach will be selected.

The model consists of a Convolutional Neural Network divided into two parts:

2.3. Classification of the failures 13

• The embedding: It extracts valuable features from the training data, which
will be then fed to the classifier. The embedding consists of multiple convo-
lutional layers followed by max-pooling layers. More implementation details
can be found in chapter 3. To train the embedding network, two strategies will
be explored: Siamese networks and Triplet Learning. Such methodologies
ensure that the extracted features are robust to different operating conditions.
Moreover, triplet learning techniques are especially suitable for situations with
very few data samples, which was the other model requirement.

• The classifier: It takes as input the features extracted from the embedding and
returns the type of fault of the bearing. It consists of multiple fully connected
layers. The classifier is trained using cross-entropy loss. Again, for implemen-
tation details see chapter 3.

In the following sections, Siamese networks and triplet learning strategies are
introduced and discussed.

2.3.1 Siamese network

The goal of the Siamese network is to create useful embeddings for data points.
In our case, the network will learn to map a waveform signal to a point in a lower-
dimensional space, while trying to minimize the distance between points of the same
class and maximize the distance between points of different classes.

Network structure

Let X1 and X2 be two waveform samples. These samples are fed to the feature net-
work GW , resulting with the feature vectors GW(X1) and GW(X2), as illustrated in
Figure 2.4. The final layer computes pair-wise distance between computed features
EW = ||GW(X1)−GW(X2)||1 [21]. The label Y of the pair (X1, X2) is Y = 1 if the two
input waveforms are from the same class, and Y = 0 otherwise.

FIGURE 2.4: Architecture of a Siamese network. Figure from [26].

The goal is to train the neural network GW such that EW is small if X1 and X2
belong to the same category (Y = 1), and large if they belong to different categories
(Y = 0). The system is trained on pairs of samples (X1, X2) taken from a training
set. Note that the same neural network GW (with the same weights) is used for the

14 Chapter 2. Mathematical description of the models

two members of the pair, X1 and X2. For this reason, the network is called siamese
network.

Contrastive loss

The goal is to define a loss function L so that by minimizing L the following prop-
erties hold:

• EW(X1, X2) is minimized when X1 and X2 are from the same class.

• EW(X1, X2) is maximized when they belong to different classes.

At first glance, we might think that simply minimizing EW(X1, X2) averaged over
a set of pairs of inputs from the same class would be sufficient. But this generally
leads to a catastrophic collapse: The loss function L can be made zero by simply
making EW(X1, X2) a constant function. Therefore, the loss function needs a con-
trastive term to ensure not only that the distance EW for a pair of inputs from the
same class is low, but also that the distance EW for a pair from different classes is
large. The loss function is thus of the form [29]:

L(W) =
N

∑
i=1
L(W, (Y, X1, X2)

i), (2.3)

L(W, (Y, X1, X2)
i) = (1−Y) · LS(EW(X1, X2)

i) + Y · LD(EW(X1, X2)
i)

where (Y, X1, X2)i is the i-th sample, composed by the pair of data samples and
the label (same or different class), LS is the partial loss function for a "same-class"
pair and LD is the partial loss function for a "different-class" pair, and N is the num-
ber of samples. LS and LD should be designed in such a way that the minimiza-
tion of L decreases EW(X1, X2) for pairs belonging to the same class and increases
EW(X1, X2) for different-class pairs. More formally, the following condition must be
satisfied:

Property 1. ∃m > 0 such that EW(X1, X2) + m < EW(X1, X′2), where Y(X1, X2) = 1
and Y(X1, X′2) = 0.

A simple way to achieve property 1 is to make LS monotonically increasing with
EW , and LD monotonically decreasing with EW . More general conditions for LS
and LD can be found in the original paper [29]. Tanking into account the previous
conditions, we can define LS and LD:

LS =
1
2

E2
W (2.4)

LD =
1
2
{max (0, 1− EW)}2

which satisfy property 1. Finally, the contrastive loss function is defined as fol-
lows [30]:

L(W) =
N

∑
i=1
L(W, (Y, X1, X2)

i), (2.5)

L(W, (Y, X1, X2)
i) = (1−Y) · 1

2
E2

W + Y · 1
2
{max (0, 1− EW)}2

2.3. Classification of the failures 15

2.3.2 Triplet strategies

Just as the Siamese network, triplet strategies are also designed to create useful em-
beddings for data samples. We will see in the following section that there are some
advantages over Siamese networks. We first present the formalism of triplet strate-
gies.

Formally, the goal of the triplet strategies [31] is to make sure that:

• Two examples with the same label (same failure) have their embeddings close
together in the embedding space.

• Two examples with different labels (different faults) have their embeddings
far away.

The way to ensure so is by requiring that, given two examples from the same
class (positive) and an example from a different class (negative), this negative exam-
ple is farther away than the two positive examples by a margin. [31]

To formalise this requirement, the loss will be defined over triplets containing [32]:

• an anchor.

• a positive of the same class as the anchor.

• a negative of a different class as the anchor.

Let GW be a neural network with weights W, which is responsible of producing
the waveform embeddings. Let a, p, n be an anchor, a positive and a negative sample
respectively. For some distance on the embedding space d (usually the euclidean
distance), the loss of a triplet (a, p, n) is:

L(a, p, n) = max(d(GW(a), GW(p))− d(GW(a), GW(n)) + margin, 0) (2.6)

By minimizing the loss L, we push d(GW(a), GW(n)) to be greater than d(GW(a),
GW(p)) by a margin margin. When this condition is satisfied the loss function be-
comes zero. The total loss function is then [33]:

L(W) = ∑
a,p,n

Ya=Yp 6=Yn

max(d(GW(a), GW(p))− d(GW(a), GW(n)) + margin, 0) (2.7)

If this loss is optimized over the whole dataset for long enough, eventually all
possible positive pairs (a, p) will be seen and be pulled together and separate from
the negative samples. An inconvenience of the triplet loss, though, is that as the
dataset gets larger, the possible number of triplets grows cubically, leading to long
training times. Therefore, some strategies to select the appropriate triplets are needed.

Triplet mining

Based on the definition of the loss, there are three categories of triplets [32]:

16 Chapter 2. Mathematical description of the models

1. easy triplets: triplets which have a loss equals to zero, because

d(GW(a), GW(p)) + margin < d(GW(a), GW(n))

2. hard triplets: triplets where the negative is closer to the anchor than the posi-
tive:

d(GW(a), GW(n)) < d(GW(a), GW(p))

3. semi-hard triplets: triplets where the negative is not closer to the anchor than
the positive, but still have positive loss:

d(GW(a), GW(p)) < d(GW(a), GW(n)) < d(GW(a), GW(p)) + margin

The loss function for easy triplets is already zero, so these triplets do not help to
train the embedding network. Moreover, if the triplets are fed to the neural network
randomly, it learns relatively quickly to correctly map most trivial triplets, creating a
large fraction of uninformative (easy) triplets. Thus, "mining" hard triplets is crucial
for effective learning [33]. On the other hand, being shown only the hardest triplets
would select outliers in the data disproportionally often and make the network GW
unable to learn “normal” associations. Therefore, choosing good triplets to train the
network is crucial to achieve a good performance. There are two basic strategies to
mine triplets [32]:

1. Offline triplet mining:
With this approach, we compute all the triplets at the beginning of an epoch.
We first compute all the embeddings of the training set and only train on the
network with hard or semi-hard triplets.

Overall this technique is not very efficient since we need to do a full pass on the
training set to generate triplets. This strategy is similar to the Siamese network
since it also computes the pairs of samples before training.

2. Online triplet mining:
The other strategy is to select the triplets for every batch, and train the network
with those triplets. This technique gives you more triplets for a single batch of
inputs, and does not require any offline mining. It is therefore much more
efficient. There are two basic strategies in online triplet mining:

• Batch hard strategy: for each anchor, select the hardest positive (biggest
distance d(GW(a), GW(p))) and the hardest negative among the batch.
More formally, consider a batch formed by K classes (types of failure
modes) and P samples from each class, resulting in a batch of KP sam-
ples. Now, for each sample a in the batch, we can select the hardest posi-
tive and the hardest negative samples within the batch when forming the
triplets for computing the loss. That is,

LHard(W) =
K

∑
i=1

P

∑
a=1

max(max
p=1,··· ,P

d(GW(ai), GW(pi))

− min
j=1,··· ,K
n=1,··· ,P

j 6=i

d(GW(ai), GW(ni)) + margin, 0)

2.3. Classification of the failures 17

Where the first term corresponds to the hardest positive and the second
term corresponds to the hardest negative. The super index i refers to the
i-th sample. With this definition, we obtain PK terms contributing to the
loss, which is about three times over the traditional formulation [33]. Ad-
ditionally, the selected triplets can be considered moderate triplets since
they are the hardest within a small subset of the data, which is exactly
what is best for learning with the triplet loss.
• Batch all strategy: select all the valid triplets (triplets containing an an-

chor, a positive and a negative sample), and average the loss on the hard
and semi-hard triplets. That is to, simply use all possible PK(PK− P)(P−
1) combinations of triplets.

LAll(W) =
k

∑
i=1

P

∑
a=1

P

∑
p=1
p 6=a

K

∑
j=1
j 6=i

P

∑
n=1

max(d(GW(ai), GW(pi))

− d(GW(ai), GW(nj)) + margin, 0) (2.8)

The batch all strategy is specially suitable when the number of data samples is
small, since it produces many more samples that the ones in the training data.
On the other hand, when the data set is large enough the batch hard strategy
has proven to have very good results. Figure 2.5 shows a representation of
both online and offline triplet mining.

FIGURE 2.5: Comparison of offline and online triplet learning. Fig-
ures are based on [32].

2.3.3 Comparison of both methods

So far we have seen two methodologies to create useful embeddings for data sam-
ples: Siamese network and triplet learning. Both methods aim to generate embed-
dings which are robust to different operating conditions, such as multiple rotation
velocities. They do so by placing the representation of the samples close together in
the embedding space if and only if the failure mode is the same, regardless of the
rotation velocity. There are, however, a couple of advantages in choosing the triplet
learning approach:

• With triplet learning strategies, only informative samples are fed to the net-
work. That is, the easy samples which already fulfil the desired condition in

18 Chapter 2. Mathematical description of the models

the embedding space are not used to train the network. Therefore, training is
more efficient.

• Triplet learning is very useful for small data sets, especially with the batch
all strategy. The number of triplets used to train the network grows cubically
with the number of samples, instead of quadratically as in the Siamese network
approach.

The main disadvantage of the triplet learning approach is that it is harder to
implement, especially if you add the constraints of building a computational graph
in TensorFlow.

2.4 Continuous learning

When dealing with machinery problems, usually all the historical data is not avail-
able during the training stage. The machine is constantly working and slowly evolv-
ing, hence new data arrives progressively with time. It is thus important to contin-
uously train the model with time. Sometimes, this new data can contain unseen
behaviour to the model. The change of the probability distribution of the input data
is known as concept drift [34]. This change may be due to a hidden context, unknown
to the model. For example, if the machine operates near to another functioning ma-
chine, this second machine can affect the vibration signal of the first one, and thus
produce a change in the data. If these machines only are working at the same time
some specific days, we will want the model to learn to correctly detect failures both
when the machines are working together and when they are not.

When a concept drift occurs the challenge for a neural network is to learn the new
data (data after concept drift: task B) while simultaneously maintaining the per-
formance of the old data (data before concept drift: task A). If the data from both
tasks are available at the same time, the best option is to train the model mixing
both data sets. Even if this approach can lead to the best performance, it has two
disadvantages. First, all the data has to be stored in a database, which may require
a lot of storage space. Moreover, if the training data sets from both tasks are large,
training a model with both of them may be computationally inefficient. Another
option could be training the network for the first task and then for the second task.
However, sequential learning models tend to forget previously learnt task, a phe-
nomenon termed as catastrophic forgetting [35]. The following section introduces
an algorithm which tries to overcome this phenomenon.

2.4.1 Elastic weight consolidation

The idea behind Elastic weight consolidation (EWC) [35] comes from the way the
mammals’ brain works. That is, learning new tasks and avoiding to erase the synap-
tic connections that are most useful to perform other tasks.

Denote by θ the weights of a certain neural network. Training the network means
finding the optimal parameters θ∗ which minimizes the error of the model output.
The key point is that due to the high complexity of neural network models, there
may be multiple configuration of weights and biases that produce an optimal per-
formance (within an acceptable error). The goal then is to find a value of the network
parameters that are optimal for all the tasks that the model aims to accomplish. We
will begin by describing how to learn two tasks: A and B.

2.4. Continuous learning 19

Learning a second task after the first

Imagine a certain model has been trained to perform task A, having learnt the op-
timal parameters θ∗A. The idea is to find a configuration of parameters θ∗A,B that
performs well for both tasks. In order to do so, the parameters must be chosen from
the intersection of the solution spaces of tasks A and B, as seen in Figure 2.6.

(A)
(B)

FIGURE 2.6: Example of the solution spaces for two tasks (A) and for
four tasks (B). Figures from [36].

The basic idea behind EWC is to restrict the weights which are important for the
execution of task A when learning task B. In the algorithm this restriction is imple-
mented as a weighted L2 regularization. The question is how to identify the weights
that are of great importance for task A.

Let DA be the data from task A and DB be the data from task B. To formulate the
loss function, we start by taking a Bayesian approach to estimate the parameters of
the network θ.

p(θ|DA, DB) =
p(DB|DA, θ)p(θ|DA)

p(DB|DA)
(2.9)

where p(θ|DA, DB) is the posterior probability of θ, p(DB|DA, θ) is the likelihood
and p(θ|DA) is the prior probability. Usually it is easier to maximize the logarithm
of a probability, because of its additive property. In this case, we formulate the loss
function of learning tasks A and B as the negative log-posterior probability of both
tasks. Notice that this is a different approach than maximizing the log-likelihood of
both tasks. Instead of looking for the maximum likelihood estimator of tasks A and
B, we look for the maximum a posteriori estimator, which is easier to approximate in
this case. The posterior log probability of the parameters is given by:

log p(θ|DA, DB) = log p(DB|DA, θ) + log p(θ|DA)− log p(DB|DA)

= log p(DB|θ) + log p(θ|DA)− log p(DB|DA)

The left-hand side is the posterior probability of the final model (which in this
case is the negative of the loss function we want to minimize). The term− log p(DB|θ)
is the loss function for task B, and the term log p(DB|DA) does not depend on θ and
therefore can be treated as a constant. The last term which needs to be calculated
is log p(θ|DA), which can be thought as an adaptive elastic weight regularizer that
tries to maintain knowledge of task A [37]. However, this term is intractable, in
the sense that it is difficult to find a closed-form. For this reason, this term will be
approximated using the diagonalised Laplace approximation.

20 Chapter 2. Mathematical description of the models

Diagonalized Laplace approximation [36]

As we have already mentioned, we aim to approximate the posterior probability
p(θ|DA) of task A. The basic idea of the Laplace approximation is to find a normal
distribution approximation to a continuous probability density distribution. Under
the condition that p(θ|DA) is smooth and peaked around its maximum θ∗A, the pos-
terior probability distribution can be approximated by a normal distribution with
mean θ∗A and variance 1−1

A [36].

In order to prove this last statement, let us compute the Taylor expansion of the
loss function L(θ) = −log(p(θ|DA)) = LA(θ)− log(p(θ)) around θ∗A. Here, LA(θ)
is the usual loss function of task A and p(θ) acts as a regularizer on the parameters
of the network. This regularization can be the usual L2 loss.

L(θ) = L(θ∗A)+
∂L(θ)

∂θ

∣∣∣
θ∗A

(θ− θ∗A)+
1
2
(θ− θ∗A)

T
(∂2L(θ)

∂θ2

∣∣∣
θ∗A

)
(θ− θ∗A)+O(3) (2.10)

Since the loss function has its maximum in θ∗A, we have that ∂L(θ)
∂θ

∣∣∣
θ∗A

= 0. Ne-

glecting higher order terms we obtain:

L(θ) ≈ L(θ∗A) +
1
2
(θ − θ∗A)

T
(∂2L(θ)

∂θ2

∣∣∣
θ∗A

)
(θ − θ∗A) (2.11)

Equation 2.11 is equivalent to

log(p(θ|DA)) ≈ log(p(θ∗A|DA)) +
1
2
(θ − θ∗A)

T
(∂2log(p(θ|DA))

∂θ2

∣∣∣
θ∗A

)
(θ − θ∗A) (2.12)

The term log(p(θ∗A|DA)) is constant with θ. Finally, writing(∂2log(p(θ|DA))

∂θ2

∣∣∣
θ∗A

)
= −

((
− ∂2log(p(θ|DA))

∂θ2

∣∣∣
θ∗A

)−1)−1

we obtain that

p(θ|DA) = ∆ exp
(
− 1

2
(θ − θ∗A)

T
((
− ∂2log(p(θ|DA))

∂θ2

∣∣∣
θ∗A

)−1)−1
(θ − θ∗A)

)
(2.13)

where ∆ = p(θ∗A|DA). Therefore, we conclude that using the Laplace approxi-
mation, the posterior probability p(θ|DA) follows a normal distribution.

p(θ|DA) ≈ N
(

θ∗A,
(
− ∂2log(p(θ|DA))

∂θ2

∣∣∣
θ∗A

)−1)
(2.14)

The Fisher information matrix is defined as

1A = E[
(
− ∂2log(p(θ|DA))

∂θ2

∣∣∣
θ∗A

)
] (2.15)

And therefore, the posterior distribution for task A follows approximately a nor-
mal distributions with parameters N (θ∗A, 1−1

A).

2.4. Continuous learning 21

So far we have described the Laplace approximation for p(θ|DA). The last step is
to further approximate the Fisher information matrix 1A to gain computational effi-
ciency. Note that 1A can be calculated using only first derivatives:

1A = E[
(
− ∂2log(p(θ|DA))

∂θ2

∣∣∣
θ∗A

)
]

= E[
(∂log(p(θ|DA))

∂θ

∣∣∣
θ∗A

)(∂log(p(θ|DA))

∂θ

∣∣∣
θ∗A

)T
]

In practice, the distribution p(θ|DA) is unknown, and therefore an empirical ap-
proximation of 1A is computed:

1̂A =
1
N

N

∑
i=1
∇log(p(θ|DA))

∣∣∣
θ∗A

∇log(p(θ|DA))
∣∣∣
θ∗A

T

=
1
N

N

∑
i=1
∇LA(xAi |θ

∗
A)∇LA(xAi |θ

∗
A)

T + λprior1 (2.16)

where λprior1 is the Hessian of the log-prior log(p(θ)), assuming an L2 regulariza-
tion. In the original paper, they set λprior = 0. Finally, the 1̂A matrix is approximated
by its diagonal form [1̂A].

[1̂A] =
1
N ∑

i

(∂LA(xAi |θ∗A)
∂θAi

)2
+ λprior1 (2.17)

Putting it all together we obtain that:

log p(θ|DA, DB) = log p(θ|DB) + log p(θ|DA)− log p(DB|DA)

≈logp(θ|DB) +
1
2
(θ − θ∗A)

TE[
(∂2log(p(θ|DA))

∂θ2

∣∣∣
θ∗A

)
](θ − θ∗A)

≈−LB(θ)−∑
i
([1̂A]i + λprior1)(θi − θ∗Ai

)2 + constant

where [1̂A]i is the i-th diagonal component of the empirical Fisher information
matrix. Finally, the loss function for learning task B without forgetting about task A
is the following.

LA,B(θ) = LB(θ) + λ ∑
i
([1̂A]i + λprior1)(θi − θ∗Ai

)2 (2.18)

where λ is a parameter introduced to have a trade-off between learning task B and
not forgetting task A.

Learning the third task after the first two

In the previous sections, we have seen how to train a model for task B without for-
getting about task A. What happens if we want to learn task C without forgetting
about tasks A and B? Note that this will be the case in our setting since the model
will be updated when new data arrives and we do not want to forget about all the
previously learnt tasks.

22 Chapter 2. Mathematical description of the models

In order to learn task C, let’s apply the Bayes theorem to p(θ|DA, DB, DC):

log(p(θ|DA, DB, DC)) = −LC + log(p(θ|DA, DB)) + constant (2.19)

However, we are assuming that we have already trained a model for both tasks
A and B. Therefore, the optimal weights obtained in the previous step are θ∗A,B and
the data sets DA, DB are in reality DA,B. Therefore, we recover the case with only
two tasks. The final loss function is

LA,B,C(θ) = LC(θ) + λ ∑
i
([1̂A,B]i + λprior1)(θi − θ∗A,Bi

)2 (2.20)

where [1̂A,B]i is the diagonalized empirical fisher information matrix for tasks A
and B.

Error in EWC

In this section we look at the sources of error when applying the diagonalized Laplace
approximation to estimate the posterior probability p(θ|DA). The goal of this section
is not to give a formal proof of the validity of this approach, but to be aware of the
all the approximations used in this algorithm and understand where these approxi-
mations are appropriate. The sources of error of the EWC are the following:

1. Laplace approximation: The Laplace approximation is used to model the pos-
terior probability p(θ|DA) around the optimal value θ∗A with a normal distribu-
tion. Since θ∗A is a local minimum of p(θ|DA), the probability distribution has
a bell shape around this point, similar to the shape of a normal distribution.
This approach uses two main approximations:

• Taylor series: In order to estimate log(p(θ|DA)), a Taylor expansion of
order two around θ∗A is used. The error of this approximation is of order
O((θ− θ∗A)

3). If the two tasks DA and DB are not very different, we expect
that the optimal θ∗A,B of both tasks will be close to θ∗A and thus the terms
of order O((θ − θ∗A)

3) will be small.

• Empirical estimation of 1A: The expected value of the Fisher informa-
tion matrix is estimated using the real data from data set DA. By the law
of large numbers, the empirical mean value converges to the expected
value when the number of samples, N, tends to infinity. Moreover, under
the assumption of finite variance (σ2) and no correlation between random
variables, the variance of this average of N random variables is σ2/N.
Therefore, the error of estimate of the expected value of the Fisher infor-
mation matrix decreases as 1

N , when N −→ ∞.

In fact, the Laplace approximation has formally proven to be correct at the limit
of large data sets. The Bernstein-von Mises theorem [38] proves this fact when
the model is regular, the prior probability density function is smooth and the
sample size n is large. Here we present the formulation of the theorem, the
prove can be found in [39].

Theorem 1 (Bernstein-von Mises). Consider the problem of analysing N IID data-
points {Xi}, according to some Bayesian model, composed of a log-prior f0(θ), θ ∈ Θ
a common log-density likelihood d(X|θ) and a log-posterior density function f (θ):

2.4. Continuous learning 23

f (θ) = f0(θ) +
N

∑
i=1

d(Xi = xi|θ) (2.21)

Let θ∗ be a local maximum of f (θ). Assume the following properties:

(a) The prior exp(f0(θ)) has a non-zero density on all neighborhoods of θ∗.

(b) The posterior probability of the event ||θ− θ∗||2 ≤ ε converges to 1 as N −→ ∞.

(c) d(x|θ) is a regular distribution. More precisely:

• The average function θ −→ E[d(x|θ)] has a positive Hessian at θ∗.
• The gradient of d(x|θ) at θ∗ has finite vaiance.
• In a local neighborhood around θ∗, d(x|θ) is m-Lipschitz where m is a ran-

dom variable such that E[m2] is finite.

Then, the total-variation distance between the posterior probability f (θ) and its Laplace
approximation gLAP(θ) converges to zero as:

dTV(f (θ), gLAP(θ)) = O(
1√
N
) (2.22)

Where
dTV(f (θ), gLAP(θ)) = sup

θ∈Θ
| f (θ)− gLAP(θ)| (2.23)

Therefore, if the optimal value of task A, θ∗A is correctly estimated and the
likelihood of the model is regular, the Laplace approximation is asymptotically
correct.

2. Diagonal Fisher matrix: Finally, for computation efficiency, the Fisher infor-
mation matrix (FIM) is approximated by its diagonal form. Although there
are not clear error bounds for this approximation, if the matrix is diagonally-
dominant, the approximated matrix contains the most relevant terms of the
original matrix. Since the FIM is the Hessian matrix of f (θ) = −log(p(θ|DA))
around θ∗A, and f (θ) is concave around its maximum θ∗A, the FIM is positive
definite and therefore diagonally-dominant.

25

Chapter 3

Implementation details

This chapter provides the implementation details of all the models used in this
project. First, it presents the different data sets and the preprocessing techniques
used in each of them. Then, the model architectures are presented. Furthermore, to
make the project accessible to an end-user, the algorithms are wrapped up in a web
application. This web application is presented at the end of this chapter.

3.1 Data sets

In this project, we use two data sets of bearing vibration signals. This data sets are
sometimes mixed up to simulate multiple operating conditions.

3.1.1 IMS data set

The first data set is provided by the NSF I/UCR Center for Intelligent Maintenance
Systems (IMS) in collaboration with Rexnord Corp. and publicly available [40]. For
the tests, four Rexnord ZA-2115 double row bearings were installed on a shaft. The
shaft was set in motion by an AC motor with a radial load of 6000 lbs with a spring
mechanism. The rotation speed was kept constant at 2000 rpm or 33.33 Hz. The
vibration signal was captured by a PCB 353B33 High Sensitivity Quartz ICP ac-
celerometer installed on the bearing housing.

This data set contains the time evolution of different bearings. At the end of the
tests, some of these bearings suffer from failures. In total the experiment consists
of three independent test-to-failure experiments with four bearings for each experi-
ment. Each data set gives a 1-second vibration signal snapshots recorded at specific
intervals which are usually every 10 minutes. Each 1-second snapshot consists of
20480 data points or a sample frequency of 20.48 kHz. The occurred failures are
given in the table

number of files Duration Damage occurred

Test 1 2156 49680 min
Bearing 3: Inner ring

Bearing 4: Rolling element
Test 2 984 9840 Bearing 1: outer ring
Test 3 4448 44480 Bearing 3: outer ring

TABLE 3.1: Description of the IMS data set.

26 Chapter 3. Implementation details

3.1.2 Paderborn data set

This data set contains vibration data (waveforms) of different bearings, each suffer-
ing from a fault (inner ring, outer ring) or being healthy. The fault is completely
developed. This data set is provided by Paderborn University, and it is publicly
available at [41]. It contains bearings working at different operating conditions. The
rotational speed of the drive system, the radial force onto the test bearing and the
load torque in the drive train are the main operating parameters. All three parame-
ters were kept constant for each measurement. The table below shows the operating
condition of each asset.

No Rotational speed [rpm] Torque [Nm] Radial force [N] Name
0 1500 0.7 1000 N15_M07_F10
1 900 0.7 1000 N09_M07_F10
2 1500 0.1 1000 N15_M01_F10
23 1500 0.7 400 N15_M07_F04

TABLE 3.2: Description of the Paderborn data operating conditions.

3.2 Preprocessing techniques

Preprocessing techniques are applied for two main reasons:

• Make the data more similar to real data. Since the data sets we are using have
been simulated artificially, the vibration signal we obtain from them may be
different from real data. Therefore, it is interesting to transform the data in
such a way that it resembles data from real clients.

• Prepare the data to feed the neural network models.

The preprocessing techniques used in this project are the following:

• Reduce the resolution by downsampling the sample frequency to 5kHz. This
is the usual sampling frequency in the business samples.

• Use a sliding window to crop the waveform signal to a certain number of time
stamps. This is done to feed the model with a fixed input size. The number of
time stamps should be large enough to contain at least two time periods of the
rotating frequency of the machine [2]. On the other hand, a too large input size
for the neural network can create difficulties during training. Therefore, we
treated this value as a hyperparameter and chose the value which was more
suitable according to our experiments. At the end, we selected an input size of
4000 timestamps for the autoencoder and 1000 timestamps for the classification
model.

• The data was standardized and rescaled into the value range of [0, 1]. Not only
does this lead to an improved convergence of the models but it furthermore
forbids the models of just learning the amplitude of the waveform.

Paderborn data set turns out to be noiseless, which is unrealistic compared with
real data. Moreover, the different waveforms are very similar because the failure
was completely developed at the beginning of the experiment. In order to solve
these issues, noise is added to the original waveforms. The noise is introduced in
two different ways:

3.3. Models architecture 27

1. Amplify the amplitude of the 4rth first harmonics.

2. Introduce white noise (random frequencies) within a frequency band of 750-
1000Hz.

The following figures give an example to show what the noise looks like, both in the
time (waveform, Figure 3.1) and frequency (spectrum, Figure 3.2) domain.

(A) (B) (C)

FIGURE 3.1: Illustration of the waveform signal and the added noise.

(A) (B) (C)

FIGURE 3.2: Illustration of the spectrum signal and the added noise.

3.3 Models architecture

In this section, we present the architecture of all the models, as well as the learning
strategies. The process of selecting the model architecture is the following. We start
with a low-complexity model, that is, with a low number of layers and parameters.
This model will produce low-performance results in both train and validation sets.
Then, we increase the complexity of the model by increasing the number of layers
and the number of parameters in each layer, until the performance on the training set
is higher than the performance on the validation set. At that point, the complexity
is too high and the model has started to produce overfitting. Then, we decrease the
complexity until the performance on both the training and validation sets is similar.
We stay with that model architecture. We follow this strategy for all the models.

3.3.1 Autoencoder

In chapter 2 we talked about the importance of detecting the bearing failure at early
stages of its development. In order to do so, labelled data containing the full devel-
opment of the failure is needed. In order to estimate the beginning of a failure, we
propose a one-dimensional convolutional autoencoder (1D CNN AE). The idea be-
hind using a 1D CNN AE is that the convolutional layer extract the essential features
such that the model is able to properly learn the data generating process without
prior feature creation.

28 Chapter 3. Implementation details

As the training dataset is usually quite small it is important to keep the number
of trainable parameters as small as possible. In the model at hand, this was achieved
by avoiding fully connected layers. Recall that the autoencoder is composed of two
models: the encoder and the decoder. The encoder CNN has four 1D Convolu-
tional layers with 128, 256, 512 and 6 filters, height = 30, 20, 10, 5, strides=1 and
padding=’same’. We have three max-pooling subsampling layers with pool size =
2. All layers have Relu activation function. The output of the Encoder CNN is the
bottleneck, which is the input of the decoder. The decoder is the opposite version
of the encoder. It has 3 convolutional layers with 512, 256 and 1 filters respectively.
These are mixed with upsampling layers of size=2. Also, two drop out layers are in-
troduced after the first two max-pooling layers, to reduce the chances of overfitting.

The model is implemented using Tensorflow 2. The model definition is placed inside
a class Autoencoder, which extends the Model class from tf.keras. The training meth-
ods are written inside a class called Training_AE. This class contains the fit method,
as well as an early stopping method and a method for checkpointing the model, i.e.
saving the weights, optimizer state etc.

After training the model, the threshold for the reconstruction error is calculated.
In order to do so, we fit the error distribution with a Gaussian distribution N (µ, σ).
Both the Shapiro-Wilk test and the D’Agostino’s K2 test are performed to test the
normality hypothesis. If accepted, the mean and variance of such distribution will
be calculated. Finally, a percentile p is chosen to determine the threshold. This per-
centile is a hyperparameter of the model. We choose p so that most of the healthy
data is below the threshold whilst allowing early failure detection.

3.3.2 Siamese network

After obtaining the data labels from the autoencoder model, a classification model
for bearing failures is designed. For the first approach, we use a Siamese network,
which is described in chapter 2.

In order to design a Siamese network, we use a 1D convolutional neural network as
the embedding network. Then, some fully connected layers are added to classify the
bearing faults based on the embeddings extracted by the CNN. The CNN has three
1D Convolutional layers with 32 filters, height=10, strides=1 and padding=’same’.
After the convolutional layers, there are 3 MaxPooling subsampling layers with pool
size = 20, strides = 4. Then we have 1 FC with 256 nodes, one with 128 nodes, and
another with 20 output nodes. All other layers have Relu activation function. This
network extracts the embeddings. The classification layer is a softmax layer with 4
outputs. The training process is done as follows.

1. Pretraining: In the first step, the whole classifier is trained using classification
cross-entropy loss. This step is done to obtain a good initialisation of the em-
beddings. This step makes the optimization process easier because at the end
of the pretraining phase we already have a good approximation of the optimal
result.

2. Training the embeddings and the classifier: After pre-training the network,
the embeddings are trained using the contrastive loss, and the classifier is
trained using the cross-entropy loss. We add a hyperparameter w, which is
the weight of the contrastive loss with respect to the cross-entropy loss. We

3.3. Models architecture 29

found out that setting w = 10 provides a good balance between the two loss
functions.

Both the pretraining and the training functions are wrapped up in a class Bear-
ings_Network. This class contains the fit method, as well as an early stopping method
and a method for checkpointing the model.

3.3.3 Triplet learning network

Triplet learning strategies is the second approach we tested to design a classification
model of bearing failures.

Similarly to the Siamese network, we use a 1D convolutional neural network to gen-
erate the embeddings. Then, some fully connected layers classify the failure based
on the output of the embedding. The embedding layers consist of four 1D Convo-
lutional layers with 32, 32, 32 and 64 filters respectively, height=10, strides=4 and
padding=’same’. After each convolutional layer, a max-pooling subsampling layer
with pool size = 10, strides = 4 is added. Afterwards, we have two fully connected
layers with 32 nodes and 20 output nodes. This last layer is the output of the em-
bedding. All layers have Relu activation function. The classification model takes
as input the output of the embedding model, and adds three fully connected lay-
ers, with 64, 64 and 32 filters each. The output is a dense layer with 4 outputs. The
training process is done as follows:

1. Pretraining: Again, we start pretraining the whole network using a cross-
entropy loss, to obtain a good initialization of the embeddings.

2. Training the embeddings: The next step is to train the embeddings using the
triplet loss. We implemented the two online triplet strategies: batch all and
batch hard. In this step, it is important to use low learning rates. Otherwise,
the network may collapse to a single point (since it is a local minimum of the
loss function), obtaining a loss value equal to the margin. Moreover, a good
initialization of the weights is useful to overcome this issue.

3. Training the classifier: Once the embeddings have been trained, we train the
classifier layers using the cross-entropy loss. We have separated the training
of the embeddings and the classifier since we use different values of learning
rates and training epochs.

The model definitions are found in the classes Embedding and classifier respec-
tively. Then we define three classes for the training process: Pretraining,
Train_Embeddings and Training_classifier. All these classes contain fit methods and
checkpointing methods to save and restore the models.

3.3.4 Elastic weight consolidation

To make experiments using elastic weight consolidation, a classification model is
first trained for one data set. Then, using EWC methodology, the network is trained
to learn to classify failures from another data set. The training of the first model is
done just as we described in the section above. Then, a class called Fisher_matrix
is used to create and store the Fisher information matrix for both the embedding
network and the classifier. Then, using EWC methodology, the embedding network
is trained with fisher loss and EWC loss. The parameter λ is chosen so that both

30 Chapter 3. Implementation details

triplet and EWC loss functions have similar magnitudes. The learning rate is set
to be small so that the optimization does not converge to optimizing only one of
the losses. Finally, the classifier is trained using cross-entropy loss and EWC loss.
The EWC training processes are defined in the classes Train_Embeddings_EWC and
Train_Classifier_EWC.

3.4 Web application

The objective of the web application is to provide a bearing fault monitoring tool
which is easy to handle for the end-user. The designed app has to provide a database
to store the streaming data, incorporating the retraining of the models and provide
a visualization of the results. The application was written in Flask. The database is
chosen to be MongoDB and the plots are designed in Bokeh. The application was
developed with a colleague at Accenture.

Figure 3.3 shows the main page of the application. In the upper part, the autoen-
coder reconstruction error with the threshold are depicted indicating an error in the
last part of the graph. The type of defect is the result of a classification model. The
part in the bottom of the web page provides the user with the opportunity to inspect
the envelope spectrum. There are two different ways to display the envelope spec-
trum. The first one is to show the envelope spectrum for a given waveform, selected
by the user. Additionally, the user can display the evolution of the of a specific fre-
quency over time. If the frequency corresponds to a bearing failure frequency, this
figure allows to analyse the bearing failure using vibration analysis.

(A) (B)

FIGURE 3.3: Web application.

31

Chapter 4

Results

This chapter presents the results from the methodologies explained in the previous
chapters.

4.1 Autoencoder

The goal of the autoencoder model is to perform early detection of the bearing fail-
ures. This allows to put labels to the bearing failure data, which will be used to
develop a classification model.

The model is trained using the IMS data set, which contains the time evolution of
bearing elements. At the end of the tests, some of the bearings have acquired a fail-
ure. We inspect four different bearings which, at the end of the test, have an inner
ring failure, an outer ring failure, a rolling element failure and no failure respec-
tively. The model is trained using the first 500 time stamps of the inner ring bearing.
We know that this data is healthy because the inner ring error has a fast develop-
ment, and the whole experiment has more than 2000 time stamps. Then, the model
is tested with all four bearings.

(A) (B)

FIGURE 4.1: Reconstructed and real waveforms. In (A) the waveform
is healthy. In (B) the waveform suffers from an outer ring error.

Figure 4.1 shows the superposition of the real and the predicted waveforms for
both a healthy and a faulty waveform. It can be seen that when the data is healthy,
the autoencoder reconstructs the signal much better than when it is faulty. There-
fore, the reconstruction error can be a measure of the bearing health state.

In order to decide when the error development starts, we model the reconstruc-
tion error probability distribution. Except for some occasional outliers, the error

32 Chapter 4. Results

follows a normal distribution. This fact was checked by plotting a Q-Qplot of the
reconstruction error distribution and performing two normality tests: the Shapiro-
Wilk test and the D’Agostino’s K2 test. The p-values for these tests are 0.875 and
0.552. Since both values are higher than 0.05, we can not reject the normality hy-
pothesis with a confidence level of 95%. The parameters of the normal distribution
are estimated to be µ = 0.0116 and σ = 0.00164. Figure 4.2 shows the histogram of
the probability distribution of the reconstruction error, together with its normal fit.
According to this distribution, the threshold T is estimated to be the quantile with
percentile p = 0.95. The value of the threshold is

T = 0.0125

FIGURE 4.2: Probability distribution of the autoencoder reconstruc-
tion error.

Now that the threshold has been determined, we inspect the reconstruction error
for the four bearings of our study. In order to assess the performance of the autoen-
coder, we perform a model-based analysis as well and compare both results. In this
case, we do know the characteristic frequencies of the bearing faults, which is not
usually the case when dealing with real data. Therefore, we can use the bearing
failing frequencies to inspect the true value of the beginning of the failure. In order
to do so, we calculate the spectrum for each waveform. If there is a failure, there
should be a pronounced peak in the corresponding bearing failing frequency. By
looking at the amplitude of such peak over time, we can infer when the error began
its development.

Outer ring failure

Figure 4.3 shows both the evolution of the outer ring bearing failing frequency and
the autoencoder reconstruction error. Both figures suggest that the failure starts at
around timestamp 760, and becomes severe at timestamp 900. These figures prove
that the autoencoder approach performs as good as the model-based approach, and
does not use characteristic information of the bearing.

4.1. Autoencoder 33

(A)
(B)

FIGURE 4.3: Evolution of the outer ring bearing failing frequency (A)
and autoencoder error (B) for the outer ring failure bearing.

Inner ring failure

The same analysis can be done for the inner ring failure. Figure 4.4 shows that the
inner ring failure is harder to identify, both with the autoencoder and the model-
based approach. The error starts developing at around timestamp 1780. We can see
that it is easier to detect the beginning of the error by looking at the autoencoder
error than by looking at the characteristic frequency peak.

(A)
(B)

FIGURE 4.4: Evolution of the inner ring bearing failing frequency (A)
and autoencoer error (B) for the inner ring failure bearing.

Rolling element failure

We repeat the analysis for the rolling element failure. Figure 4.5 shows that both
methods predict that the error begins its development at around timestamp 700.

Healthy bearing

Finally, we look at the reconstruction error of a healthy bearing. In this case, there
is no bearing failing frequency, since there is no error to look at. Figure 4.6 (A)
shows that, except for some isolated outlier, the reconstruction error is below the
threshold through all the experiment. Figure 4.6 (B) provides the timestamps when
the failures begin its development. This information will be used to create the labels
for the classification model.

34 Chapter 4. Results

(A)
(B)

FIGURE 4.5: Evolution of the rolling element failing frequency (A)
and autoencoder error (B) for the rolling element failure bearing.

(A)

Beginning of the failure
Inner ring Outer ring Rolling el.

1780 760 1700

FIGURE 4.6: Evolution of the reconstruction error for the healthy
bearing (A). Beginning of the failure development (B).

4.2 Siamese network

After obtaining the labels of the failure development, a bearing failure classification
model is built. The first approach is to use a Siamese network. The training process
is explained in Chapter 3. The results are assessed by looking at two aspects:

• Visualization of the embeddings: One goal of using a Siamese network is
to create good embeddings for the waveforms. These embeddings should be
close together for samples with the same failure and far apart for samples with
different failure. One way to check this is by visualizing the embeddings in a
two-dimensional plot. Since the embedding space is a 20-dimensional space,
we use a dimensionality reduction technique to visualize the embeddings,
called UMAP [42, 43]. In its simplest sense, the UMAP algorithm consists of
two steps: construction of a graph in high dimensions followed by an opti-
mization step to find the most similar graph in lower dimensions. For more
information about the UMAP refer to the github of the project, or see [43].

• Accuracy of the predictions: The second measure of performance is the accu-
racy of the final predictions of the failure.

The experiments are done using the IMS data set (and the labels provided by the
autoencoder) and also the Paderborn data set. Both data sets are mixed in order to
simulate different operating conditions.

4.2. Siamese network 35

Pretraining

The first step of the training phase is to pretrain the algorithm using only the cross-
entropy loss function. By doing so, we expect to have a good initialization of the
embeddings.

(A)

Acc. Confusion matrix

0.90

539 67 144 0
28 960 0 2
25 17 661 2
0 0 0 590

FIGURE 4.7: (A) Visualization of the extracted embeddings during
the pretraining phase of the Siamese network. (B) Accuracy of the

predictions.

Figure 4.7 shows that the embeddings are quite clustered by the failure mode.
This means that the cross entropy loss already generates good embeddings. Also,
the pretraining accuracy is also a good starting point.

Training

In this phase of the learning process, we aim to improve both the embedding repre-
sentation and the accuracy of the model.

(A)

Acc. Confusion matrix

0.97

716 34 0 0
25 965 0 0
0 0 705 0
0 3 0 587

FIGURE 4.8: (A) Visualization of the extracted embeddings during
the training phase of the Siamese network. (B) Accuracy of the pre-

dictions.

Figure 4.8 shows the results of training the Siamese network using contrastive
loss for the embedding layers, and cross-entropy loss for the classifier layers. We
observe that there is a clearer separation of the embedding points according to the
failure modes. Moreover, the accuracy of the predictions has also increased to 0.97.
Therefore, using the contrastive loss to design good embeddings has helped improve

36 Chapter 4. Results

the classification process. Also, the model mostly confuses healthy and inner ring
bearings. This is expectable because the inner ring failure is the most difficult to
detect since it is the farthest to the sensors that record the vibration signal [2].

4.3 Triplet learning network

The second approach to build a classification model is to use a triplet learning strate-
gies. Again, both IMS and Paderborn data sets are used to simulate multiple operat-
ing conditions. The learning process also contains a pretraining phase and a training
phase. We will assess both the embeddings visualization and the classifier perfor-
mance.

Pretraining

Figure 4.9 shows the results of the pretraining phase. Again, the pretraining the net-
work with the cross-entropy loss produces a good initialization of the embeddings
and a fairly good accuracy.

(A)

Acc. Confusion matrix

0.90

627 45 2 76
35 667 1 37
25 5 653 22
0 0 2 338

FIGURE 4.9: (A) Visualization of the extracted embeddings during
the pretraining phase of the triplet learning network. (B) Accuracy of

the predictions.

Training

(A)

Acc. Confusion matrix

0.98

733 17 0 0
24 716 0 0
0 0 705 0
0 0 0 340

FIGURE 4.10: (A) Visualization of the extracted embeddings during
the training phase of the triplet learning network. (B) Accuracy of the

predictions.

Figure 4.10 shows the results of the training phase. Triplet learning strategies
allow to create very good embeddings, creating separated clusters according to the

4.4. Comparison of classification models 37

bearing failure. Therefore, this feature extraction process helps the classifier to ob-
tain better performance. The only confusion is again between the inner ring and
healthy bearings. Moreover, the labels of the failure include the whole evolution of
the bearing failure. Thus, some of the samples labelled as having a failure were at the
beginning of the failure development. In fact, from the 24 miss classified samples, 18
were found between the timestamps 1780 and 1900 of the IMS data set, which corre-
sponds to the early development of the failure. Therefore, triplet learning strategies
improve the classification power of the network. We had implemented two triplet
learning strategies: batch all and batch hard. Both strategies gave very similar results.
The only difference is that batch hard strategy tends to collapse easier to one point
in the embedding space, obtaining a loss value equal to the margin. Thus, having a
good initialization of the embeddings and using low learning rates is very important
to ensure convergence. On the other hand, when the network collapse is avoided,
the network converges faster to zero by using batch hard strategy. However, for
this project, it is very important to design a model which could be trained with few
data samples. The batch all strategy is more suitable to accomplish this task since it
creates more triplets from the same data set.

4.4 Comparison of classification models

We have seen in the previous sections that both the triplet learning models and the
Siamese networks gave very similar performance results. The embeddings of the
triplet learning network are more clearly clustered by the type of bearing failure.
This suggests that the triplet learning strategy produces slightly better embeddings.
However, the final accuracy of the triplet learning network was just 0.01 higher than
the Siamese network accuracy. One possible explanation is that the data is easy
enough to classify so that both strategies have the same performance. Therefore, we
designed an experiment to compare both methods. The experiment consists in de-
creasing the training data by some proportion, training both models and comparing
the results. We focused on the final accuracy of the predictions.

Figure 4.11 shows the change in the accuracy of the predictions when decreasing the
sample size. We observe that the model trained using triplet learning is much more
robust to smaller training sizes than the Siamese network. This happens because the
batch all triplet strategy produces many more samples to feed the neural network
than the training of the Siamese network. Therefore, triplet learning strategies are
more suitable for small data sets.

4.5 Elastic weight consolidation

The last part of the project consisted of applying the elastic weight consolidation
algorithm to continuously train the classification model. Usually, all the historical
data is not available during training. Therefore, it is interesting to retrain the clas-
sification model when new data arrives. If the volume of data is small and can all
be stored in a database, the best option is to retrain the model with the whole data
set. However, when the amount of data is considerably big, training the model with
all the historical data may be computationally inefficient, leading to too large train-
ing times. Moreover, the data may even be deleted from the database after a certain
amount of time. Therefore, it is important to explore techniques that allow to re-
train the model with new data without using all the data itself. Moreover, we want

38 Chapter 4. Results

(A) (B)

FIGURE 4.11: Accuracy of the classification models ((A) Siamese net-
work and (B) triplet learning network) as a function of the training

sample size.

to model to learn new features of the data without forgetting about the previously
learnt information. For these reasons we chose EWC. To test the performance of this
algorithm, we perform the following experiment.

4.5.1 EWC-concept drift

In this experiment, we apply the EWC algorithm to two very different data sets. The
first data set is used to train the initial model. Then, a second data set is used to
retrain the model without forgetting about the first data set. Since the two data sets
are very different, this experiment simulates concept drift. To simulate concept drift,
we use two different data sets:

• Paderborn data set. This dataset will be considered as the old dataset.

• IMS data set. We will use this data as the new data, when the concept drift has
already happened.

First, a classification model is trained using a triplet learning network, just as it
was described in the previous section. After training the model with Paderborn data
set, we check the performance of the model in both data sets. Figure 4.12 shows that

(A) (B)

FIGURE 4.12: Embeddings after training task A. (A) Paderborn data,
(B) IMS data.

the embeddings are clearly clustered according to the bearing failure for the first

4.5. Elastic weight consolidation 39

data set (Paderborn), while they are mostly random for the second data set (IMS).
This happens because the two data sets are very distinct, and so training the net-
work with one of them does not allow it to generalise well to the other. We want the
model to learn to classify IMS failures as well. Moreover, table 4.1 (A) shows that
the accuracy of the IMS data set is very poor. One option would be to sequentially
train the model, first with Paderborn data set and then with IMS data set. How-
ever, if we train only 20 epochs with IMS data set, the accuracy of the model on the
Paderborn data set falls to 0.40. Therefore, we need an algorithm which forbids the
network from forgetting the first task. For this reason, we use the EWC algorithm.
We begin by computing two empirical diagonalized fisher matrices: one for the em-
bedding network, where the loss function is triplet loss, and one for the classifier
layers, where the loss function is the cross-entropy loss. Then, we train the model
with task B using the EWC penalty. First, we train the embeddings and then the
classifier. The results are shown in Figure 4.13 and table 4.1 (B). Figure 4.13 shows
that after training the model with IMS data, the embeddings of this data set improve
a lot. Moreover, the embeddings of task A do not get much worse. Table 4.1 (B)
shows that the model gives a similar accuracy for both data sets, even though it is
not as good as it would be if we had trained the models with the two data sets at the
same time. We conclude that this algorithm allows to learn the second task without
forgetting too much about the first one. However, the results are better if the model
is trained with both data sets.

(A) (B)

FIGURE 4.13: Embeddings after training task B. (A) Paderborn data,
(B) IMS data.

After training task A
Accuracy

Task A (Paderborn) 1.0
Task B (IMS) 0.19

After training task B
Accuracy

Task A (Paderborn) 0.87
Task B (IMS) 0.90

TABLE 4.1: Performance of the model in tasks A (Paderborn) and task
B (IMS).

41

Chapter 5

Conclusions

The monitoring of machine health is of great importance in the industry sector. Hav-
ing an unexpected equipment failure can lead to very expensive and dangerous con-
sequences. Examples of issues caused by machine failures are unplanned produc-
tion downtime, costly replacement of machine components and even environmental
problems. Rolling bearings are one of the most important components of most rotat-
ing machines and are one of the main causes of rotating equipment failures. For this
reason, monitoring the health of rolling bearings has been a main research interest
in the past few years.

Predictive maintenance techniques are used to detect potential defects in the ear-
liest stages enabling the maintenance activity to be planned. In the case of bearing
monitoring, vibration analysis can be very useful in diagnosing the bearing damage.
This method is model-based, which means that it uses a physical model to predict
the behaviour of the system. This method is simple and offers high performance.
However, it requires some specific information about the bearings: the rotation ve-
locity and the bearing failing coefficients. Sometimes the rotation velocity is un-
known, usually because it varies depending on the operating condition. Moreover,
the bearing failing coefficients, which should be specified by the manufacturer, may
be unknown or may not correspond to the true coefficients. For these reasons, a new
approach is needed to predict bearing failures when the characteristic information
of the bearings is unknown.

In order to solve this challenge, we decided to use deep learning methods, since
they form a data-based approach which does not need previous information about
the system. Since the machines may be operating at different rotation velocities,
we wanted our model to be robust to different operating conditions. Moreover, the
model should be able to detect the early development of the failures. Finally, the
model should be robust to small data sets. The training data consisted of a time se-
quence of vibration signals, called waveforms. At the beginning of the time series,
all bearings were healthy, whilst in the end, some had suffered from a specific failure.

The first step was to build a model which allowed us to detect the beginning of a
failure development. This model was then used to label the data sets so that the
labels contained the complete evolution of the failure. The model consisted in a one-
dimensional convolutional autoencoder. The task of the autoencoder was to create
a reduced representation of the input and then reconstruct the input signal from its
lower-dimensional representation. The autoencoder was trained only with healthy
data so that it learnt to reconstruct only the healthy waveforms. When a new data
sample was fed to the network, the reconstructed error was calculated. For healthy
data samples, such error was small. On the other hand, the error started to increase

42 Chapter 5. Conclusions

as the failure developed. By studying the probability distribution of the reconstruc-
tion error with healthy data, we defined a threshold, above which the data was con-
sidered to be unhealthy. We tested the performance of the model by comparing it to
the output of the model-based approach. We saw that the autoencoder detected the
beginning of the failure at the same time as the model-based, and sometimes even a
bit earlier.

After obtaining the labels for the training data, we designed the core model of this
project: a classification model for bearing failures. Such model had to be robust to
different operating conditions. One way to accomplish this property was to divide
the network into two parts: the embedding and the classifier. The embedding net-
work would extract valuable features from the input in a reduced dimension space.
This mapping should be made such that input samples suffering from the same fail-
ure were close together in the embedding space, and far from samples suffering from
a different fault. These embeddings would help increase the performance of the clas-
sification model. Two different network designs were studied. The first approach
consisted of a Siamese network, trained with contrastive loss. The network was fed
with pairs of samples. If they had the same failure, they were pulled together in the
embedding space. Otherwise, there were pulled apart. The second approach was to
train the embedding network with triplet loss. This time, the network was trained
with triplets of samples, two of them with the same label (positive) and the last one
with a different label (negative). The goal of the embedding network was to create
the embeddings such that a positive sample was closer to the other positive than to
the negative sample. Triplet strategies allow to create more samples from the same
training data since it creates triplets instead of pairs. Moreover, the triplets are cre-
ated in an online manner, in such a way that only informative triplets are fed to the
network. For these reasons, triplet learning usually gives better results. Both triplet
and siamese strategies led to optimal performances in classifying the bearing fail-
ures. However, the triplet learning model was more robust to smaller training sizes,
which made the model more suitable for solving our problem.

The last part of the project was to learn how to train the classification model contin-
uously with time. Usually, all the training data is not available at the training stage.
Therefore, it is useful to retrain the model as new data arrives. However, we do
not want our model to forget the knowledge acquired from previous data. To train a
model to learn a second task without forgetting about the first one, we applied an al-
gorithm called Elastic Weight Consolidation (EWC). It provides a quadratic penalty,
weighted so to give higher loss to the network parameters which were more impor-
tant to train the first task. After applying this algorithm, the model had a similar
performance for both tasks. This performance was a bit worse than the one obtained
by training the model with the whole data set, but it was dramatically better than
training the two tasks sequentially. Therefore, if both training sets are not available
at the same time, EWC is a good alternative to learn both tasks.

In summary, we have used multiple deep learning methods to successfully predict
the health status of rolling bearings. We believe that deep learning techniques can
be a powerful substitute for vibration analysis when the characteristic information
of the machines is missing.

43

Bibliography

[1] Bradley William Harris. “Anomaly detection in rolling element bearings via
two-dimensional Symbolic Aggregate Approximation: Anomaly detection in
rolling element bearings via two-dimensional Symbolic Aggregate Approxi-
mation”. PhD thesis. Virginia Tech. URL: https://vtechworks.lib.vt.edu/
handle/10919/23103.

[2] Alfonso Fernandez. Vibration analysis learning. 2017. URL: https://www.power-
mi.com/content/rolling-element-bearings (visited on 04/04/2020).

[3] Robert B. Randall and Jérôme Antoni. “Rolling element bearing diagnostics—
A tutorial”. In: Mechanical Systems and Signal Processing 25.2 (2011), pp. 485–
520. ISSN: 08883270. DOI: 10.1016/j.ymssp.2010.07.017. URL: http://www.
sciencedirect.com/science/article/pii/S0888327010002530.

[4] Shen Zhang, Shibo Zhang, Bingnan Wang, and Thomas G. Habetler. “Machine
Learning and Deep Learning Algorithms for Bearing Fault Diagnostics – A
Comprehensive Review”. In: IEEE Access 8 (2020). DOI: 10 . 1109 / ACCESS .
2020.2972859.

[5] Mark Gaudel. Envelope analysis - the key to rolling-element bearing diagnosis (bo0187).
2001.

[6] A. Malhi and R. X. Gao. “PCA-based feature selection scheme for machine
defect classification”. In: IEEE Transactions on Instrumentation and Measurement
53.6 (2004), pp. 1517–1525.

[7] Z. Wang, Q. Zhang, J. Xiong, M. Xiao, G. Sun, and J. He. “Fault Diagnosis of
a Rolling Bearing Using Wavelet Packet Denoising and Random Forests”. In:
IEEE Sensors Journal 17.17 (2017), pp. 5581–5588.

[8] David He, Li Ruoyu, Junda Zhu, and Mikhail Zade. “Data Mining Based Full
Ceramic Bearing Fault Diagnostic System Using AE Sensors”. In: IEEE trans-
actions on neural networks / a publication of the IEEE Neural Networks Council 22
(Dec. 2011), pp. 2022–31. DOI: 10.1109/TNN.2011.2169087.

[9] A. Rojas and A. K. Nandi. “Detection and Classification of Rolling-Element
Bearing Faults using Support Vector Machines”. In: 2005 IEEE Workshop on
Machine Learning for Signal Processing. 2005, pp. 153–158.

[10] Sheng Guo, Tao Yang, Wei Gao, Chen Zhang, and Yanping Zhang. “An Intelli-
gent Fault Diagnosis Method for Bearings with Variable Rotating Speed Based
on Pythagorean Spatial Pyramid Pooling CNN”. In: Sensors (Basel, Switzerland)
18.11 (2018). DOI: 10.3390/s18113857.

[11] Huijie Ma, Shunnming Li and Zenghui An. “A Fault Diagnosis Approach for
Rolling Bearing Based on Convolutional Neural Network and Nuisance At-
tribute Projection under Various Speed Conditions”. In: Applied Sciences 8:1603
(2019). DOI: 10.3390/app9081603.

https://vtechworks.lib.vt.edu/handle/10919/23103
https://vtechworks.lib.vt.edu/handle/10919/23103
https://www.power-mi.com/content/rolling-element-bearings
https://www.power-mi.com/content/rolling-element-bearings
https://doi.org/10.1016/j.ymssp.2010.07.017
http://www.sciencedirect.com/science/article/pii/S0888327010002530
http://www.sciencedirect.com/science/article/pii/S0888327010002530
https://doi.org/10.1109/ACCESS.2020.2972859
https://doi.org/10.1109/ACCESS.2020.2972859
https://doi.org/10.1109/TNN.2011.2169087
https://doi.org/10.3390/s18113857
https://doi.org/10.3390/app9081603

44 Bibliography

[12] Karan Aggarwal, Onur Atan, Ahmed Farahat, Chi Zhang, Kosta Ristovski,
and Chetan Gupta. Two Birds with One Network: Unifying Failure Event Predic-
tion and Time-to-failure Modeling. arXiv: 1812.07142v1.

[13] M. Basseville and I. V. Nikiforov. Detection of abrupt changes: Theory and appli-
cation. Prentice Hall information and system sciences series. Englewood Cliffs
N.J.: Prentice Hall, 1993. ISBN: 0131267809.

[14] Wentao Mao, Jianliang He, Jiamei Tang, and Yuan Li. “Predicting remaining
useful life of rolling bearings based on deep feature representation and long
short-term memory neural network”. In: Advances in Mechanical Engineering
10.12 (2018), p. 168781401881718. ISSN: 1687-8140. DOI: 10.1177/1687814018817184.

[15] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statisti-
cal learning. Vol. 1. 10. Springer series in statistics New York, 2001.

[16] Michael A. Nielsen. Neural networks and deep learning. Vol. 25. Determination
press San Francisco, CA, USA: 2015.

[17] Ben Dickson. What are artificial neural networks (ANN)? 2019. URL: https://
www.experfy.com/blog/what-is-artificial-neural-network-ann (visited
on 04/05/2020).

[18] Facundo Bre, Juan M. Gimenez, and Víctor D. Fachinotti. “Prediction of wind
pressure coefficients on building surfaces using artificial neural networks”. In:
Energy and Buildings 158 (2018), pp. 1429–1441. ISSN: 0378-7788. DOI: 10.1016/
j.enbuild.2017.11.045. URL: http://www.sciencedirect.com/science/
article/pii/S0378778817325501.

[19] Sebastian Ruder. An overview of gradient descent optimization algorithms. 2016.
arXiv: 1609.04747 [cs.LG].

[20] Yann Lecun. “A theoretical framework for back-propagation”. English (US).
In: Artificial neural networks. Ed. by P. Mehra and B. Wah. IEEE Computer Soci-
ety Press, 1992.

[21] Jordi Vitrià. DeepLearningMaster Repository. https://github.com/DataScienceUB/
DeepLearningMaster20192020/blob/master/. 2019.

[22] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and
Jeffrey Mark Siskind. Automatic differentiation in machine learning: a survey. 2015.
arXiv: 1502.05767 [cs.SC].

[23] Standfor University. Convolutional Neural Networks (CNNs / ConvNets). 2020.
URL: https://cs231n.github.io/convolutional- networks/ (visited on
04/05/2020).

[24] Will Badr. “Auto-Encoder: What Is It? And What Is It Used For? (Part 1)”.
In: Towards Data Science (22/4/2019). URL: https://towardsdatascience.
com/auto- encoder- what- is- it- and- what- is- it- used- for- part- 1-
3e5c6f017726.

[25] Ahmed Fawzy Gad. “Image Compression Using Autoencoders in Keras | Pa-
perspace Blog”. In: Paperspace Blog (1/2/2020). URL: https://blog.paperspace.
com/autoencoder-image-compression-keras/.

[26] Will Badr. “5 Ways to Detect Outliers That Every Data Scientist Should Know
(Python Code)”. In: Towards Data Science (5/3/2019). URL: https://towardsdatascience.
com/5-ways-to-detect-outliers-that-every-data-scientist-should-
know-python-code-70a54335a623.

https://arxiv.org/abs/1812.07142v1
https://doi.org/10.1177/1687814018817184
https://www.experfy.com/blog/what-is-artificial-neural-network-ann
https://www.experfy.com/blog/what-is-artificial-neural-network-ann
https://doi.org/10.1016/j.enbuild.2017.11.045
https://doi.org/10.1016/j.enbuild.2017.11.045
http://www.sciencedirect.com/science/article/pii/S0378778817325501
http://www.sciencedirect.com/science/article/pii/S0378778817325501
https://arxiv.org/abs/1609.04747
https://github.com/DataScienceUB/DeepLearningMaster20192020/blob/master/
https://github.com/DataScienceUB/DeepLearningMaster20192020/blob/master/
https://arxiv.org/abs/1502.05767
https://cs231n.github.io/convolutional-networks/
https://towardsdatascience.com/auto-encoder-what-is-it-and-what-is-it-used-for-part-1-3e5c6f017726
https://towardsdatascience.com/auto-encoder-what-is-it-and-what-is-it-used-for-part-1-3e5c6f017726
https://towardsdatascience.com/auto-encoder-what-is-it-and-what-is-it-used-for-part-1-3e5c6f017726
https://blog.paperspace.com/autoencoder-image-compression-keras/
https://blog.paperspace.com/autoencoder-image-compression-keras/
https://towardsdatascience.com/5-ways-to-detect-outliers-that-every-data-scientist-should-know-python-code-70a54335a623
https://towardsdatascience.com/5-ways-to-detect-outliers-that-every-data-scientist-should-know-python-code-70a54335a623
https://towardsdatascience.com/5-ways-to-detect-outliers-that-every-data-scientist-should-know-python-code-70a54335a623

Bibliography 45

[27] Zofia Hanusz, Joanna Tarasinska, and Wojciech Zielinski. “Shapiro-Wilk test
with known mean”. In: REVSTAT - Statistical Journal 14.1 (2016), pp. 89–100.
ISSN: 16456726.

[28] Antonio trujillo ortiz and Rafael Hernandez-Walls. D’Agostino-Pearson’s K2 test
for assessing normality of data using skewness and kurtosis. Sept. 2003.

[29] S. Chopra, R. Hadsell, and Y. LeCun. “Learning a similarity metric discrimi-
natively, with application to face verification”. In: 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05). 2005, 539–546
vol. 1. ISBN: 1063-6919. DOI: 10.1109/CVPR.2005.202.

[30] Keras team. Keras examples. https://github.com/keras-team/keras/tree/
master/examples. 2019.

[31] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “FaceNet: A Unified
Embedding for Face Recognition and Clustering”. In: (2015), pp. 815–823. DOI:
10.1109/CVPR.2015.7298682.

[32] Olivier Moindrot. Triplet Loss and Online Triplet Mining in TensorFlow. 2018.
URL: https://omoindrot.github.io/triplet-loss (visited on 04/06/2020).

[33] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In Defense of the Triplet
Loss for Person Re-Identification. arXiv: 1703.07737.

[34] Alexey Tsymbal. “The problem of concept drift: definitions and related work”.
In: (2004). URL: https://www.semanticscholar.org/paper/The-problem-
of-concept-drift\%3A-definitions-and-work-Tsymbal.

[35] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Ku-
maran, and Raia Hadsell. “Overcoming catastrophic forgetting in neural net-
works”. In: Proceedings of the National Academy of Sciences of the United States of
America 114 13 (2017), pp. 3521–3526.

[36] Abhishek Aich. Elastic Weight Consolidation: Nuts and Bolts. URL: https : / /
abhishekaich27.github.io/data/WriteUps/EWC_nuts_and_bolts.pdf.

[37] Ferenc Huszar. “Comment on "Overcoming catastrophic forgetting in NNs":
Are multiple penalties needed?” In: inFERENCe (16/3/2017). URL: https://
www.inference.vc/comment-on-overcoming-catastrophic-forgetting-
in-nns-are-multiple-penalties-needed-2/.

[38] Guillaume P. Dehaene. A deterministic and computable Bernstein-von Mises theo-
rem. 2019. arXiv: 1904.02505 [math.ST].

[39] Joseph L Doob. Le calcul des probabilites et ses applications. 1949, pp. 23–27.

[40] Center for intelligent maintenance systems. PCoE Datasets.

[41] Paderborn University. Bearing Data Center. 2016. URL: https : / / mb . uni -
paderborn.de/en/kat/main-research/datacenter/bearing-datacenter/
(visited on 04/07/2020).

[42] Adam Pearce Andy Coenen. Understanding UMAP. URL: https://pair-code.
github.io/understanding-umap/ (visited on 04/09/2020).

[43] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold
Approximation and Projection for Dimension Reduction. 2018. arXiv: 1802.03426.

https://doi.org/10.1109/CVPR.2005.202
https://github.com/keras-team/keras/tree/master/examples
https://github.com/keras-team/keras/tree/master/examples
https://doi.org/10.1109/CVPR.2015.7298682
https://omoindrot.github.io/triplet-loss
https://arxiv.org/abs/1703.07737
https://www.semanticscholar.org/paper/The-problem-of-concept-drift\%3A-definitions-and-work-Tsymbal
https://www.semanticscholar.org/paper/The-problem-of-concept-drift\%3A-definitions-and-work-Tsymbal
https://abhishekaich27.github.io/data/WriteUps/EWC_nuts_and_bolts.pdf
https://abhishekaich27.github.io/data/WriteUps/EWC_nuts_and_bolts.pdf
https://www.inference.vc/comment-on-overcoming-catastrophic-forgetting-in-nns-are-multiple-penalties-needed-2/
https://www.inference.vc/comment-on-overcoming-catastrophic-forgetting-in-nns-are-multiple-penalties-needed-2/
https://www.inference.vc/comment-on-overcoming-catastrophic-forgetting-in-nns-are-multiple-penalties-needed-2/
https://arxiv.org/abs/1904.02505
https://mb.uni-paderborn.de/en/kat/main-research/datacenter/bearing-datacenter/
https://mb.uni-paderborn.de/en/kat/main-research/datacenter/bearing-datacenter/
https://pair-code.github.io/understanding-umap/
https://pair-code.github.io/understanding-umap/
https://arxiv.org/abs/1802.03426

	Abstract
	Acknowledgements
	Introduction
	Problem introduction
	Introduction to rolling element bearings
	Failure identification
	Bearing damage severity level

	Fault diagnosis techniques
	Problem description
	Data structure

	Mathematical description of the models
	First concepts
	Artificial neural networks
	Optimization
	Convolutional neural networks

	Early detection of the failure
	 Autoencoder
	Anomaly detection

	Classification of the failures
	Siamese network
	Network structure
	Contrastive loss

	Triplet strategies
	Triplet mining

	Comparison of both methods

	Continuous learning
	Elastic weight consolidation
	Learning a second task after the first
	Diagonalized Laplace approximation AbhishekAich.
	Learning the third task after the first two
	Error in EWC

	Implementation details
	Data sets
	IMS data set
	Paderborn data set

	Preprocessing techniques
	Models architecture
	Autoencoder
	Siamese network
	Triplet learning network
	Elastic weight consolidation

	Web application

	Results
	Autoencoder
	Outer ring failure
	Inner ring failure
	Rolling element failure
	Healthy bearing

	Siamese network
	Pretraining
	Training

	Triplet learning network
	Pretraining
	Training

	Comparison of classification models
	Elastic weight consolidation
	EWC-concept drift

	Conclusions
	Bibliography

