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Abstract: Quantum annealing provides a way to potentially solve optimisation problems faster
than its classical counterpart, simulated annealing, but the suitability of this method is still open
to debate. Here we present an example of simulated quantum annealing of a 2D Ising spin glass
model by the real-time evolution governed by the Schrödinger equation. A bias towards certain
ground states is observed for larger annealing times. The final states are compatible with the results
obtained in a previous study using path-integral Monte Carlo for simulated quantum annealing.

I. INTRODUCTION

The interest in solving optimisation problems has been
renewed by advances in quantum computation. In partic-
ular, NP-complete problems have been an important field
of study in computational sciences, as there are no cur-
rent efficient classical algorithms to solve them in poly-
nomial time. The importance of these problems lies in
the ability to map one to another—if we can solve one
in polynomial time we can solve them all. One of these
is the spin glass model, a condensed matter system that
has been an important area of study in the field of statis-
tical mechanics. It is typically described using the Ising
model, which arranges the magnetic dipole moments of
atoms (spins) in a lattice, these take a value of ±1 and
interact with their neighbours. The interactions of a spin
glass have random sign, introducing properties like frus-
tration and meta-stable minima which give great com-
plexity to the problem.

A way to study these problems is by the method of
stochastic optimisation known as classical simulated an-
nealing (CSA), which finds approximate global solutions

of a system described by a cost-function Ĥ(x) by intro-
ducing variable thermal fluctuations (either real or ficti-
tious). By introducing large fluctuations, i.e. large tem-
perature, the system can surpass the barriers between
meta-stable minima and explore the whole configuration
space. Then, by reducing the temperature during a suf-
ficiently slow annealing time τ , we obtain the minimum
energy at T = 0. Using quantum mechanics, we can
follow an analogous process. Instead of thermal fluctua-
tions, we provide the necessary quantum fluctuations for
the system described by Ψ(x, t) to explore all the possi-
ble states by means of quantum tunnelling. Overtime, we
reduce the strength of these fluctuations in order to lo-
calise Ψ(x, t) at the lowest possible energy. This method,
called quantum annealing (QA), has already been imple-
mented experimentally by using quantum computers[1],
even for commercial use with the introduction of the
D-wave quantum annealers [2]. Some experiments have
shown faster convergence compared to CSA[3]. On the
other hand, there have also been studies that show an
intrinsic bias for certain ground states (GS) of the stud-
ied problem, both simulated and experimental[5][4]. It is

FIG. 1: Representation of simulated annealing and quantum
annealing methods for finding minimum energy in configura-
tion space

still a matter of debate whether QA is a suitable method
for optimisation, as an ideal algorithm should explore all
possible solutions with equal probability.

One way of simulating QA on a classical computer is
by the real-time evolution (RTE-SQA) of the system us-
ing Schrödinger’s equation. This allows us to observe
the convergence for different annealing times following
the quantum dynamics. In our case we will consider a
2D Ising spin glass model of size N = 16. Comput-
ing the real-time evolution of these systems is quite time
consuming, for this reason only a few studies have been
made with similar sized problems[6][7].

Another way to study these systems is by using path-
integral Monte Carlo (PIMC-SQA), a statistical sampling
method. This method does not involve any dynamics of
the system, instead it uses an imaginary time to obtain its
results. By using PIMC one has access to larger systems
using the same computational power. We will be com-
paring our results with those of a previous work carried
out by another student [8] in Sec. IV. These methods are
based on completely different dynamics and are therefore
complementary, not interchangeable.

In the following sections we will be discussing the RTE
of a spin glass. In Sec. II we will present the problem
of QA of the 2D Ising spin glass model, with a brief
description of the computations given in Sec. III. Finally,
the numerical results are shown in Sec. IV and discussed
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further in Sec. V.

II. QUANTUM ANNEALING OF A SPIN GLASS

To solve an optimisation problem using quantum an-
nealing, we consider a classical HamiltonianH0, the cost-
energy function whose ground states correspond to the
solution we are trying to obtain. As mentioned before, a
typical example of H0 is the two-dimensional Ising spin
glass Hamiltonian:

Ĥ0 = −
∑
〈i,j〉

Jij σ̂
z
i σ̂

z
j , (1)

where the interaction is governed by the random coupling
Jij between two nearest neighbour spins (σi = ±1). To
minimise H0 we must choose an adequate quantum basis
in which Ĥ0 is diagonal. For the quantum fluctuations,
we consider the interaction of the spins with a transverse

field given by Ĥ1 =
∑N

i=1 σ̂
x
i . Finally, we introduce the

time-dependant Hamiltonian as:

Ĥ(t) = Ĥ0 − Γ(t)Ĥ1, (2)

where Γ(t) satisfies Γ(0) → ∞ and Γ(t → ∞) → 0 (In

our case the final time is τ), and Ĥ0 is shown in Eq.
1. This way, the quantum fluctuations allow the system
to explore all the possible states at initial time t = 0
and slowly evolve untill Ĥ(τ) = Ĥ0. For simplicity we
consider Γ(t) = Γ0(1 − t/τ), where Γ0 is a finite value
that dictates the initial strength of the transverse field
Hamiltonian. For the purposes of this paper a value of
Γ0 = 3 will suffice in order to replicate the real quantum
annealers that use Γ0 →∞.

Following the principle of quantum mechanics the real-
time evolution of the state is governed by Schrödinger’s
equation:

i
d

dt
|Ψ(t)〉 = Ĥ(t) |Ψ(t)〉

Ĥ(0) |Ψ(0)〉 = εgs |Ψ(0)〉 (3)

where ~ = 1 and εgs is the eigenvalue of the initial Hamil-
tonian, so the initial state considered is the GS of H(0).

If the annealing time τ is large enough, therefore satis-
fying the adiabatic theorem[9], the final state will be the

ground state of Ĥ(τ) = Ĥ0. It is important to describe
the energy spectrum of this problem. At time t = 0, we
obtain a large amount of eigenvalues of Ĥ(0) and ss we
evolve the system we will observe a multitude of energy
bands. These describe the energy variation of the sys-
tem starting at the initial eigenvalues and converging at
the degenerate eigenvalues of Ĥ0. If the QA (or SQA) is
infinitely slow during evolution process, the system will
follow the minimum energy, defined by E0(t), which is
the lowest value of the CGS energy band. We also need
to define the the minimum value E1(t) of the first ex-
cited state (FES) band. These two bands never cross

but do get close to each other at a certain Γ(t), this is
described as the Landau Zenner avoided crossings. The
probability of the system evolving as a ground state is
heavily influenced by this minimum gap between E0(t)
and E1(t) defined as ∆min = minΓ(t)(E1(t) − E0(t)).
The non-adiabatic transition probability between these
two bands, given by the Landau-Zener formula [10], in-
creases as ∆min decreases. This energy gap will dictate
the complexity of a problem and the time required to
solve it.

We will consider a two-dimensional lattice of size N =
L×L, with periodic boundary conditions in which we will
study the spin glass, with Ĥ0 shown in Eq. 1. We will
study the ±J model, in which the distribution of these
interactions is described by:

P (Jij) = pδ(Jij − J) + (1− p)δ(Jij + J), (4)

where δ is Dirac delta function, J = 1 and p = 0.5 so we
get equal probability. This model results in a highly de-
generate spin glass with an exponential number of CGS.

We will consider the computational basis {|x〉} of the
system, consisting of all the possible configurations of
spins (2N elements). In this basis, we can write the state
|Ψ(t)〉 as:

|Ψ(t)〉 =
∑
x

cx |x〉 . (5)

This will give us a diagonal Hamiltonian Ĥ0 with every
element equal to the classical energy of its corresponding
configuration, the minimum energy states of the classi-
cal Hamiltonian H are defined as the classical ground
states (CGS). The non-diagonal matrix 〈x| Ĥ1(t) |y〉 will
be mostly empty except for values equal to −Γ(t) for con-
nected states. Two states |x〉 and |x′〉 are connected if
one can obtain the other by the flip of one spin. In par-
ticular we will choose the states in lexicographical order,
assigning a 1 and 0 to each +1 and -1 spin respectively
and reading the binary number as the i.d. of each con-
figuration of spins.

III. NUMERICAL ANALYSIS

In order to obtain numerical values for the evolution
of the system we will be using a Runge Kutta 4th order
method (RK4) to solve the Schrödinger equation:

i
d

dt
cy(t) =

∑
x

Ĥxy(t)cx(t) (6)

The initial state given by cx(0) is obtained by diagonaliz-

ing Ĥ(0), and we compute Ĥ(t) at each time t by altering

only the non-zero elements of Ĥ1.
Each element consists of a real and imaginary ele-

ment so we will have to compute 2N+1 coupled equations
Nsteps = (τ/∆) times, where we have defined the time
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step ∆ as the variation of time (tn+1− tn) for each itera-
tion n. Therein lies the difficulty of obtaining results for
the real-time evolution of large systems. To avoid unnec-
essary floating-point operations we will use the fact that
the time-dependant Hamiltonian is a sparse matrix: the
only non-zero elements for each row correspond to the
diagonal value and the N connected states. This reduces
the scaling of our calculations from 2N × 2N to N × 2N .

The following results were obtained using a step ∆ =
10−2 for a L = 4 system, N = 16 spins.

IV. NUMERICAL RESULTS

We solved for 100 different instances I with randomly
generated couplings Jij , evolving them for different an-
nealing times τ . For each I we computed the values of
the cx coefficients and the evolution of the expected value
of the energy 〈Ĥ(t)〉 = 〈Ψ(t)| Ĥ(t) |Ψ(t)〉. Using the ex-

act minimum eigenvalue of Ĥ(t), E0(Γ(t)), we can check
the convergence of our results by defining the residual
energy as:

Eres(t) = E0(Γ(t))− 〈Ĥ(t)〉, (7)

In Fig.2 we show how a larger annealing time reduces the
final residual energy. The slight deviation for the values
of the average Eres(t) as Γ → 0 is due to some excited
states still being occupied.
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FIG. 2: Evolution of energy as Γ tends to zero. The inset
figure shows the final average residual time for each τ .

To study the successful convergence of a certain I we
define the probability of success Psucc as the probability
of obtaining a CGS as the final state, i.e.:

Psucc =

∑
GS |cx|2∑
|cx|2

. (8)

Here, the top sum is over the CGS and the bottom sum
is over all configurations in the computational basis.

If τ is too big or too small we get (Psucc → 1) or
(Psucc → 0) ∀ I respectively, as shown in Fig.3.
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FIG. 3: Cumulative distribution of Psucc for different anneal-
ing times.

We considered τ = 2 as a good half-way point be-
tween the two extremes so we get a broad distribution
of different Psucc between 0 and 1. For these values, we
can compute the minimum gap between the GS and FES
∆min by the exact diagonalization of Ĥ(t) for a certain
time t. Fig. 4 shows the correlation predicted by the
Landau-Zener theory: as the gap increases, the chances
of a non-adiabatic transition drop, so the evolution is
more likely to converge at a CGS. No relation was found
between the value of Γ at which the gap is minimum and
Psucc. We also compared the values of Psucc with those
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FIG. 4: Success probability vs ∆min for a QA time τ = 2.

obtained using PIMC[8], for which the same I have been
used. In Fig. 5 we see a good indication of the validity
of the results obtained with our method. The discrepan-
cies are due to the annealing time not being exactly the
same (the annealing time of the PIMC method is given
in number of Monte Carlo steps), as the RTE method
is not trivially related to PIMC, but overall the results
seem to be in agreement. Further analysis shows this in
more detail.
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FIG. 5: Comparison between success probabilities for PIMC
and real-time evolution. Two different annealing times have
been used. For RTE we used τ = 2 and τ = 5. For PIMC the
times correspond 30 and 200 monte carlo steps.

It is also important to discuss the distribution of
ground states. The effectiveness of a method for solving
optimisation problems greatly depends on its ability to
explore every solution equally. In an adiabatic evolution
of Ĥ(t) we would expect to visit every CGS with equall
probability but our results show a deviation from the
uniform distribution as the annealing time τ increases.
An example of this behaviour is seen in Fig.6 for an in-
stance with 76 CGS. A certain symmetry is observed in
this figure. This is due to the order of the CGS, which
is lexicographical. In this order, the first and last CGS
are equivalent configurations with all the spins flipped,
the second and second last CGS are also equivalent, and
so on. To quantify this non-uniformity we considered
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FIG. 6: GS distribution for different annealing times.

the inverse participation ratio (IPR) which will give us a
qualitative behaviour of the CGS distribution. The IPR

can be defined as:

IPR =
P 2
succ∑

CGS p
2
x

(9)

For a uniform distribution, px = 1/NCGS , we obtain
a the linear relation IPR= NCGS , where NCGS is the
number of CGS. If the probability of some CGS domi-
nates over others, the slope of this relation between IPR
and NCGS decreases, with the lower limit being 1 for
a completely non-uniform distribution corresponding to
just one CGS |x0〉, for which px = δx,x0

where δx,x0
is

the Kronecker delta. Using the different annealing times
we plotted these values as a function of NCGS so that
the most uniform distributions behave like y = x and as
we lose uniformity the slope decreases. These results are
shown in Fig. 7. We see a deviation from the uniform
distribution of CGS as we increase the annealing time.
The non-uniformity of the CGS distribution is also com-
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FIG. 7: IPR vs NG for different annealing times.

patible with the results obtained by PIMC. Using the
same instance as before we can observe in Fig.8 the sim-
ilarities between both methods. Once again, we do not
have a direct correspondence with the annealing times,
which causes some discrepancies. Still, the CGS are vis-
ited similarly for both computations so the biases are a
result of intrinsic properties of the spin glass and not due
to the method used.

We also computed the values of the IPR for this
method, presented in Fig.9. For small annealing times
both methods explore all GS in a relatively uniform man-
ner, resulting in a very strong correlation between results.
Increasing the QA time introduces some discrepancies to
the results.

V. CONCLUSIONS AND COMMENTARY

We were able to successfully perform the QA of a spin
glass using Schrödinger’s equation for real-time evolu-
tion. In doing so, we observed the correlation between
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the success of a QA and the minimum gap between en-
ergy bands ∆min, described by the Landau-Zener theory.
We were also able to verify the results obtained by PIMC,
showing a good correlation between the two independent
methods. It would be interesting for future studies to
analyse the behaviour of the clusters of states and their
entropy —two states are in the same cluster if they are
connected by a path of constant energy by single flip
spins. [8]

As for the results concerning the non-uniformity of
the CGS distribution, it is important to analyse the
initial conditions of the problem. The initial quantum
ground state (QGS) obtained by diagonalizing the time-
dependent Hamiltonian would ideally equally explore all
the states of the spin glass. For a finite Γ0 we still ob-
tain equal probabilities for CGS due to a superposition
of these states in the QGS. This explains why smaller an-
nealing times return more uniform distributions. As we
increase the annealing time some CGS are visited with
more frequency than others, resulting in peaks in their
probability. Future research of this behaviour is needed
for determinate conclusions but this phenomena appears
to be intrinsic to each instance, likely linked to the en-
ergy spectrum of the states. A method for optimisation
that misses certain solutions is not ideal so we have yet
to see if QA is a suitable approach to solve these kinds
of problems.
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