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Abstract: Throughout this project we have studied the features of the sound produced by a
series of musical instruments, as well as the way in which this sounds are heard and felt by listeners.
Our main goal was to develop a numerical application that enables us to see how pleasant two
or more sounds would be when reproduced together. This application will analyse the harmonic
components of the sounds to provide a numerical assessment depending on how evenly the harmonics
are distributed within the spectrum.

I. INTRODUCTION

Our work was inspired by my music theory teacher
Fausto Murillo, who introduced me to the role that har-
monics play in music and their relevance. He inspired
me to try to develop a numerical application that would
assess the compatibility among different musical instru-
ments.

One of the original goals of this project was to record
a series of musical instruments playing different melodies
or chords and then analyse them. Unfortunately, due to
COVID-19, this was not possible. Therefore, we used vir-
tual instruments generated by a computer. The sounds
obtained may be a little bit unrealistic, but since the soft-
ware that we used was able to simulate a large variety of
instruments, we were able to play some instruments that
otherwise would have been very difficult to obtain.

Once we had created the sounds that we intended to
analyse, we obtained the spectrum of this sounds for each
instant (beat) of a musical piece, using the fast Fourier
transform, zero-padding and windowing. And since we
were working in a musical context, the spectrum obtained
was then digitised: all obtained frequencies were turned
into their corresponding nearest musical notes. Then a
N x M matrix was written down with the spectrum data,
where N corresponds to the number of beats in the song
and M to the different notes of the spectrum.

The next step was to convolve the obtained data with
human-ear response. To do this, we took into consider-
ation the frequency response of the human ear (humans
are not equally sensitive to all frequencies) and the mask-
ing effect, which will be explained in more detail later.

Finally, we developed a numerical application that
measures how evenly the harmonics are distributed
within the total spectrum when a series of instruments
are played together. Then, we used this method to select
the best combination of instruments to perform a certain
song.

This numerical algorithm was developed using Matlab.

II. SOUND ANALYSIS

Before we get into the Fourier transform, it is necessary
to discuss a bit the nature of audio files and recording.
When a microphone records a sound, what it is really

doing is to transduce the fluctuations of the air pressure
into an electrical signal that is then digitised. All these
data are then saved as a list of values, which are later
encrypted in several ways. The rate of values that a mi-
crophone can detect per second is known as the sampling
frequency (fs).

The sampling frequency must be at least twice the
spectrum width in order to be able to perform a sat-
isfactory analysis of the data [1]. That is why the value
of fs at which our audio files were created was 44100Hz,
twice the width of an average person’s hearing frequency
range (20-22000 Hz). We also used the maximum bit size
possible for each sample, assuring the best audio quality.
These data were then encrypted in .WAV format, which
has very little data loss. An example of an audio signal
is shown in Fig. 1.

Concerning data analysis, the method used to obtain
the spectrum of our sounds was the fast Fourier trans-
form (FFT). This is the most efficient method amongst
the other discrete Fourier transform algorithms: it is hun-
dreds of times faster than the ‘simultaneous equations’ or
the ‘correlation’ method.

Thanks to this algorithm we could easily calculate the
discrete Fourier transform:

Y (k) =

N∑
j=1

X(j)e
−2πi
N (j−1)(k−1) (1)

Where X represents the data points, N is the length of
the signal, k is the bin number index and j is the index
of the Fourier summation.

But before applying this algorithm, we used some tools
that allowed us to increase the accuracy and reduce the
spectral leakage.

First, the data were treated by windowing: multiply-
ing the signal by a gaussian-like function (with the same
length as the signal) called the Hanning window. By do-
ing so, the significance of the samples at the beginning
and the end of the signal are diminished, which is use-
ful because the FFT works by comparing the signal to
sinusoidal wave-forms that have an integer number of os-
cillations along the time span. Since the signal’s wave
is probably cut at both sides, it will not have an inte-
ger number of oscillations, causing spectral leakage when
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compared with the algorithm’s waves. By applying the
window, the algorithm will focus mainly on the centre of
the signal, where the sinusoidal components are not cut.

In order to improve the frequency resolution we used
‘zero padding’. This method consists on adding zeros to
the tail of the signal. Given that the frequency resolu-
tion in FFT is ∆f = fs/N (being N the length of the
signal and fs the sampling frequency), for a larger N the
resolution will improve. [2]
In Fig. 2, we can see the effects of windowing and zero-
padding applied to the signal from Fig. 1.

Figure 1: Audio signal of a C2 note played on a piano. The
intensity is normalised to -1 (the minimum intensity that can
be reproduced by the line driver) and 1 (maximum intensity),
while the x-axis shows time in seconds.

Figure 2: Same signal as in Fig. 1 after windowing and zero-
padding. We padded enough zeros so that a total of 441000
data points were analysed, thus obtaining a frequency resolu-
tion ∆f = 0.1 Hz.

A. Musical digitisation

With the spectrum defined for all possible frequen-
cies, we wanted to digitise all these data into the mu-
sical notes. To do this we assigned a total of 108 notes
(9 times the 12 musical notes in the different octaves) to
their corresponding frequencies. Each peak of the spec-
trum located within a 2% of accuracy nearby to a note’s
frequency was arbitrarily assigned to that note. This way
the spectrum was simplified so that it was easier to as-
certain when two instruments have a common harmonic.

An example of this is displayed in Fig. 3, where we can
see the discrete spectrum of the previous signal shown in
Fig. 2.

Figure 3: Musical Spectrum of the C2 note of Fig. 2. The in-
tensity of the harmonic components is represented as a func-
tion of the frequency. Note that the frequency axis is dis-
played in a logarithmic form.

III. HUMAN HEARING

What we obtained until now was a mathematical de-
scription of the vibrations created by the musical instru-
ments. But now we want to see how the brain deals with
this information. There are two factors to be taken into
account: the quiet threshold and the masking effect.

The first one relates to the frequency response of our
ears, since the eardrum is not equally sensitive to all fre-
quencies. Humans are specially sensitive to frequencies
between 2 and 5 kHz, while other sounds outside of this
range must be louder in order to be heard. The minimum
intensity at which each frequency is heard is called the
quiet threshold. The quiet threshold curve (depicted in
Fig. 4 as a black solid line) is the minimum intensity at
which each frequency must be reproduced to be heard.
This curve is actually an average behaviour since there
is a significant variability from person to person: for in-
stance, as years go by we lose sensitivity to high and low
frequencies, and people who are often exposed to loud
noises might also lose some sensitivity. We worked with
the average threshold of different subjects with ages be-
tween 20 and 25 years. [3]

The second one is masking effect. As we all know,
loud sounds can sometimes hide other sounds. To study
this phenomenon, scientists tried reproducing pure tones
simultaneously to see when one of these tones masked
the other. It was then discovered that, when two of
these tones had close frequencies and one was signifi-
cantly louder than the other, the quiet one was impossible
to hear: it had been masked by the louder tone. Testing
with different frequencies and intensities for these tones,
it was possible to find curves through the frequency range
of the spectrum around each masking peak representing
the minimum intensity that nearby sound peaks must
have in order to be heard. Because the masking curves
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are slightly different for each frequency range, we worked
with three curves for three characteristic frequency re-
gions (low, mid and high). These curves are shown in
Fig. 4.

Although the masking curves were found while study-
ing pure tones, they are also valid for complex sounds.
We must have in mind the Fourier theorem, which states
that every periodic function (such as a sound wave) can
be expressed as a sum of a series of sine or cosine func-
tions (pure tones) [4]. So if we were to reproduce simul-
taneously all the frequencies obtained via the analysis
of a given sound as pure tones with their corresponding
intensities, we would actually hear that same sound.

Figure 4: Masking and quiet threshold curves. The black
line represents the quiet threshold, while the colored lines
represent the masking curves for pure tones with frequencies
equal to 250Hz (purple), 1kHz (orange), and 4kHz (yellow).
All of these masking tones have an intensity of 60dB.

We applied these concepts to the analyses of the spec-
tra in the following way: first we deleted those frequencies
that were not audible due to the masking effect. To do
this we created a list sorting all of the spectrum peaks by
intensity. Starting with the highest peak we adjusted the
masking curve to that peak’s intensity and location, and
then deleted every peak with intensity below that of the
masking curve. All the following peaks went through the
same procedure, if they had not been masked already.

Finally we subtracted from the whole spectrum the
quiet threshold, obviously setting to zero all negative val-
ues. Following this procedure we obtained the spectrum
in the way that a person really hears it.

IV. MUSICAL COMPATIBILITY

It is well known that, when we listen to a sound, our
eardrums vibrate as a response to that sound. This vi-
bration is then sent to the cochlea (inner ear) where the
basilar membrane is located. The basilar membrane is
thick on one side and progressively thinner on the other,
in a way that the thick part resonates with low frequen-
cies and the thin part with high frequencies. The basilar
membrane acts as a support for 260,000 (aprox.) sen-
sory cells that compose the cochlear nerve, which send

an impulse to the brain when their supporting region
resonates [5]. All in all, the whole system acts as a a fre-
quency spectrum analyser. This is why it is easier for us
to distinguish two sounds when they belong to different
frequency ranges: the vibration of each sound takes place
in different regions of the basilar membrane.

Following this concept we developed our hypothesis,
consisting on the assumption that two sounds are more
compatible with each other when their spectra minimise
their mutual overlapping; thus making it easier for the
auditory system to distinguish the sounds. To prove it,
we developed a function that computes how much the
harmonics of two different musical sounds are overlapped.

This was actually straightforward. After finding the
discrete spectrum of each sound in the form of a vector
(as explained before) we calculated the scalar product of
these vectors. This way, if the two sounds have many
intense harmonics in common, the number obtained by
the product will be larger and vice-versa. We also nor-
malised the scalar product dividing it by the norms of
the two vectors, so that the final result was independent
of the intensity of the sounds. In such a way, the results
obtained varied between 0 (no overlap) and 1 (complete
overlap).

Later on, we made a little adjustment: instead of di-
viding by the norm of both vectors, we only divided the
product by the norm of the shortest vector. Since we
mostly used the application to compare a single instru-
ment with all of its companions combined in a single spec-
trum, when the product was divided by the norm of both
vectors the result was usually very small, thus making
it harder to see significant differences between different
combination of instruments. However, after this adjust-
ment, the obtained values are not limited like before. In
order to know which values were to be expected, we ap-
plied the function to some fragments of classical pieces,
in which several instruments were involved. Fig. 5 shows
a histogram created with this results, where we can see
that the computed values for what we called the compat-
ibility parameter (CP) spread between 10 and 140.

Figure 5: Histogram of the compatibility parameter when
comparing various melodies within classical music pieces
(‘String quartet Op. 76 no. 2’ by J. Haydn and ‘Pomp and
circumstance’ by E. Elgar). CP = 63 and σ = 27.
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A. Study of timbre

A musical note has its harmonics frequencies fixed, in-
dependently of what instrument reproduces it. What will
differentiate one instrument form another is the intensity
of each of these harmonics (intensity might also be zero
in some harmonics). Therefore, when we analysed the
spectra of a musical piece played by a series of different
instruments, we observed some variations in the CP.

That is why we thought that it would be interesting
to develop a function that would enable us to see which
instruments would fit together in a multi-score musical
piece (a score is a set of melodies and/or chords written
in musical language). To do this we recorded into audio
files each score being played by different instruments, and
obtained its spectra for all the beats. All these spectra
were then saved into a 3D array, for which the first two di-
mensions represent the frequency spectrum in each beat
and the third dimension specifies the instrument that is
being played.

Finally, we wanted to obtain a CP value for every pos-
sible combination of instruments. To do so we compared
the spectrum of each score with the rest of the scores
played together, obtaining a CP value for each instru-
ment that participates in the song (actually we obtained
a list of CP values for each beat, but they were averaged
to become a single value). Then we computed the average
of all these values (there were as many values as instru-
ments played in the song) and repeated the procedure for
the rest of possible instrument combinations.

V. RESULTS

The music piece that we analysed was a self-written
piece that contains 4 scores: ‘bass’, ‘chords’, ‘melody’ and
‘high-pitch’. We recorded each score being interpreted by
a series of different instruments, which we thought that
sounded good when played by themselves, and proceeded
to compare them.

Before performing the calculations, we ensured that
all of the instruments had the same relative intensity,
meaning all of the sounds had the same intensity at the
highest peak. Otherwise the results would depend on
the intensity at which they were recorded, which was
inevitably different for each instrument.

Then we had the program running for almost three
hours, comparing all possible instrument sets as de-
scribed on section IV-A. A total of 1,680 different instru-
ment combinations were compared, whose average CP
were then saved into a 4D matrix of size 7x5x8x6, each
index representing a certain instrument and each dimen-
sion a certain score (the code developed to compute this
is shown in the appendix). From all these results we
chose two: one with high compatibility (set A) and the
other one with low compatibility (set B).

The values of CP for each beat of the song are shown
in Fig. 6, where Fig. 6(a) shows the most compatible

instrument set (CP = 21) and Fig. 6(b) the less com-
patible instrument set (CP = 57). The histograms of the
data from Fig. 6 are shown in Fig. 7.

Figure 6: Bar plot of the compatibility parameter of each
beat within the piece. In panel (a) ‘bass’ is being played
by a bass guitar, ‘chords’ by a balalaika (a type of Russian
guitar), ‘melody’ by a vibraphone and ‘high-pitch’ by a violin.
In panel (b) ‘bass’ is interpreted by a tuba, ‘chords’ by a
Chinese zither, ‘melody’ by a harpsichord, and ‘high-pitch’
by an organ.

Figure 7: Histogram of the compatibility parameter per beat,
where the most compatible set is shown in blue and the less
compatible set in orange. The brown area indicates the over-
lapping between the two histograms. σ = 14 for set (a) and
σ = 17 for set (b).

Most of the obtained CP values are smaller than the
average value from Fig. 5 (63). This is because in the
previous example (see Fig. 5) we compared orchestral
pieces where many instruments were involved, thus pre-
senting higher spectra overlap.
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Figure 8: Complete spectrum corresponding to beat number
five for instrument sets with good compatibility (a) and bad
compatibility (b). The spectrum corresponding to each score
is represented in different colors, as shown in the legend. It
is worth noting the large spectral overlapping at the central
region of frequencies for set b.

We will pay special attention to beat number five. Here
set A returns a CP of 13, while set B returns a value of
72. We used this beat to illustrate a clear case of good
and bad compatibility. Fig. 8 shows the spectrum of set
A and set B at this specific beat, allowing us to easily
evaluate the overlap between spectra.

Looking at Fig. 8, we can see that the main reason why
set B is not very compatible is that all of its instruments
have a lot of spectral information. Specially when we
take a look at the central part of the spectrum, we can
see many intense harmonics very close to each other. This

excess of harmonics causes a lot of spectral overlap, which
provokes a feeling of nastiness on the listener.

The instruments in set A, however, do not have as
many harmonics. Specially when looking at the ‘melody’
score: the vibraphone from set A only has four harmon-
ics (that is why it resembles a pure tone), and it does
not overlap with any other instrument. The rest of the
instruments have more harmonics, but they are arranged
in a way that they do not disturb one another.

VI. CONCLUSIONS

After studying the behaviour and features of musical
sounds, as well as the newly defined concept of musical
compatibility, we feel very satisfied with the results. We
believe that we have developed a software that, when
used properly, can help music composers choose the in-
struments to perform in their creations.

Although we worked on a very subjective field, where
we did not discard the possibility that some people could
enjoy noisy music with a lot of spectrum overlaps (such
as hard-rock, punk, metal...), we feel very satisfied with
our results, which have proved to work out properly. At
the very least in a classical music context.

We must never forget that the compatibility parame-
ter, as we defined it in this project, should only be used to
compare instruments playing the same score. If we want
to know the amount of spectral overlap within a song for
a specific set of instruments, we should instead use the
scalar product normalised between 0 and 1. This value
will then tell us the percentage of overlapping harmonic
components.

To conclude, we believe that working further on the
concept of musical compatibility could lead to more so-
phisticated tools like: a new CP applied to musical notes,
an automatic equaliser (frequency balancer), or maybe
even an AI performer who instantly reproduces sounds
that fill the heard spectrum in an optimal way.
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APPENDIX6/16/20 10:48 AM /Users/luisj.cuervoderqui/D.../Apendice.m 1 of 1

 
%First we create the 3D matrixes with all the instruments. The function
%cat() concatenates all the matrixes in the third dimension.
 
C=cat(3,Abalalaika,Acitarra,Aguitarra,Aharpa,Aharpicordio,Apiano,Asinte);
%7 instruments playing the chords
 
B=cat(3,Bsinte,Bcellos,Bbasses,Bbass,Btuba);   
%5instruments playing the bass
 
M=cat(3,Mharpa,Mguitarra,Mharpicordio,Mpiano,Msinte,Mcelesta,Mcitarra,Mvibraphone);
%8 instruments playing the melody
 
HP=cat(3,Pvibraphone,Pflauta,Ppiano,Pviolin,Poboe,Porgan);    
%6 instruments playing the high-pitch
 
 
 
Z=zeros(7,5,8,6);   %We will store our results in this matrix
 
for i = 1:7
    for j = 1:5
        for k = 1:8
            for l=1:6
                %The function juntarR() joins the spectrum of two scores,
                %taking into account masking and that our values are
                %logarithmic.
                
                %We created 4 matrixes that contain the whole spectrum except for
                %one instrument.
                
                NoC=juntarR(juntarR(HP(:,:,l),B(:,:,j)),M(:,:,k));
                NoB=juntarR(juntarR(HP(:,:,l),C(:,:,i)),M(:,:,k));
                NoHP=juntarR(juntarR(C(:,:,i),B(:,:,j)),M(:,:,k));
                NoM=juntarR(juntarR(HP(:,:,l),B(:,:,j)),C(:,:,i));
                
                %Next we compare each instrument with the rest combined.
                %The function comparar returns a CP value for each beat.
 
                Afit=comparar(C(:,:,i),NoC);
                Bfit=comparar(B(:,:,j),NoB);
                Mfit=comparar(M(:,:,k),NoM);
                Pfit=comparar(HP(:,:,l),NoHP);
                
 
                %and finally we compute the average of the values for every beat
                %and save the result into the matrix Z.
                Z(i,j,k,l)= (mitjana(Afit) + mitjana(Bfit) + ...
                    mitjana(Pfit) + mitjana(Mfit))/4;
            end
        end
    end
end
%---------
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