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Abstract: Rich-club e�ect is a phenomenon where nodes of higher degree in a network tend to be
highly well-connected between them. In this work we aim to quantify it, analyze its presence in a wide
range of di�erent real networks, propose a new expression to calculate rich-club e�ect and discuss its
utility to quantify this phenomemon.

I. INTRODUCTION

Complex networks describe a large number of systems,
whose nature may be very di�erent, from molecular in-
teractions in the cell to social networks [1]. The structure
of these systems is typically modeled as random graphs
following complex connectivity patterns [2], far from
completely ordered lattices or fully random topologies [2].

In complex networks, the elements of the system are
represented as nodes and interactions between them are
called links. The number of links that a node shares with
others is the degree of the node [2]. In a network, the nodes
with high degree much above the average are called hubs
and these play an important role in this work [1], because
rich-club e�ect is related to the connectivity between
hubs, as will be explained below.

All networks display similar topological features, in-
dependently of their domain. Networks describing real
systems usually present fat-tailed degree distributions
described by a power-law functional formwith negative ex-
ponent [3]. Another typical characteristic of real networks
is that they are sparse, meaning that the total number of
links in the network represents a low fraction of the total
possible, that is N(N − 1)/2 where the number of nodes
is N [1]. They share with random graphs the small-world
property, meaning that all pair of nodes are separated,
on average, by a small number of intermediate links (the
topological distance between nodes is small)[1]. Another
feature that di�erentiates a real from a random network
is the clustering coe�cient 〈C〉 [2], which measures the
tendency of the neighbors of a given node to share links
between them [2]. Real networks typically display a high
clustering coe�cient, while clustering is small in random
networks.

Finally, one important property of real networks is
the rich-club e�ect, a phenomenon implying that high
degree nodes tend to be well-connected between them
[4]. In 2004 was introduced an expression to measure
it, which is obtained by calculating the density of links
over all possible pairs [4]. Two years later, in 2006,
this expression was normalized to take into account the
structural properties of each system [5]. The study of this
phenomenon is important because the detection or not
of its presence gives information about hubs behaviour,
allowing to analyze in the context of each network the
reasons why nodes of higher degree tend to associate
between them or not [5].

In this manuscript, we characterize the rich club ef-
fect in model and real networks. We also compare results

for the standard metric based on global density of links
with an alternative based on local connectivity, and
discuss similarities and di�erences.

II. MATERIALS ANDMETHODS

A. Models of complex networks

To provide a reference for real networks, in this paper
we will consider two di�erent network models.

The Erdös-Rényi (ER) model is the simplest ran-
dom network model. ER graphs are described by two
parameters, the number of nodes N and the probability p
that two nodes share a link between them [6]. Since the
maximum number of node pairs is N(N − 1)/2, and each
pair is created with a probability p, the resulting average
degree is given by the expression p = <k>

N−1 [6]. Degree
distribution for this model is binomial and as n → ∞
it becomes a Poisson distribution. Erdös-Rényi model
presents low clustering unlike many real networks. [6]

The Barabási-Albert (BA) model is a growing net-
work model. It generates graphs whose structure is closer
to the observed in real networks because it incorporates
a preferential attachment mechanism, so that new nodes
added to the graph prefer to link with more connected
nodes[7]. To obtain a network following this model one
has to �x two parameters, the number of nodes N at the
end of the process and the number of linksm. The process
starts by creating N0 = m nodes and connecting them.
At any step until the system reaches N nodes, a node t is
added that will share a link withm nodes i of the network,
choosing each node with a probability pi = ki∑

j kj
. As

a consequence, nodes with higher degree will have more
probability to be chosen, obtaining thus the condition of
preferential attachment[7].

B. Network data

We analyze the rich club e�ect in some real networks
from di�erent domains. Some of their statistics are shown
in Table 1.

� Roads. The road network compiles information
about E-road network. Each node represents a city
and each link denotes that they are connected by an
E-road [8].(From KONECT database, April 2017).
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Networks
Type N L 〈k〉 kmax 〈C〉

Erdös-Rényi 1000 3000 6 17 0.01
Barabási-Albert 1000 2994 6 97 0.03

Roads 1174 1417 2.41 10 0.02
Power grid 4961 6594 2.67 19 0.11

Air transport 500 2980 11.94 145 0.72
Internet 6444 12194 3.78 1457 0.38
Emails 1133 5451 9.62 71 0.25

Co-authorship 5241 28968 11.05 162 0.88
Metabolic 829 1975 4.76 202 0.19
Proteins 4100 13356 6.52 313 0.09

Table I: This table shows the values of the most important
magnitudes for the synthetic and real networks considered in
this work. N is the number of nodes, L represents the number
of links, 〈k〉 is the average degree of the network, kmax is the
maximum degree and 〈C〉is the average clustering coe�cient.

� Power grid. Power grid network compiles informa-
tion about power grid of the Western States of the
United States of America. Each node represents nei-
ther a generator, a transformator or a substation,
each link represents a power supply line [9].(From
KONECT database , April 2017).

� Air transportation. Air transportation network
compiles information about the 500 busiest commer-
cial airports in United States. Each node repre-
sents an airport and each link a �ight between them
[10].(From Index of Complex Networks database).

� Internet. Internet network compiles information
about Autonomous systems in Internet. Each node
represents an autonomous system and each link rep-
resents BGP tra�c between them [11].(From Stan-
ford database SNAP)

� Emails. Emails network compiles information
about the email communication network at the Uni-
versity Rovira i Virgili. Each node represents a
user and each link that at least one email between
themwas sent [12].((FromKONECTdatabase,April
2017).

� Scienti�c collaborations. Collaborations net-
work compiles information about collaborations be-
tween authors in the e-print arXiv. Each node repre-
sents anauthor and each link a coauthorshipbetween
them [13].(From Stanford database SNAP)

� Metabolic reactions. Metabolic network compiles
information about enzymatic reactions. Each node
is neither a reactant or a product and each link rep-
resents a reactant-product pair.

� Proteins. Proteins network compiles information
about interactions between proteins. Each node rep-
resents a protein and each link a connection between
them [15].

All these networks are undirected and unweighted. It
means there is no direction in the connection between
nodes and links have no weight assigned to them [1, 16] .

C. Quantifying the rich-club coe�cient

S.Zhou and R.J.Mondragon(2004) discussed for �rst
time about rich-club e�ect [4]. Moreover, they gave an
analytic expression to calculate it, the rich-club coe�cient
φ(k). It is expressed as:

φ(k) =
2L>k

N>k(N>k − 1)
(1)

For a given k, this expression allows to calculate the
fraction of links in a network among the N(N − 1)/2
possible pairs [4]. Then, if this coe�cient is calculated and
it is observed that increases with the value of k, means
higher degree nodes tend to connect between them. That
is the de�nition of rich-club e�ect, this coe�cient gives an
accurate numerical expression of this phenomena.

This behaviour means that hubs are well-connected
between them, so the connections between nodes are
not formed randomly, otherwise following some kind of
process that ends up in this rich-club e�ect being observed.
Despite that, calculating and plotting this coe�cient for
di�erent networks, from pure random networks generated
by models to real systems represented with data, it is
observed that in every case this coe�cient follows the same
behaviour of increasing with k even for the ER model that
produces random graphs with trivial structure where all
pairs of nodes are connected with the same probability [5].
This indicates that Eq. (1) is not good for measuring the
rich-club phenomenon.

In [5], it is proposed a normalized version of this co-
e�cient that takes into account the contribution due to
the high random generation of connections between high
degree nodes, the expression of this coe�cient is:

ρ(k) =
φ(k)

φrand(k)
(2)

φrand(k) is Eq. (1) calculated for a network that preserves
the degree distribution of the original, but has been ran-
domized by a process of L2 steps, where in each step two
di�erent links between nodes are selected and two of their
ends are changed, so they connect di�erent nodes. Eq. (2)
can be simpli�ed as L>k

L>krand

, taking into account that as

degree distribution does not change, N>k is constant for
each k, while L>krand

may be di�erent every time that two
ends of links are changed. This process is done in such a
big amount of steps before calculating L>krand

to make
sure that the resulting network is completely random.
This value allows to discount some contributions due to
structural e�ects of the system. Then, if ρ(k) > 1 the
network presents rich-club e�ect [5].

D. Local rich-club coe�cient

In thismanuscript, we also evaluate a local version of the
rich-club coe�cient on real networks that focuses on local
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connectivity instead of on density of links. Its written as:

φloc =
〈k〉>k
〈k〉

(3)

where numerator is average degree for the subgraph ob-
tained with nodes of degree higher than k. We aim to
compare this expression to Eq. (1) and analyze if it gives
some kind of information about the network. The nor-
malized version of this coe�cient can be calculated as
ρloc = φloc

φloc,rand
, that is simpli�ed into L>k

L>krand

as for the

global coe�cient.

III. RESULTS

A. Model networks

Next, we evaluate the plain and normalized rich-club
e�ect intheERandBAnetworkmodelsasde�ned inEq. (1)
and (2). To calculateEq. (2),L>krand

hasbeen averagedby
calculating thismagnitude100 times, each time theprocess
of L2 steps being done.
Erdös-Rényi Model. Results for the rich-club e�ect

in ER networks with p = 6 · 10−2 and 〈k〉 = 6 are shown in
the top row of Fig. 1. These values of p and 〈k〉 have been
chosen so ER networks are sparse as real systems. These
graphs have been simulated with N = 1000. Coe�cient
φ(k) shows an increasing behaviour with k, as expected.
Moreover, ρ(k) = 1 for all k, due to the fact that ER
networks are completely random.

As shown in FIG. 2, �uctuations in the normalized rich-
club coe�cient become larger for larger values of k due
to the decreasing number of nodes with larger k. These
�uctuations decrease asN becomes larger.

Barabási-Albert Model. The process to obtain the
results for φ(k) and ρ(k) has been the same than for Erdös-
Rényi Model, with 〈k〉 = 6 and m = 3. However, with
N = 1000wewere obtaining values far from expected ones
from [5], to improve results we have calculated φ(k) and
ρ(k) forN = 10000, but averaging over 30 networks. Thus
achieving better compromise between computing capabil-
ities and network size. The values are shown in the bottom
row of Fig. 1. The results show ρ(k) < 1, so Barabási-
Albert nerworks withN = 10000 lack of rich-club e�ect.

B. Real networks

Following the same process as in the models section,
for each real network φ(k) and ρ(k) have been calculated.
The results will be shown below to discuss what kind of
networks present rich-club e�ect.

In Fig. 3, we can see that the increasing behaviour
of Eq. (1) is shared by all kind of networks, like ran-
dom models. Hubs have a large amount of links in
comparison with low-degree nodes, so they have higher
probability of being connected with other hubs. We can
not see the presence of any organization patterns, global
rich-club coe�cient gives no informationabout the system.

Figure 1: Top row: φ(k)(left) and ρ(k)(right) averaged over a
set of 100 Erdös-Rényi networks with N=1000. Bottom row:
φ(k)(left) and ρ(k)(right) averaged over a set of 30 Barabási-
Albert networks with N=10000.

Figure 2: ρ(k) for di�erent values ofN for a network generated
with Erdös-Rényi model.

Fig. 4 exposes the results obtained for Eq. (2), being
possible to determine which networks present rich-club
e�ect. Structural networks show a strong presence of
rich-club e�ect, which implies that this kind of hubs
tend to associate strongly between them. Social graphs
present the same behaviour for ρ(k). Biological systems
display ρ(k) < 1 , their more important components
do not use to interact between them. Internet network
shows a weak presence of rich-club e�ect, denoting that
this phenomenon takes place but less than in social and
structural networks.
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Figure 3: Each graph corresponds to the results obtained for
φ(k). Its behaviour can be observed for each real network.

Figure 4: Each graph corresponds to the results obtained for
ρ(k). Its behaviour can be observed for each real network.

We can see a strong rich-club e�ect in social and
structural systems. Hubs connectivity in air transporta-
tion plays an important role in the study of spreading
diseases in global world. This identical result for social
networks provides support to the idea that more famous
people are likely to know each other. Internet systemswith
ρ(k) > 1 have well-connected hubs, implying that they
are highly-sensitive to cyber-attacks. Results in biological
graphs may mean that more important components of
biologicalnetworks tend toparticipate indiverse functions.

These results give important information about these
systems and, furthermore, can be applied to any kind
of network to analyze and discuss its hubs properties.
Then, if is possible to modelize a system as a graph,
hubs behaviour can be studied and lately discussed by
calculating its normalized rich-club coe�cient.

Results for the local version of the rich-club coe�-
cient are shown in Fig. 5. Due to �nite size e�ects, all
networks present a decreasing behaviour of this magni-
tude for large k. Two kinds of graphs can be observed by
analyzing these results: ones where φloc increase with k

until reaching a peak and then decrease due to �nite-size
e�ects, others where φloc decrease since the beginning.
This second kind of behaviour is observed only on networks
that have a geographical component, roads and power
grid graphs, where nodes distribution in space plays an
important role, while the presence of the peak is shared by
very di�erent networks.

Without normalizing local rich-club coe�cient it tells us
if the system organization principles are in�uenced by
geographical distribution. It is important because the
global version does not allow to distinguish even between
random or real networks. Once they are normalized, both
coe�cients are equal and allow to discuss the presence or
not of rich-club e�ect, so Eq. (3) is more useful as provides
extra information.

IV. CONCLUSIONS

When not normalized, the global rich-club coe�cient
is not useful to assess whether a network presents the
rich-club e�ect, as it shows the same qualitative behaviour

4



IV CONCLUSIONS

Figure 5: Each graph corresponds to the results obtained for
φloc(k). Its behaviour can be observed for each real network.

for all networks. Once normalized, the coe�cient allows
to observe the presence of rich-club e�ect in model and

real networks. As discussed above, knowing if network
hubs are well-connected has huge importance in the study
of complex systems represented as networks, and can have
implications for their function.

Moreover, we have also evaluated a local version of
the rich-club coe�cient that takes into account the
contribution of each node by its degree. The results
obtained have shown that the normalized local rich-club
coe�cient is identical to the corresponding global metric.
In contrast, the local measure without normalization is
better than the global one because it provides us more
information about the analyzed networks. We observed
that networks with a geographical component present a
characteristic decreasing pattern of the non-normalized
rich club as compared to other networks. The calculus
of this coe�cient may be used to detect geographical
importance in networks, specially each ones where it
is not clear. It would be important to know the rea-
sons behind those di�erences in geographical networks
and if there is another information that we can obtain
analyzing this magnitude. Despite this, it exceeds the
aim of this work but could be analyzed in incoming studies.

The networks in our study share two properties, they
are undirected and unweighted. To analyze weighted or
directed graphs the equations used in this paper should be
rewritten taking into account these characteristics, but
this is left for future works.
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