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Abstract: We have analyzed the performance of a PCA-based automated classifier of stellar
spectra into the MK system, using as benchmark the dataset of optical spectra listed in the SDSS-
DR15. We have found that it is possible to account for 99% of the total variance arising from
good-quality A, F , G, K, and M stellar spectra with only three principal components, though
we have ended up using four to further increase the discriminant power of our methodology. The
projections of a subset of 50, 000 good-quality spectra on this 4D space have been used to determine
the most probable spectral type of test stars in samples of spectra of increasing quality, with which
we have evaluated the goodness of our classification procedure. Within a general scenario of excellent
results, we found that a Gaussian Kernel performs somewhat better than a Top-Hat Kernel when
calculating membership probabilities, that the efficiency of our classification method improves with
the S/N of the spectra, and that the classification of G-type stars is the less reliable and that of
F -type stars the most incomplete.

I. INTRODUCTION

Stellar spectra contain a huge amount of information
on the photospheres of stars such as their ionization state,
which in turn gives an objective measure of the photo-
sphere’s temperature. Most stars are currently classified
under the system proposed by W.W. Morgan and P.C.
Keenan at their first photographic spectral atlas An At-
las of Stellar Spectra [1]. In the MK system stars are
grouped according to their spectral characteristics using
the letters O, B, A, F , G, K, and M , optionally followed
with a finer subdivision by Arabic numerals (0-9). Phys-
ically, the spectral classes indicate the effective tempera-
ture of the star’s atmosphere and are normally listed from
the hottest (O type) to the coolest (M type). The MK
classification is a purely taxonomic system; the different
categories of spectra are defined by a set of standard stars
based on distinguishing features.

Not so very long ago, this classification was performed
matching the overall appearance of a spectrum to the
closest MK standard one [2]. Not only are these man-
ual techniques very time-consuming and involve a great
amount of human resources, they also constitute a sub-
jective process, since a given spectrum may be classified
differently by different people. Besides, recently, the ad-
vent of multifiber spectroscopy has increased by orders
of magnitude the number of stars with available spectra,
which has created the necessity of developing new and
powerful classifiers. These problems are currently allevi-
ated through the use of automated techniques that are
fast, objective and repeatable [3].

The aim of this work is precisely to statistically evalu-
ate the performance of an automated method of classifi-
cation for stellar spectra based on the Principal Compo-
nent Analysis (PCA), an unsupervised, non-parametric
statistical tool primarily used for dimensionality reduc-
tion in machine learning. We will be supported in this
task by the large dataset of optical spectra of Milky Way
stars obtained within the Sloan Extension for Galactic

Understanding and Exploration program of the Sloan
Digital Sky Survey (SDSS), which we will use as a bench-
mark. Besides, we modified some of the tools developed
by [4] for the analysis of galaxy spectra, to fulfill the
specific requirements of the present study.

This manuscript is organized as it follows. In Sec-
tion II, we discuss the data selection and processing. In
Section III, we briefly explain the mathematical princi-
ples of the PCA when it is applied to spectra and define
our training dataset of reference spectra. We also deter-
mine the minimum number of dimensions that are needed
for an adequate description of most of the MK system, as
well as the specific regions (CR) occupied by each spec-
tral type in this low-dimensional subspace. In Section IV
we quantify and discuss the performance of our PCA-
based method as a predictor of stellar spectra, where we
use two different kernel density estimators to calculate
the probability the membership probability. Finally, in
Section V we summarize our main results.

II. DATA TREATMENT

A. Selection of the spectra

The main sample of stellar spectra used in the present
analysis has been selected from the set of optical spectra
classified by the SDSS spectral pipeline as being of survey
quality. These spectra are retrieved uploading a query to
the SQL Search form of the fifteenth Data Release of the
SDSS (SDSS-DR15). In this query we require the SDSS
spectra: 1) to be of the ’STAR’ class; 2) to have a subtype
that coincides with one of the principal spectral types of
the MK system; and 3) to have the flag ’ZWARNING’
set to zero, which eliminates those spectra with poten-
tial problems on their classification or on their estimated
redshift. In addition, we require the mean value of the
signal-to-noise ratio (S/N) of the spectra to be greater or
equal than 20 to guarantee a minimum level of measure-



AUTOMATED CLASSIFICATION OF STELLAR SPECTRA Cristina Jiménez Palau

ment accuracy of the main spectral features, especially
the absorption ones.

This query has been also used to evaluate the general
quality of the stellar spectra accessible from the SDSS.
We have carried out a simple statistical test consisting
in determining how many stellar spectra from a random
subset of 100,000 of them match both the requirements
specified in the SQL Query defined above and the addi-
tional restrictions we imposed in the processing of spectra
(see Sec. II B). The results of this test are shown in Ta-
ble I. One can notice, for instance, the acute shortage
of O- and B-type stars, something that was to be ex-
pected given that these are massive and very luminous
objects, so they are very short lived. In fact, there are
only 366 O-type stars and 1239 B-type stars in the entire
SDSS catalog, which has forced us to remove these two
types from the present study. For their part, M -type
stars show the opposite behavior. They are by far the
most common, but their intrinsic faintness and the pres-
ence of strong molecular absorption bands on the shortest
wavelength part of the optical window make it difficult
to obtain high-quality spectra. In fact, there are only
9992 M -type stars in the entire SDSS-DR15 catalog that
satisfy all our quality constraints.

Spectral
type

Fractional
Abundance (%)

Quality
Spectra (%)

O 1.35 45.9
B 3.35 37.0
A 12.1 51.7
F 23.4 68.6
G 5.35 71.3
K 18.0 43.7
M 33.5 1.20

Other 7.30 –

TABLE I: Fractional abundances and percentage of spectra of
a given type in the SDSS-DR15 catalog that met our quality
criteria. Results are based on a sample of 100,000 random
spectra.

B. Processing of the spectra

The SDSS-DR15 Sky Server provides spectra in .fits
format that were processed in two stages. The first stage
was aimed to normalize each individual spectrum. Pre-
viously, we removed spectral bins affected by sky lines or
bad data by blacking out those pixels whose errors were
set to infinity, those that had the mask bit BRIGHTSKY
activated1, as well as the ones with a negative flux, since
they have no physical meaning. Any spectrum contain-
ing more than 10% of troublesome pixels according to
these criteria was fully discarded. All the accepted spec-
tra were then normalized following the expression [4]

fnorij = fobsij ·
(∑

k

f conik

Ni

)−1

, (1)

1 According to the SDSS spectral mask criteria at http://www.

sdss.org/dr12/algorithms/bitmasks/\#SPPIXMASK.

where fobsij is the original flux of the jth pixel of spectrum
i, and f conik is the continuum flux at the unmasked kth
pixdel and Ni the total number of unmasked pixels of
this same spectrum.

The removal of problematic pixels introduces null val-
ues in the array of normalized fluxes, thus preventing
the proper performance of the PCA. To solve this prob-
lem, we employed the gap-correction formalism described
in [5] and implemented in the astroML2 module.

III. PRINCIPAL COMPONENT ANALYSIS

The Principal Component Analysis (PCA) is a well-
know feature extraction method that provides an optimal
representation of the data in terms of a few mutually-
orthogonal linear variables, called Principal Components
(PC). When applied to a set of spectra, this objective
and a priori-free technique enables to reduce the highly
multidimensional data of each spectrum — the number
p of pixels per SDSS spectrum is about 3800 — to a
low-dimensional space that discriminates most effectively
among the spectra. This is because it relies on the most
important projections along a few new orthogonal axes,
the PC or eigenvectors of the data covariance matrix (also
known in this case as eigenspectra, ES), that maximize
the variance and, hence, minimize information loss. Con-
sider a set of N p-dimensional data vectors represent-
ing individual spectra ~xi. Mathematically, the standard
PCA decomposes each spectrum as follows [6],

~xi = ~µ+

n∑
j=1

aij~vj (i = 1, . . . , N) , (2)

where ~µ is the mean spectrum of the set, and ~vj and aij
are, respectively, the first M PC and their corresponding
eigencoefficients, i.e. the projections of ~xi on ~vj .

Next, we explain the strategies adopted both to deter-
mine the minimal optimal subspace for the classification
of the spectral types and to identify the regions that these
spectra occupy in such low-dimensional space.

A. Determining the optimal subspace

To determine the optimal classification subspace of the
stellar spectra, we started with a training sample made
up of 10, 000 random spectra with S/N ≥ 20 of each
one of the types from A to M . We extracted from this
dataset a subset of 5000 spectra, 1000 per type, con-
sisting of the spectra with the highest quality. This led
us to select spectra with S/N > 50 for F -, G-, and K-
type stars and with S/N > 40 for stars of the A and

2 Machine Learning and Data Mining for Astronomy,
http://www.astroml.org
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M types (there were not enough spectra with S/N > 50
for these two types). These more stringent values of the
S/N were adopted to guarantee that the different dimen-
sions inferred from the PCA decomposition were entirely
physically motivated and not affected by noisy data. Be-
sides, the higher the S/N of the spectra the larger the
amount of variance explained by the different PC, i.e. the
more optimal the dimensionality reduction, allowing us
to obtain the smallest possible subspace (as long as we
are still dealing with a subset representative of the whole
population).

Although the amount of explained variance with three
PC already achieved what is usually considered an ideal
target for this sort of analysis (99%) we decided to work
with the subspace of the first four PC since we realized
that this extra component facilitated the differentiation
between F - and G-type stars, the two spectral types that
show the most important overlap in their PC values. The
medium spectrum and first four ES (PC) can be seen in
Fig. 1.
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FIG. 1: Medium spectrum and first four eigenspectrum in-
ferred from our highest-S/N sample.

B. Defining the classification regions

We used the whole training sample to define the regions
occupied by the different spectral types in the 4D classifi-
cation subspace just inferred. The 50, 000 spectra of that
sample were projected along the directions delineated by
the first four ES. The coefficients of these projections are
shown in Fig. 2 separately for each spectral type. We can
see that each spectral type essentially populates a differ-
ent region of the classification space, although adjacent
types tend to show a certain degree of overlap (some-
what more pronounced for the types F and G). It can
also be seen that M -type stars are the ones encompass-
ing the largest and most disperse region of the subspace.
As stated before, this is a consequence of the fact that
the bluest part of their optical spectrum is crowded with
deep absorption bands, features that are responsible for a
great deal of the fractional variance. Both circumstances
will play a significant role when evaluating the perfor-

mance of our classification method (see next Section).

FIG. 2: 4D CR for the A, F , G, K and M spectral types
defined by the PC. The first three PC are shown as a 3D
point plot, while the fourth PC is shown as a color gradient.

IV. AUTOMATED CLASSIFICATION OF
SPECTRA

We now proceed to automatically classify the spectra
of three different test samples of stars with increasing
S/N (> 20, 30 and 40, respectively) randomly chosen
from the SDSS-DR15. The classification technique re-
lies on the CR defined in the previous section via the
PCA. The tests samples contain 5,000 stars of each spec-
tral type (according to the SDSS spectral pipeline), ex-
cept in the case of M-type stars where we simply take
all the objects (always < 5, 000) that satisfy our quality
constraints.

The classification procedure is as follows. We first
project each individual test spectrum on the first four
PC that define the optimal classification subspace; this
reduces each test spectrum to a 4D vector in that sub-
space ~xi = (ai1, ai2, ai3, ai4). Next, we define a (small)
spherical 4D region of radius R surrounding the ~xi and
use the relative abundances of points in the training sam-
ple that fall within this sphere to determine the most
probable spectral type of the test point. The proba-
bility that a test spectrum is of a certain type k, with
k = A,F,G,K, andM , is given by Pk = Wk/Wtot, where
Wk is the weighted number of reference spectra of type
k in the region around the evaluation point and Wtot

is the weighted total number of such spectra in that re-
gion. This non-parametric way of estimating probabili-
ties around a n-dimensional point using the spatial dis-
tribution of a finite set of datapoints of reference in a sur-
rounding region is based on the concept of kernel density
estimation.

Treball de Fi de Grau 3 Barcelona, June 2020



AUTOMATED CLASSIFICATION OF STELLAR SPECTRA Cristina Jiménez Palau

A. Top-Hat versus Gaussian kernels

Mathematically, a kernel is a positive function K(~y;R)
which is controlled by the bandwidth parameter R. The
density estimate at an arbitrary point ~xi within a group
of M points yj is given by:

Wk(~xi) =

M∑
j=1

K(~xi − ~yj ;R) i = 1, . . . , N . (3)

The bandwidth acts as a smoothing parameter, control-
ling the tradeoff between bias and variance: a large band-
width leads to a very smooth (i.e. high-bias) density es-
timation, while a small bandwidth leads to a highly non-
uniform (i.e. high-variance) density estimation.

In the present work, we compare the outcomes that
result form using the Top-Hat kernel (THK), whose form
is

K(~x;R) ∝ 1 if x < R and 0 otherwise , (4)

and the Gaussian kernel (GSK) :

K(~x;R) ∝ exp

(
− x2

2R2

)
, (5)

with x the modulus of ~x.
After exploring a broad range of bandwidth values,

we have found that the optimal value for the THK is
R = 0.5. The main limitation of this kernel is the equal
weighting it assigns to all the points inside the region
where one attempts to calculate the probabilities. This
is not optimal: the points nearest to a test point are more
likely to have a similar spectrum than the farthest ones.
An additional weakness of this kernel is the sharp reduc-
tion of its performance that we have detected for radial
distances R < 0.2, a logical consequence of the fact that
for small integration volumes the number of classification
datapoints can easily go to zero. This became specially
evident when attempting to classify stars with an M -type
spectrum, because these objects occupy a rather disperse
region in the subspace of classification. For its part, the
best bandwidth for the GSK is R = 0.25. In this case, the
integration volume is extended up to 10σ to ensure that
the calculations can be performed even for tiny values of
the bandwidth.

B. Discussion of the results

The performance of our automated classifier has been
evaluated by taking the SDSS classification as reference.
This means that we have neglected errors arising from
possible misclassifications made by the SDSS pipeline.

To determine the goodness of the classification we
have considered three different types of results: ’right’,
‘wrong’, and ‘unclassified’. A classified spectrum is la-
beled as ‘right’ if our method returns for that spectrum
a Pk > 0.5 that it has a spectral type k consistent with
that of the SDSS. Conversely, if we obtain a Pk > 0.5

but for a spectral type k that does not match the SDSS
classification, we flag the spectrum as ‘wrong’. Finally,
if none of the inferred Pk values reach the fifty percent
mark or if there are no classification spectra surrounding
the spectrum, we consider it as ‘unclassified’. The num-
bers of stars that fall into each category for the three test
datasets are presented in Table II segregated by SDSS
spectral type. We have included two parameters that
provide a better indication of the performance of our pro-
cedure. On one hand, we have the reliability, defined as
R = N∗

k/Nk, which comparesNk, the number of the spec-
tra classified as of type k, with N∗

k , the amount of them
that are well classified. On the other hand, we have the
completeness, defined as C = N∗

k/Nk0, which provides
the fraction of spectra of type k in the sample that have
been correctly classified. Although the differences are
small, we find that for both kernels the completeness im-
proves as the quality of the test samples increases, with
a slight advantage, as expected, for the GSK. However,
the reliability presents a more erratic behavior and does
not seem much affected either by the S/N of the sam-
ple or the type of kernel employed. This means that an
increase in the number of classified spectra does not nec-
essarily lead to an improvement in the goodness of the
classification.

The analysis of the results in terms of the spectral
types shows that the reliability surpasses 0.9 for all types
but G, whereas the completeness is very high (always
>∼ 0.95) for the A, G, and K types, quite good for M -
type stars, especially with the GSK, and somewhat less
satisfactory (C <∼ 0.8) for stars of the F type. The rea-
son for this reduced performance seems to be the signif-
icant overlap shown by the F and G CR (see Fig. 2),
which results in a significant fraction of F -type stars be-
ing erroneously identified as type G objects, giving rise
to the low reliability inferred for this last spectral type.
For their part, M -type stars have the largest and most
dispersed classification region, which explains the supe-
rior performance of the GSK for all subsets regarding the
completeness. Besides, they also exhibit the highest re-
liability due to the fact that they occupy a region in the
classification space that is well separated from the oth-
ers, preventing non-M -type stars from being classified
into such category.

V. CONCLUSIONS

We have analyzed the performance of a PCA-based
automated method for the classification of stellar spec-
tra with good signal-to-noise ratio into the principal MK
system types. We used as a benchmark for this task
the dataset of optical spectra of Milky Way stars clas-
sified through the SDSS-DR15 spectral pipeline. After
a preliminary evaluation of the abundances and general
quality of the SDSS spectra that have led us to remove
the O and B types from the present study, we imple-
mented for the rest of the MK system a classification
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S/N Type Right Wrong Unclassified Reliability Completeness Right Wrong Unclassified Reliability Completeness

Top-Hat Kernel Gaussian Kernel
> 20 A 4697 110 193 0.993 0.939 4862 130 8 0.919 0.972

F 3825 1073 102 0.918 0.765 3827 1163 10 0.925 0.765
G 4768 153 79 0.800 0.954 4816 181 3 0.880 0.963
K 4672 85 243 0.982 0.934 4889 96 15 0.979 0.978
M 4317 8 675 0.999 0.863 4830 26 144 0.999 0.966

> 30 A 4784 75 141 0.920 0.957 4904 90 6 0.920 0.981
F 3854 1087 59 0.933 0.771 3846 1146 8 0.925 0.769
G 4825 117 58 0.892 0.965 4862 137 1 0.885 0.972
K 4869 84 47 0.982 0.974 4912 86 2 0.975 0.982
M 2094 2 238 1.000 0.897 2281 9 54 0.999 0.977

> 40 A 4856 42 102 0.946 0.971 4950 47 3 0.946 0.990
F 3933 1031 36 0.939 0.787 3937 1054 9 0.943 0.787
G 4819 143 38 0.880 0.964 4873 126 1 0.879 0.975
K 4908 71 21 0.979 0.982 4933 67 0 0.979 0.987
M 903 0 89 1.000 0.910 976 1 24 0.999 0.975

TABLE II: Results, segregated per MK spectral type, of our PCA-based spectral classification method using Top-Hat (left)
and Gaussian (right) kernels for subsets of test spectra with S/N > 20, 30, and 40 (see the text for more details).

procedure that is based on the use of the PCA. We have
found that it is possible to account for 99% of the to-
tal variance arising from good-quality A, F , G, K, and
M stellar spectra with only three principal components.
Nevertheless, we decided to increase the number of PC
to four as we have found that this extra component helps
to discriminate between the F and G types (see below),
raising the explained variance to 99.3%. The projections
of the highest-quality spectra on this 4D space have been
used to determine the CR that are associated with the
different spectral types.

To evaluate the efficiency of our automated classifier,
we have performed a statistical study using a series of
test samples containing spectra with different thresh-
olds of S/N . Specifically, we defined three samples with
∼ 25, 000 spectra each and S/N > 20, 30, and 40, re-
spectively. Next, we have determined the most probable
spectral type of each test spectrum from the relative den-
sities of reference spectra of different type that surround
its projection on the 4D classification space of PC defined
previously. Two kernels have been used for density esti-
mation: a basic Top-Hat Kernel and a Gaussian kernel.
The quality of the results for the different levels of S/N
and the different spectral types has been quantified by
means of two statistical parameters, completeness and re-
liability, which we have calculated taking the SDSS spec-
tral types as reference. Our findings indicate that both
kernels produce similarly good results when implemented

with their optimal bandwidths, though, as expected, the
Gaussian density estimator performs somewhat better.
For the two kernels the completeness of the outcomes in-
creases as the S/N of the test samples increases, but the
reliability does not seem to depend much on the quality of
the sample or the kernel type. This leads us to conclude
that an increase in the number of classified spectra does
not necessarily lead to an improvement in the goodness
of the classification. As regards to the spectral types, we
generally obtain values of both completeness and relia-
bility well above 90%. The exception are F -type stars
whose completeness is always less than 0.8. We attribute
this lower performance to the significant overlap shown
by the F and G CR, which results in a large fraction
of F -type stars being erroneously classified as type G,
which in turn reduces the reliability for this last spectral
type.

Further work should be done by testing our method-
ology on other catalogs of optical spectra to confirm the
consistency of our results.

Acknowledgments

I would like to thank J.M. Solanes and J.L. Tous for the
excellent guidance and support during this exceptional
pandemic situation. Special thanks to A. Romero for
constructive criticism and help on plotting issues and his
unconditional support.

[1] Morgan W.W.; Keenan P.C.; Kellman E. 1943, An Atlas of
Stellar Spectra, with an Outline of Spectral Classification,
University of Chicago Press, Chicago

[2] Bailer-Jones Coryn, A.L.; Irwin, M.; von Hippel, T. 1998,
MNRAS, 298, 361

[3] Sánchez Almeida, J.; Allende Prieto, C. 2013, AJ, 763, 50
[4] Tous, J.L.; Solanes, J.M.; Perea, J.D. 2020, MNRAS, in

press, arXiv:2005.09016
[5] Yip, C.W., et al. 2004, AJ, 128, 585
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