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DISCOver: DIStributional approach based
on syntactic dependencies for discovering
COnstructions

Abstract: One of the goals in Cognitive Linguistics is the automatic identi-
fication and analysis of constructions, since they are fundamental linguistic
units for understanding language. This article presents DISCOver, an unsuper-
vised methodology for the automatic discovery of lexico-syntactic patterns that
can be considered as candidates for constructions. This methodology follows
a distributional semantic approach. Concretely, it is based on our proposed
pattern-construction hypothesis: those contexts that are relevant to the definition
of a cluster of semantically related words tend to be (part of) lexico-syntactic
constructions. Our proposal uses Distributional Semantic Models (DSM) for
modeling the context taking into account syntactic dependencies. After a clus-
tering process, we linked all those clusters with strong relationships and we use
them as a source of information for deriving lexico-syntactic patterns, obtaining
a total number of 220,732 candidates from a 100 million token corpus of Spanish.
We evaluated the patterns obtained intrinsically, applying statistical association
measures and they were also evaluated qualitativaly by experts. Our results were
superior to the baseline in both quality and quantity in all cases. While our
experiments have been carried out using a Spanish corpus, this methodology is
language independent and only requires a large corpus annotated with the parts
of speech and dependencies to be applied.

Keywords: Constructions, Semantics, Distributional Semantic Models

1 Introduction
In cognitive models of language [Croft and Cruse, 2004], a construction is a
conventional symbolic unit that involves a pairing of form and meaning that
occurs with a certain frequency. Constructions can be of different types depending
on their complexity –morphemes, words, compound words, collocates, idioms and
more schematic patterns [Goldberg, 1995, 2006]. Cognitive Linguistics assumes
the hypothesis that these constructions are learned from usage and stored in
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the human memory [Tomasello, 2000], where they are accessed during both
the production and comprehension of language. Therefore, constructions are
fundamental linguistic units for inferring the structure of language and their
identification is crucial for understanding language.

Although a broad range of these linguistic structures have been subjected to
linguistic analysis [Nunberg et al., 1994, Wray and Perkins, 2000, Fillmore et al.,
2012], we assume that there exist a huge number of constructions that are as
yet undiscovered. There are very different approaches to the task of identifying
and discovering them, depending on the type of construction we are looking for
or dealing with. This fact allows for the use of a wide range of methods and
approaches aiming at the treatment of this kind of linguistic units. We distinguish
between two different approaches, those that have been guided by previously
gathered empirical data1, and those approaches that apply methods oriented to
discovering new constructions from scratch (see Section 2).

Following the latter approach, this article presents DISCOver, an unsuper-
vised methodology for the automatic identification and extraction of lexico-
syntactic patterns that are candidates for consideration as constructions (see
Section 3). It is based on the Harris distributional hypothesis [Harris, 1954] 2,
which states that semantically related words (or other linguistic units) will share
the same context.3 We propose the pattern-construction hypothesis, which states
that those contexts that are relevant to the definition of a cluster of semanti-
cally related words tend to be (part of) lexico-syntactic constructions. What is
new in our hypothesis is that we consider all the contexts that are relevant to
define a cluster of semantically related words to be part of a construction. In
these approaches, Distributional Space Models (DSMs) are used to represent the
semantics of words on the basis of the contexts they share. This is in line with
the idea proposed by Landauer et al. [2007], who states that DSMs are plausible
models of some aspects of human cognition [Baroni and Lenci, 2010].

In our methodology, the DSM consists of a frequency lemma-context matrix,
in which the context is modeled taking into account syntactic dependency
relations. Then, we build up clusters of semantically related words that share
the same context and link them using the information present in their contexts.

1 See Goldberg [1995].
2 This idea was also developed by Firth [1957] and Wittgenstein [1953].
3 Related hypotheses, such as the extended distributional hypotheses, which states that
“patterns that co-occur with similar pairs tend to have similar meanings” [Lin and Pantel,
2001], and latent relation hypotheses [Turney, 2008], which states that “pairs of words
that co-occur in similar patterns tend to have similar relations” survived in Turney and
Pantel [2010] have also influenced this work.
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We automatically calculate a threshold in order to determine which clusters are
more strongly related. We filter out those related clusters that do not reach the
determined threshold and derive lexico-syntactic patterns that are candidates to
be considered as constructions. These candidates are tuples involving two lexical
items (lemmas) related both by a dependency direction and a dependency label
(examples in (1))4:

1. a. accidente_n [>:mod:mortal_a]; accident_n[>:mod:mortal_a]
b. aterrizar_v [>:dobj:avioneta_n]; to_land[>:dobj:small_plane_a]

The tuples correspond to different kinds of linguistic constructions, ranging
from collocates (1a) to (parts of) verbal argument structures (1b). All the lexico-
syntactic patterns obtained are instances of one of the syntactic dependencies
present in the source corpus. We applied this methodology to the Diana-Araknion
corpus, obtaining 220,732 patterns that are good candidates to be constructions5.

Finally, we evaluated the quality of these patterns in two ways: applying
statistical association measures and by manual revision by human experts. The
results show significant improvement with respect to several baselines (see Sec-
tion 4).

Although this method has been applied to the obtention of Spanish construc-
tions, it is language independent and only requires a large corpus annotated with
part-of-speech (POS) and syntactic dependencies.

The article is structured as follows. After presenting the related work in
Section 2, the methodology applied for obtaining the constructions is described
in Section 3. The evaluation of our methodology is presented in Section 4 and,
finally, the conclusions and future work are drawn in Section 5.

2 Related Work
The boundaries of what a construction is are fuzzy: constructions can be lexical,
syntactic, lexico-syntactic, morphological and can combine different levels of
abstraction from concrete forms to abstract categories, including the possibility

4 The symbols ‘<’ and ‘>’ indicate the dependency direction and mod, subj and dobj are
dependency labels (where mod stands for modifier, and subj and dobj stand for subject
and direct object respectively).
5 All patterns obtained will be made available online.
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of using variables, so they cover a wide range of linguistic constructs. For more
examples, see Goldberg [2013].

As a consequence, there is no one accepted typology of this kind of linguistic
units [Wray and Perkins, 2000]. There is, therefore, a broad field of research in
which to explore the characteristics, the limits and the properties of construc-
tions. In this context, an important task is to acquire the maximum amount of
empirically grounded data concerning this kind of units. Thus, when approaching
the task of attempting to identify the possible constructions that constitute the
core of languages, it is difficult to decide what to look at or where to start [Sag
et al., 2002]. For this reason, constructions are a challenge for Linguistics and
Natural Language Processing (NLP), where we find statistical and symbolic
approaches to deal with them.

Several linguistic traditions converge when we are trying to define the diverse
form that a construction can take. From one side, there is an (almost total)
overlapping between constructions and argument structure [Goldberg, 1995]
and diatheses alternations [Levin, 1993]; from another side, in the lexicographic
tradition, constructions also overlap with idioms and collocates. In the field of
Computational Linguistics, these linguistic units tend to be grouped under the
umbrella term MultiWord Expressions (MWE). Baldwin and Kim [2010] define
MWE as those lexical items that are decomposable into multiple lexemes and
present idiomatic behaviour at some level of linguistic analysis, as a consequence
they should be considered as a unit at some level of computational processing.
Also in the Computational Linguistics field, Stefanowitsch and Gries [2003]
propose the term “collostruction” to refer to the wide range of complex linguistic
units as defined in theoretical proposals of Cognitive Grammar. In our approach
we consider as constructions those syntactic units consisting of two or more lexical
items with internal semantic coherence. These constructions are compositional
and appear with a frequency higher than expected.

From the NLP perspective, most approaches for dealing with constructions
tend to apply methods that use previously defined empirical knowledge to find
instances and variants of specific types of constructions in corpora. This approach
allows us to obtain preidentified units and their variations at different degrees
of complexity, but does not allow for the identification of as yet unidentified
constructions. In order to discover new knowledge, we need an open and flex-
ible method that give us usable and interpretable results. We organised this
overview taking into consideration those approaches that try to find or discover
constructions.

A frequent approach to gathering empirical data about constructions using
NLP techniques is to look for well-known, highly conventionalized and previously
defined constructions (see the works of Hwang et al. [2010], Muischnek and
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Sajkan [2009], Kesselmeier et al. [2009], O’Donnell and Ellis [2010], Duffield et al.
[2010]).

Very tied to Construction Grammar theory and in the framework of the
methodologies based on statistical metrics, it is worth noting the works of
Stefanowitsch and Gries [2003], Stefanowitsch and Gries [2008], and Gries et al.
[2005]. Their research always focuses on specific types of constructions, on the
analysis of their variants and on the degree of entrenchment between their
elements. Gries and Ellis [2015] summarize different statistical measures applied
to the analysis of constructions and evaluate their linguistic interpretation and
impact.

From the perspective of methods oriented to the discovery of new construc-
tions, we should distinguish between those approaches that include some kind of
linguistic filtering of the type of constructions to be dealt with and those that
do not apply any kind of restriction. All these methods are strongly grounded
on statistical measures: in Evert [2008] and Pecina [2010] there is an exhaus-
tive summary and criticism of statistical measures that calculate the degree of
association between words.6

Looking for ways to identify potential collocations in corpora using statistical
measures, Bartsch [2004] explores certain types of collocations involving verbs of
verbal communication. Her approach is semiautomatic and involves a manual
revision of the results. We also highlight the work of Pecina [2010], based on fully
statistical methods. However, supervised machine learning requires annotated
data, which creates a bottleneck in the absence of large corpora annotated for
collocation extraction. A solution to this problem is presented by Dubremetz
and Nivre [2014] who propose the use of the MWEtoolkit [Ramisch et al., 2010]
to automatically extract candidates that fit a certain POS pattern. See also the
work of Forsberg et al. [2014], Farahmand and Martins [2014], Tutubalina [2015].

From a different perspective, based on the calculation of n-grams, we also
consider the results of the StringNet project [Wible and Tsao, 2010], a knowledge
base (KB) which contains candidates to be constructions. In this case, no filters
are applied to the lexico-syntactic patterns obtained. As a result, StringNet
is a lexicogrammatical KB automatically extracted from the British National
Corpus (BNC)7 consisting of a massive archive of hybrid n-grams of co-occurring
combinations of POS tags, lexemes and specific word forms.

6 The works referred to this section use the term collocate in a very weak sense, roughly
equivalent to what is known as MWE in NLP.
7 www.natcorp.ox.ac.uk
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We also want to highlight the approaches that use syntactic information
for obtaining constructions, such as the work of Zuidema [2006], Sangati and
van Cranenburgh [2015], based on the framework of Tree Substitution Grammar
(TSG).

Harris distributional hypothesis has a great acceptance in the treatment of
linguistic semantics to overcome traditional symbolic representations. Relying
on this hypothesis, Gamallo et al. [2005] developed an unsupervised strategy
to acquire syntactico-semantic restrictions for nouns, verbs and adjectives from
partially parsed corpora. Although the resulting data could be used for deriving
lexico-syntactic patterns their objective was to capture semantic generalizations,
both for the predicates and their arguments.

Currently, there is an increasing interest in the use of distributional models
for representing semantics, such as DSMs [Turney and Pantel, 2010, Baroni,
2013] or word embeddings [Mikolov et al., 2013]. These models derive word-
representations in an unsupervised way from very large corpora. All of them rely
on co-ocurrence patterns but differ in the way they reduce dimensionality. As
pointed out in Murphy et al. [2012], the representations they derive from corpora
are lacking in cognitive plausibility, with exceptions such as those defined in
Baroni et al. [2010]. Our proposal shares with these authors the same semantic
approach (distributional hypothesis), because we consider that these models are
a good option in which to frame our methodology. In concrete, we used DSMs
because they are highly linguistically interpretable and allow us to modelize the
context, a key point in our methodology.

DSMs have been applied successfully in linguistic research [Shutova et al.,
2010], in different NLP tasks and applications [Baroni and Lenci, 2010] and,
especially, in tasks related with measuring different kinds of semantic similarity
between words [Turney and Pantel, 2010]. Like us, Shutova et al. [2017] use
distributional clustering techniques, though they use DSMs to investigate how to
find metaphorical expressions. Recently, DSMs have been extended to phrases and
sentences by means of composition operations deriving meaning representations
for phrases and sentences from their parts (see Baroni [2013] and Mitchell
and Lapata [2010] for an overview). Nevertheless, DSMs have rarely focused
on the discovery of constructions. In this line, it is worth noting the papers
presented in the shared task of the Workshop on Distributional Semantics and
Compositionality [Biemann and Giesbrecht, 2011]. This workshop focused on
the extraction of non-compositional phrases from large corpora by applying
distributional models that assign a graded compositional score to a phrase. This
score denotes the extent to which compositionality holds for a given expression.
The participants applied a variety of approaches that can be classified into
lexical association measures and Word Space Models. It is also worth noting
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that approaches based on Word Space Models performed slightly better than
methods relying solely on statistical association measures.

In the next section, we describe in depth the DISCOver methodology that
we developed to discover lexico-syntactic constructions.

3 Methodology for discovering constructions
Following a distributional semantic approach, we developed an unsupervised
bottom-up method for obtaining the lexico-syntactic patterns that can be consid-
ered candidates for constructions. This method uses a medium-sized corpus (100
million tokens) to obtain the distributional properties of words and to stablish
similarity relations among them from their contexts. The representation of the
contexts is based on syntactic dependencies.

Figure 1 depicts the five main steps involved in obtaining the lexico-syntactic
patterns. Briefly, the first step is the linguistic processing of the Diana-Araknion
corpus (See Section 3.2). In the next step, a DSM matrix is constructed with
the frequencies of the lemmas in each one of the contexts (see Section 3.3).
Step 3 focuses on clustering semantically related lemmas, that is, those lemmas
that share a set of contexts (see Section 3.4). In the fourth step, we applied a
generalization process by linking all clusters taking into account the information
contained in the contexts and then filtering only those links that mantain the
strongest relationships (See Section 3.5). Finally, we generate the lexico-syntactic
patterns to be considered as candidates to be constructions from the related
clusters selected in the previous step (See Section 3.6).

Diana
Araknion
Corpus

1. Linguistic
Processing

Diana
Araknion
+ POS + Synt

2. Context
Extraction DSM

matrix

3. Clustering

Clusters of
words sharing
contexts

4. 
Generalization

Linked
clusters

5. Pattern
generation

Patterns

Fig. 1: Main steps in DISCOver methodology
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3.1 Description of the task

Our methodology is based on the pattern-construction hypothesis, which states
that those contexts that are relevant to the definition of a cluster of semanti-
cally related words tend to be (part of) lexico-syntactic constructions. In our
experiments, “lexico-syntactic constructions” are patterns in the form of [lemma,
dependency_direction (dep_dir), dependency_label (dep_lab), context_lemma]
(for instance, [despeinar_v, >: dobj, cabellera_n]8). Dependency_label is a
type of syntactic relation between lemma and context_lemma, while depen-
dency_direction is the direction of the dependency_label. To be considered
candidates to be constructions patterns must have the following properties:

– Syntactic-semantic coherence: We expect the two lemmas in each pattern
candidate to be syntactically and semantically related.

– Generalizability: The patterns can be generalized and/or derived from other
patterns through generalization.

Based on these properties of constructions and the initial pattern-construction
hypothesis, the main aims of the DISCOver methodology are the following:

1. To identify the contexts that are relevant for the definition of a cluster
of semantically related words. Each of these contexts is part of a pattern
candidate to be construction attested in the corpus (henceforth Attested-
Patterns).

2. To use the previous contexts in a generalization process in order to identify
unseen, but possible candidates to be constructions (henceforth Unattested-
Patterns).

As a result we obtain two sets of qualitatively different patterns that are
candidates to be constructions: attested and unattested patterns. We then proceed
to evaluate the internal syntactic-semantic coherence of these patterns.

3.2 The Corpus

As shown in Figure 1, corpus creation is the first step in the process of obtaining
lexico-syntactic patterns. Specifically, we built the Diana-Araknion9 corpus, a

8 [to_tussle_v, >: dobj, one’s_hair_n]
9 The Diana-Araknion corpus will be made freely available online.
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Spanish corpus which consists of approximately 100 million tokens10 (correspond-
ing to 3 million sentences) gathered mainly from the Spanish Wikipedia (2009),
literary works and texts from Spanish parliamentary discussions, news reports,
news agency documents, and Spanish Royal Family speeches.

The corpus was automatically tokenized and linguistically processed with
POS and lemma tagging, and syntactic dependency parsing. We used the Spanish
analyzers available in the Freeling11 open source language-processing library
[Padró and Stanilovsky, 2012].

For the purpose of evaluation, we built Diana-Araknion++, a new corpus
gathered from web-pages in Spanish. It includes Wikipedia 2015, articles from
online newspapers, speeches from the European Parliament, university articles
and sites from the Spanish webspace. This corpus was automatically tokenized
and POS tagged and consists of 600M tokens.

3.3 Matrix

To generate the frequency matrix (see Step 2 in Figure 1), we used only the 15,000
most frequent lemmas extracted from the Diana-Araknion corpus including nouns
(N ), verbs (V ), adjectives (A) and adverbs (R). We modeled the context in which
the words occur giving rise to a lemma-dep matrix. This matrix corresponds
to the type of word-context matrix defined in Turney and Pantel [2010] and in
Baroni and Lenci [2010]. In the lemma-dep matrix, the context is based on parsed
texts in which both dependency directions and dependency labels are taken into
account. Each context is a triple of [dependency_direction, dependency_label,
context_lemma_POS ].

In what follows, we introduce how this lemma-context matrix is formally
represented (see Section 3.3.1) and then we describe the matrix in more detail
(see Section 3.3.2).

3.3.1 Formalization of the lemma-context matrix

Our DSM consists of a lemma-context PPMI matrix 𝑋 with 𝑛𝑟 rows and 𝑛𝑐

columns. Note that each row vector 𝑖 corresponds to a lemma, each column 𝑗 cor-
responds to a co-occurrence context, and each cell in 𝑋 has a numerical weighted
value, 𝑥𝑖𝑗 . This weighted value is the result of applying Positive Pointwise Mutual

10 Concretely, the Diana-Araknion has 93,987,098 tokens and 1,321,174 types.
11 http://nlp.lsi.upc.edu/freeling.
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Information (PPMI) [Niwa and Nitta, 1994] to a lemma-context frequency matrix
𝐹 with size 𝑛𝑟 × 𝑛𝑐. Each element in this matrix, 𝑓𝑖𝑗 , is computed as the number
of occurrences of lemma 𝑖 in context 𝑗 in the whole corpus. Lapesa and Evert
[2014] perform a large-scale evaluation of different co-occurrence DSM models
over various tasks. They show that term weighting through association scores
significantly improves the performance of the DSM model.

3.3.2 Lemma-dep matrix

The matrix proposed in this work is a lemma-context matrix, hereafter lemma-dep
matrix, based on syntactic dependencies12. In this matrix, the context 𝑗 of a
lemma 𝑖 is a context word 𝑘 (context_lemma) directly related by a dependency
direction (dep_dir) and a dependency label (dep_lab) to the lemma 𝑖. The words
of the lemma 𝑖 belong to the following POS: N, V, A and R. Each lemma is
assigned its corresponding POS. Therefore, in the matrix, context 𝑗 contains
three elements as defined in 1:

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = [𝑑𝑒𝑝_𝑑𝑖𝑟 : 𝑑𝑒𝑝_𝑙𝑎𝑏 : 𝑐𝑜𝑛𝑡𝑒𝑥𝑡_𝑙𝑒𝑚𝑚𝑎] (1)

where:

– 𝑑𝑒𝑝_𝑑𝑖𝑟: has two possible values ‘<’ or ‘>’, indicating the direction of the
dependency.

– 𝑑𝑒𝑝_𝑙𝑎𝑏: indicates the dependency label of the lemma 𝑖 and context_lemma
𝑘. The possible values are {subj, dobj, iobj, creg, cpred, atr, cc, cag, spec, sp
and mod}. In the case of dependencies between a preposition and a noun,
adjective or verb, the dependency label is labeled by the same preposition
and its corresponding 𝑑𝑒𝑝_𝑙𝑎𝑏, that is, dobj, iobj, creg, cag, sp or/and cc.

– 𝑐𝑜𝑛𝑡𝑒𝑥𝑡_𝑙𝑒𝑚𝑚𝑎 is the lemma of the context word 𝑘 with its corresponding
POS, which can be N, V, A, R, preposition(P), number(Z) and date(W). In
the case of proper nouns, they are replaced by the pn_n (proper noun) POS.
Figure 2 shows an example of a dependency parsed sentence from which, for

instance, three different contexts of the noun lemma barba_n 13 are generated:

12 We used the Spanish syntactico-semantic analyzer Treeler to analyse the Diana-
Araknion corpus: http://devel.cpl.upc.edu/treeler .
13 ’beard’
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lemma: afeitar
POS: V

lemma: barbero
POS: N

lemma: barba
POS: N

lemma: el
POS: Spec

lemma: el
POS: Spec

lemma: largo
POS: A

lemma: de
POS: P

lemma: jaime
POS: PN

subj dobj

spec
spec mod mod

prep

Fig. 2: Dependency parsed sentence: El barbero afeita la larga barba de Jaime (‘The barber
shaves off James’s long beard’)

[<:dobj:afeitar_v], [>:mod:largo_a] and [>:de_sp:pn_n]14. These contexts are
represented in the lemma-dep matrix.

In [<:dobj:afeitar_v], ‘<’ indicates that the verb afeitar_v 15 maintains a
parent dependency relation with barba_n, dobj indicates that barba_n is the
direct object of afeitar_v, and afeitar_v is the context word (lemma 𝑘) related
to barba_n (lemma 𝑖). In [>:mod:largo], mod indicates that the adjective largo_a
16 is a modifier of barba_n, and in [>:de_sp:pn_n] the proper noun (Jaime in
Figure 2) is replaced by the pn_n POS tag17.

For each context obtained from the dependency structure, three different
dependency contexts are generated: one that makes all the elements of the
context explicit, that is, the dep_dir, dep_lab and context_lemma (for exam-
ple, [<:dobj:afeitar_v]); another in which the dep_lab is generalized by the

14 This context is the result of substituting the proper name “Jaime” by “pn_n”.
15 ’to shave off’
16 ’long’
17 Since the POS tagger does not distinguish between subclasses of proper names (person,
organization, place, etc.), the grouping of all with the pn_n tag gives better results. We
used proper nouns in the context_lemma configuration, but not as words in the lemma i.
Similarly, stopwords are not included in lemma i.



12

variable ‘oth’ (for example, [<:oth:afeitar_v])18 and, finally, one context that
generalizes the context_lemma by substituting it for the variable ‘*’ (for example,
[<:dobj:*_v])19. The three lemmas represented in example (2) do not share any
context, therefore they could not be semantically related in our model. Instead,
applying the generalization of contexts, we obtained a relationship between
lemma1 and lemma2 in example (3), and between lemma1 and lemma3 in exam-
ple (4). In example (3), the dep_lab is generalized, whereas in example (4) the
context_lemma is generalized.

2. lemma1 [<: 𝑠𝑢𝑏𝑗 : 𝑟𝑜𝑏𝑎𝑟_𝑣20]
lemma2 [<: 𝑑𝑜𝑏𝑗 : 𝑟𝑜𝑏𝑎𝑟_𝑣]
lemma3 [<: 𝑠𝑢𝑏𝑗 : ℎ𝑢𝑟𝑡𝑎𝑟_𝑣21]

3. lemma1 [<: 𝑜𝑡ℎ : 𝑟𝑜𝑏𝑎𝑟_𝑣]
lemma2 [<: 𝑜𝑡ℎ : 𝑟𝑜𝑏𝑎𝑟_𝑣]
lemma3 [<: 𝑜𝑡ℎ : ℎ𝑢𝑟𝑡𝑎𝑟_𝑣]

4. lemma1 [<: 𝑠𝑢𝑏𝑗 : *_𝑣]
lemma2 [<: 𝑑𝑜𝑏𝑗 : *_𝑣]
lemma3 [<: 𝑠𝑢𝑏𝑗 : *_𝑣]

In this way, the generalization of contexts allows us to take into account
contexts that are similar (they share two, but not all of the elements, of their
context), but not identical. Therefore, we can distinguish between those lemmas
that share the same or similar context, and those that have a completly different
context. By adding these contexts that are similar but not identical we add
new knowledge, that is, knowledge not directly present in the corpus. This new
knowledge is used to generate the Unattested-Patterns.

3.4 Clustering

Once we described the 𝑋 matrix, we proceeded to the third step detailed in
Figure 1 that is devoted to the clustering of this matrix. The motivation of

18 The tag ‘oth’ (other) means that the dependency label is not specified.
19 The symbol ‘*_v’ means that a verb occurs in this position, but we do not specify
which one it is.
20 ‘to_rob’
21 ‘to_steal’
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the clustering process is to find, for each lemma in the matrix, all semantically
related words (lemmas). This will allow us to create new Unattested-Patterns
after the linking and filtering cluster processes. To perform this clustering step,
we used the Cluto toolkit [Karypis, 2003]22, which is used to cluster a collection
of objects (in our case, lemmas) into a predetermined number of clusters labeled
𝑘. We applied a methodology based on Caliński and Harabasz [1974] and using
cosine similarity and Cluto’s ℋ2 metric to estimate the optimal amount of
clusters.

We experimented with a number of different clustering configurations. The
variables we took into account were: a) the number of most frequent lemmas,
with the 10,000 to 15,000 most frequent lemmas giving the best results; b) the
inclusion of proper nouns or their substitution for their POS; and c) considering
the lemmas with and without their POS.

We evaluated the results of these configurations manually and opted for
15,000 lemmas with proper nouns grouped according to their POS tag (pn_n)
and with the POS tag assigned to the lemmas. This configuration gave an optimal
𝑘 of 1,500 clusters applying the Caliński and Harabasz [1974] method and the
ℋ2 metric.

The inclusion of POS improves the internal consistency of the clusters.
Since the POS tagger does not distinguish between subclasses of proper names
(person, organization, place, etc.), grouping them according to the pn_n tag also
gives better results. Regarding the number of lemmas, all results obtained using
between 10,000 and 15,000 lemmas gave satisfactory results. The choice of the
number of lemmas determines the number and the content of the clusters. In all
cases, the quality of clusters obtained was acceptable. We consider a cluster as
acceptable when all or almost all words contained in it share one of the following
relations: synonymy, hypernymy, or hyponymy. This would allow for the use of
one or more configurations for the obtention of the final lexico-syntactic patterns
(see Section 3.6).

Using Cluto with the selected configuration, we obtained a set of clusters
𝐶 = {𝑐𝑖 : 1 ≤ 𝑖 ≤ 𝑘} from matrix 𝑋. Formally, the content of each cluster 𝑐𝑖 ∈ 𝐶

is defined in 2, where 𝑙𝑒 is a set of related lemmas and 𝑐𝑡𝑥 is a set of contexts.
Each lemma_pos only belongs to one cluster (i.e., it can only be defined in
one 𝑙𝑒), whereas a context_lemma can be in several contexts (𝑐𝑡𝑥) of different
clusters.

22 We use vcluster program provided in the toolkit, which computes the clustering
using one of five different approaches. Four of these approaches are partitional, whereas
the fifth approach is agglomerative.
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𝑐𝑖 =< 𝑙𝑒, 𝑐𝑡𝑥 > (2)

Formally, a context (called 𝑐𝑜𝑛𝑡𝑒𝑥𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟) in 𝑐𝑡𝑥 is described as follows:

𝑐𝑜𝑛𝑡𝑒𝑥𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 =< [𝑑𝑒𝑝_𝑑𝑖𝑟 : 𝑑𝑒𝑝_𝑙𝑎𝑏 : 𝑐𝑜𝑛𝑡𝑒𝑥𝑡_𝑙𝑒𝑚𝑚𝑎], 𝑠𝑐𝑜𝑟𝑒 > (3)

where 𝑑𝑒𝑝_𝑑𝑖𝑟, 𝑑𝑒𝑝_𝑙𝑎𝑏, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡_𝑙𝑒𝑚𝑚𝑎 corresponds to the definition of a con-
text as shown in Section 3.3.2. The 𝑠𝑐𝑜𝑟𝑒 is the sum of the different scores given
by Cluto23.

For example, Table 124 describes the lemmas, 𝑙𝑒, and the most scored
contexts, 𝑐𝑡𝑥, in cluster number 421_n (one of the clusters obtained in the corpus
analyzed).

Tab. 1: Example of a real cluster (421_n) in the Diana-Araknion corpus in Spanish

Cluster: 421_n
Lemmas
(𝑐421_𝑙𝑒)

barba_n, bigote_n, cabellera_n, cabello_n, ceja_n, crin_n, melena_n,
mostacho_n, patilla_n, pelaje_n, pelo_n, perilla_n, vello_n
[< : dobj : erizar_v],11 [< : oth : erizar_v],11 [< : oth : rizar_v],10
[< : subj : erizar_v],10 [> : mod : espeso_a],9 [> : oth : espeso_a],9
[> : mod : negro_a],7 [< : oth : negro_a],5 [> : mod : gris_a],8
[< : dobj : rizar_v],8 [> : oth : gris_a],7 [< : oth : pelo_n],6

Contexts [> : mod : rubio_a],7 [> : mod : barba_n],7 [< : oth : atusar_v],7
(𝑐421_𝑐𝑡𝑥) [> : mod : largo_a],4 [> : oth : rubio_a],6 [< : mod : pelo_n],2

[> : mod : rojizo_a],4 [> : oth : rojizo_a],6 [> : oth : largo_a],3
[< : oth : bigote_n],3 [> : mod : blanco_a],3 [> : mod : cano_a],5
[> : mod : hirsuto_a],5 [> : oth : hirsuto_a],2 [> : oth : largo_a],3
[> : oth : negro_a],2 [> : mod : rojizo_a],2

23 The sum of the twenty-five most descriptive and discriminative scores given automati-
cally by Cluto.
24 Examples, tables, translations to English as well as clusters will be made available
online.
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3.4.1 Results of the clustering process

Following our configuration, we obtained a total of 1,500 clusters in the cluster-
ing process (𝑘=1500). It is worth noting that the clusters are highly morpho-
syntactically and semantically cohesive.

The clusters contain lemmas belonging mostly to the same POS. It is worth
mentioning that more than half of the clusters are nouns (54.20%), followed by
verbs (25.80%) and adjectives (16.67%). Clusters of adverbs make up only 3.33%
of the total.

Clusters contain relevant implicit information, in the sense that their lemmas
belong to well-defined semantic categories, often at a very fine-grained level. For
instance, we obtained clusters of adjectives with a Positive Polarity (5) and with
a Negative Polarity (6)24. These results encourage us to tag all the clusters with
one or more semantic labels. That will enrich the obtained patterns.

5. {𝑐111, Positive_Polarity adjectives: admirable_a, asombroso_a, genial_a...}25

6. {𝑐38, Negative_Polarity adjectives: atroz_a, aterrador_a, espantoso_a...}
26

3.5 Linking and filtering clusters

The process of linking clusters (see Step 4 in Figure 1) is based on the set of
clusters and contexts obtained using Cluto. The processes of linking clusters
and pattern generation detailed in Section 3.6 are the core steps of the DISCOver
methodology. The process of linking clusters uses the set of the twenty-five highest
scored contexts in each cluster. According to our pattern-construction hypothesis
(see Section 3.1), the goal of the linking of clusters is to establish the relationships
between clusters using their contexts, as defined in (3), obtaining as a result a
matrix of all possible contextual relations between clusters (see Section 3.5.1).
Next, we apply a filtering process in order to select strongly related links taking
into account different criteria (see Section 3.5.2).

25 ’admirable, amazing, great’
26 ’atrocious, scary, frightening’
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3.5.1 Linking clusters and building the matrix of related clusters

Basically, the aim of the cluster linking process is to establish the relationships
between clusters and to store them in a matrix, 𝑅_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠, with 𝑘 rows and
𝑘 columns. The 𝑘-value corresponds to the number of clusters obtained in the
clustering step.

For building the matrix, for each origin cluster (𝑥) each 𝑑𝑒𝑝_𝑑𝑖𝑟 and
𝑑𝑒𝑝_𝑙𝑎𝑏 of the 𝑐𝑜𝑛𝑡𝑒𝑥𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (defined in Equation 3) are converted into
a 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙_𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 (see Equation 4), while the 𝑐𝑜𝑛𝑡𝑒𝑥𝑡_𝑙𝑒𝑚𝑚𝑎 of the
𝑐𝑜𝑛𝑡𝑒𝑥𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 is used to locate the cluster (𝑦) in which it occurs. We obtain
as a result a matrix, 𝑅_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠, in which clusters are related according to a set
of contextual relations stored in a 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑒𝑡. The sum of the scores of the
𝑐𝑜𝑛𝑡𝑒𝑥𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 in 3 are added together in a matrix, 𝑅_𝑠𝑐𝑜𝑟𝑒𝑠. The 𝑅_𝑠𝑐𝑜𝑟𝑒𝑠

matrix is later used in the process for determining filtering thresholds.

𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙_𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =< 𝑑𝑒𝑝_𝑑𝑖𝑟, 𝑑𝑒𝑝_𝑙𝑎𝑏 > (4)

For the contextual relation, defined in 4, 𝑑𝑒𝑝_𝑑𝑖𝑟 and 𝑑𝑒𝑝_𝑙𝑎𝑏 are the
dependency direction and the dependency label defined in a context of cluster 𝑖

related to cluster 𝑗. Note that the 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑒𝑡 of a cluster in itself is empty as
𝑅_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠[𝑖][𝑖] = ∅ and 𝑅_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠[𝑖][𝑗] ̸= 𝑅_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠[𝑗][𝑖].

Following the example of cluster 421_n, described in Table 1, the result of
the cluster linking process for this particular cluster (𝑖 = 421_𝑛) is shown in
Table 227. The first column in this table shows the related clusters, 𝑗, the second
column shows the relation_type that relates cluster 421_n to the related clusters
𝑗 (i.e. strong, semi or weak, See 3.5.2), and finally the last column describes
the lemmas in the related clusters.

3.5.2 Filtering related clusters

In the 𝑅_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 matrix, not all contextual relationships between clusters are
accepted since they have a low 𝑅_𝑠𝑐𝑜𝑟𝑒𝑠. For this reason, we established two
criteria to automatically determine which relationships will be maintained and
which ones are filtered out in the pattern generation process. For each criterion
only those relations higher than a predetermined score value will be considered.
The criteria are the following:

27 For the sake of simplicity, the contexts are not included in the Table 2 and we only
show a relation of each type.
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Tab. 2: Some examples of cluster linking process in cluster 𝑖=421_n (described in Table 1).

Related Relation_ Lemmas
clusters(𝑗) type (𝑐𝑗.𝑙𝑒, where 𝑐𝑗 refers to the related cluster, 𝑗)
1223_a strong azabache_a, bermejo_a, cano_a, canoso_a, hirsuto_a, la-

cio_a, lustroso_a, ondulante_a, sedoso_a...
932_v Semi afeitar_v, atusar_v, cepillar_v, empolvar_v, enguantar_v,

peinar_v, rasurar_v...
405_n weak contario_n, final_n, largo_n, menudo_n...

– Criterion 1: For each pair of clusters 𝑖 and 𝑗, we take into account those re-
lations that in each of their directions (i.e., 𝑅_𝑠𝑐𝑜𝑟𝑒𝑠[𝑖][𝑗] or 𝑅_𝑠𝑐𝑜𝑟𝑒𝑠[𝑗][𝑖])
have a score above a minimum predetermined value, that is, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1. This
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 is automatically determined by finding a score value that allows
for the grouping of 30% of the clusters. The relations that fulfill criterion 1
are called Strong relations.

– Criterion 2: For each pair of clusters 𝑖 and 𝑗, we take into account those
relations in which the sum of scores in both directions (i.e., 𝑅_𝑠𝑐𝑜𝑟𝑒𝑠[𝑖][𝑗] +
𝑅_𝑠𝑐𝑜𝑟𝑒𝑠[𝑗][𝑖]) is higher than a predetermined value, that is, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2,
which is determined by finding a value that allows for the grouping of 50%
of the clusters. The relations that fulfill criterion 2 are called Semi relations.

Considering the example of cluster 421_n, the result of the filtering process is
that, out of the three clusters linked to cluster 421_n in our example24 (1223_a,
932_v, and 405_n), we will only select those with strong and semi relations,
that is, 1223_a, and 932_v. Those labelled as weak (e.g., 405_n shown in
Table 2) are filtered out because they do not reach the established thresholds.

3.6 Pattern generation

Once the process for automatically linking and filtering clusters was carried
out, we proceeded to generate the lexico-syntactic patterns to be considered as
candidates for constructions (see Step 5 in Figure 1). Each generated pattern is
defined as follows:

𝑝𝑎𝑡𝑡𝑒𝑟𝑛 =< 𝑙𝑒𝑚𝑚𝑎𝑖, 𝑑𝑒𝑝_𝑑𝑖𝑟, 𝑑𝑒𝑝_𝑙𝑎𝑏, 𝑙𝑒𝑚𝑚𝑎𝑗 > (5)
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where 𝑙𝑒𝑚𝑚𝑎𝑖 and 𝑙𝑒𝑚𝑚𝑎𝑗 are the lemmas contained in the related clusters (𝑖
and 𝑗), 𝑑𝑒𝑝_𝑑𝑖𝑟 and 𝑑𝑒𝑝_𝑙𝑎𝑏 are the dependency direction and the dependency
label between the related clusters. So, there is a pattern for each 𝑙𝑒𝑚𝑚𝑎𝑖 and
𝑙𝑒𝑚𝑚𝑎𝑗 pair.

As we mentioned in Section 3.4, all possible configurations using between
10,000 and 15,000 lemmas gave acceptable related clusters. In order to increase
the number of patterns generated we carried out the same process with a
configuration using 10,000 lemmas. We combined the patterns obtained using the
10,000 and 15,000 lemmas together and removed those that were shared by both
configurations. In Tables 3, 4 and 5, we show the number of resulting clusters
and patterns, after removing the overlapping patterns, for the two configurations.

Tab. 3: Distribution of the number of related and unrelated clusters and their percentage

10,000 lemmas 15,000 lemmas
Relation Clusters (%) Clusters (%)
Strong 441 (31.50%) 461 (30.73%)
Semi 339 (24.21%) 396 (26.40%)
Total 780 (55.71%) 857 (57.13%)

Weak 589 (42.07%) 636 (42.40%)
Unrelated 31 (2.21%) 7 (0.47%)

As shown in Table 3 (second and third columns), more than 55% of the
linked clusters maintain Strong and Semi relationships, whereas only the 2.68%
of the clusters remain unrelated. Table 4 (second and third columns) shows the
distribution of linked clusters by POS in both configurations.

Tab. 4: Distribution of the number of related clusters and their percentage by POS

10,000 lemmas 15,000 lemmas
POS Clusters (%) Clusters (%)
N 415 (53.21%) 464 (54.14%)
V 197 (25.26%) 182 (12.24%)
A 142 (18.21%) 173 (20.19%)
R 26 (3.30%) 38 (4.43%)

Total 780 (100%) 857 (100%)



DISCOver: Distributional approach for discovering constructions 19

The total number of lexico-syntactic patterns obtained from the two configu-
rations of clusters (780 and 857 Strong and Semi related clusters) is 237,444.
For the purpose of pattern generation, Strong and Semi clusters have been
treated equally. From these patterns, we removed 16,712 patterns, those that
were present in both sets of generated patterns, given as a result the total number
of 220,732 patterns (See Table 5).

Tab. 5: Distribution of the generated patterns

Lemmas Attested-Patterns Unattested-Patterns Total
10,000 23,980 48,147 72,127
15,000 37,840 127,477 165,317

10,000 + 15,000 61,820 175,624 237,444
Overlapping 8,531 8,181 16,712
Sum (no overlap) 53,289 167,443 220,732

The DISCOver methodology allows for the generation of patterns that
actually occur in the corpus (Attested-Patterns), but also of lexico-syntactic
patterns that are not present in the corpus but which are highly plausible in
Spanish (Unattested-Patterns), since the components of the clusters are closely
semantically related. As a result, we are able to enlarge the descriptive power
of the source corpus. Among the patterns we generated, 61,820 were Attested-
Patterns, that is, patterns that are present in the source corpus, and 175,624
were Unattested-Patterns, that is, new patterns (see Table 5).

Retaking the example of cluster 421_n and its related clusters we obtain
patterns such as those shown in (7)28:

7. <bigote𝑐_421 <:dobj: cepillar𝑐_932_𝑣>

<melena𝑐_421 <:dobj: alisar𝑐_1267_𝑣>

<pelaje𝑐_421 >:mod: sedoso𝑐_1223_𝑎>

<perilla𝑐_421 >:mod: gris𝑐_149_𝑎>

All of these patterns are Unattested-Patterns, that is, they do not occur in
the Diana-Araknion corpus but are generated applying our methodology and are

28 <moustache𝑐_421 <:dobj: to_brush𝑐_932_𝑣>; <mane𝑐_421 <:dobj:
to_smooth𝑐_1267_𝑣>; <fur𝑐_421 >:mod: silky𝑐_1223_𝑎>; <goetee𝑐_421 >:mod:
grey𝑐_149_𝑎>
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perfectly acceptable in Spanish. These patterns would not have been extracted
using, for example, a n-gram based method or plain statistical methods.

It is worth noting the high degree of semantic cohesion between the lemmas
of the same cluster and between the lemmas of the related clusters ((8)29, (9)30,
(10)31 and (11)32).

8. <accidente 𝑐_470 <:dobj causar𝑐_560>

<fuego 𝑐_470 <:dobj evitar𝑐_560>

<siniestro 𝑐_470 <:dobj producir𝑐_560>

9. <accidente 𝑐_470 <:subj desencadenar𝑐_560>

<destrozo 𝑐_470 <:subj producir𝑐_560>

<incendio 𝑐_470 <:subj originar𝑐_560>

10. <canciller 𝑐_70 >:mod argentino𝑐_1>

<embajador 𝑐_70 >:mod belga𝑐_1>

<mandatario 𝑐_70 >:mod chileno𝑐_1>

11. <cantante 𝑐_155 >:mod belga𝑐_1>

<compositor 𝑐_155 >:mod canadiense𝑐_1>

<pianista 𝑐_155 >:mod estadounidense𝑐_1>

This strong cohesion allows for a semantic annotation of the clusters to
obtain more abstract syntactico-semantic constructions that combine semantic
categories (12) and (13). The semantic labels associated with each cluster have
been manually added, taking into account the WordNet upper ontologies.

12. <Event-n𝑐_470 <:dobj Causative-v 𝑐_560>

<Event-n 𝑐_470 <:subj Causative-v 𝑐_560>

13. <Person/Politician-n 𝑐_70 >:mod Nationality-a 𝑐_1>

<Person/Musician-n 𝑐_155 >:mod Nationality-a 𝑐_1>

In the end, we could obtain a hierarchy of candidates to be considered
as different types of constructions, ranging from the most abstract syntactico-
semantic constructions combining different semantic classes (12-13) to the most

29 <accident𝑐_470 <:dobj to_cause𝑐_560>; <fire𝑐_470 <:dobj to_avoid𝑐_560>;
<sinister𝑐_470 <:dobj to_produce𝑐_560>.
30 <accident𝑐_470 <:subj to_trigger𝑐_560>, <ravage𝑐_470 <:subj to_produce𝑐_560>.
31 <chancellor𝑐_70 >:mod argentinian𝑐_1>; <ambassador𝑐_70 >:mod belgian𝑐_1>;
<representative𝑐_70 >:mod chilian𝑐_1>

32 <singer 𝑐_155 >:mod belgian𝑐_1>; <song-writer𝑐_155 >:mod canadian𝑐_1>;
<pianist𝑐_155 >:mod american𝑐_1>
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concrete lexico-syntactic constructions (i.e., lemma combinations) (8-11), which
are instances of the abstract constructions.

4 Evaluation
In this section we evaluate the quality of the results obtained through the
DISCOver methodology: the clusters obtained (see Section 4.1) and the lexico-
syntactic patterns (see Section 4.2).

4.1 Clustering evaluation

DISCOver is a methodology for discovering lexico-syntactic patterns.The clusters
of semantically related words are a by-product that we obtain as part of the
process. Since the focus of this work is the methodology used and the patterns
obtained, the evaluation of all possible representation and clustering algorithms
is outside the scope of this article. Nevertheless, we prepared a cluster evaluation
experiment in order to justify our choice and show that the quality of the obtained
vectors and clusters is at least comparable with other state-of-the-art methods.
As a baseline, we use standard Word2Vec [Mikolov et al., 2013], representations
with the recommended built-in k-means clustering algorithm. We evaluate the
resulting clusters with respect to two criteria: a) the POS purity of each cluster,
calculated automatically; and b) the semantic coherence of the lemmas in each
cluster, evaluated manually by experts. The criteria applied had been to check if
the words in a cluster hold one of the following semantic relations: synonymy,
hypernymy or hyponymy.

CLUTO obtained much higher results in terms of both evaluation criteria.
The POS coherence of the obtained clusters was 98%, compared to 70% obtained
by Word2Vec. Manual evaluation shows that 99% of the clusters obtained by
CLUTO were more semantically coherent than the corresponding ones obtained by
Word2Vec. These results justify the representations and parameters as adequate
for the task and as comparable with the state of the art. Kovatchev et al. [2016]
present a more in-depth comparison of the clustering algorithms using corpora
of different sizes.
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4.2 Pattern evaluation

Obtaining high quality lexico-syntactic patterns is the main objective of the
DISCOver methodology. In this section, we present two different evaluations of the
obtained patterns: (1) an automatic evaluation, applying statistical association
measures; and (2) a manual evaluation by expert linguists33. For these evaluations,
we used the sum of the patterns of both the 15,000 and 10,000 word configurations.

First, we evaluated the patterns automatically using statistical association
measures and a different, much larger, corpus (Diana-Araknion++). In Section 3.1,
we define two main properties of constructions: 1) Syntactic-semantic coherence
and 2) Generalizability. “Syntactic-semantic coherence” entails that the words in
each pattern need to be syntactically and semantically related. The “syntactic
coherence” of the patterns is not evaluated explicitly, as it is considered to be
a by-product of the methodology: all linked clusters from which the patterns
are derived have a plausible syntactic relationship and a high connectivity score
(see Section 3.5.1). However, we need to evaluate the semantic coherence of
the patterns, that is, whether there is a semantic relation between the two
lemmas. Defining and evaluating “semantic relatedness” is a non-trivial task,
which often requires the use of external resources, such as WordNet [Miller, 1995]
and BabelNet [Navigli and Ponzetto, 2012]. However, these resources are built
considering the paradigmatic relationship between words (such as synonymy,
hypernymy, and hyponymy), while we are interested in evaluating syntagmatic
relationships.

Evert [2008] and Pecina [2010] discuss the use of association measures for
identifying collocations. They define collocations as “the empirical concept of
recurrent and predictable word combinations, which are a directly observable
property of natural language”. In the context of distributional semantics, this
definition corresponds to “semantic coherence”.

In the DISCOver process, we obtained two qualitatively different types of
candidates-to-be-constructions: Attested-Patterns, which are observed in the
corpus and Unattested-Patterns, which are obtained as a result of a generalization
process that includes clustering, linking and filtering. In order to evaluate the
quality of these candidates-to-be-constructions, we formulate two hypotheses
and disprove their corresponding null hypotheses.

– Hypothesis 1: The two lemmas in each construction are semantically
related.

33 An extrinsic evaluation has also been carried out in a text classification task (See
Section 5).
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Null hypothesis 1 (henceforth 𝐻01): The degree of statistical association
between the two lemmas in each of the Attested-Patterns, measured in a
corpus other than the one they were extracted from, is equal to statistical
chance.

– Hypothesis 2: Constructions can be generalized and/or derived from other
constructions through generalization. Unattested-Patterns (derived through
a generalization process) should be possible language expressions and have
the property of semantic coherence.

Null hypothesis 2.1 (henceforth 𝐻02.1): Unattested-Patterns are not possi-
ble language expressions. They cannot appear in a corpus.

Null hypothesis 2.2 (henceforth 𝐻02.2): If Unattested-Patterns appear in a
corpus, they will not have the property of semantic coherence. That is, they
will have association scores equal to statistical chance.

In order to prove the two main hypotheses we needed to disprove the three
null hypotheses.

For a baseline of 𝐻01, we extracted a list of all bigrams (BI-Patterns) from
the original Diana-Araknion corpus. Each bigram contains at least one of the
15,000 most frequent words. We removed all bigrams containing non-content
words. All of the Attested-Patterns and the BI-Patterns were found and extracted
from the Diana-Araknion 100M token corpus.

For a baseline of 𝐻02.1, we generated patterns by combining frequent lemmas
(FL-Patterns): FL-Patterns-15 contain all combinations of the most frequent
15,000 lemmas found in the Diana-Arakion corpus; FL-Patterns-30 contain all
combinations in which one lemma is among the 15,000 most frequent lemmas
and the other among the 30,000 most frequent ones; FL-Patterns-all contain
all word combinations which contain at least one of the 15,000 most frequent
lemmas34.

We use two different statistical methods [Evert, 2008]: simple Mutual Infor-
mation (MI), which is an effect size measure, and the Z-score (Z-sc), which is
an evidence-based measure. Effect-size measures and evidence-based measures
are qualitatively different, and for evaluation can be used complementarily. Our
final experimental setup includes the following:

34 The total number of lemmas used in the FL-Patterns (all) is 422,000.
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– Attested-Patterns, in five different test groups, based on their observed
frequency in the Diana-Araknion corpus:

– Att-Patterns-all with an original frequency of 1 or more
– Att-Patterns-2 with an original frequency of 2 or more
– Att-Patterns-3 with an original frequency of 3 or more
– Att-Patterns-4 with an original frequency of 4 or more
– Att-Patterns-5 with an original frequency of 5 or more

– BI-Patterns, with an original frequency of 5 or more35

– Unattested-Patterns
– FL-Patterns-15, FL-Patterns-30, FL-Patterns-all

Evaluating 𝐻01:
We calculated the MI and Z-sc association scores of the two words in each

of the Attested-Patterns and BI-Patterns in the Diana-Araknion++ 600M token
corpus. The association score was calculated based on the sentential co-occurrence
of the two words. Patterns that co-occurred less than 5 times obtained a score
of 0. First, we compared the obtained association with standard thresholds,
representing statistical chance: 0, 0.5, and 1 for MI; 0, 1.96, and 3.29 for Z-sc.
Second, we compared the average association score of the Attested Patterns with
those of the BI-Patterns.

Table 6 shows what percentage of the Attested-Patterns in each group obtains
scores higher than statistical chance. Overall, the majority of the Attested-
Patterns outperform the statistical chance baseline. The results are consistent for
both the measures and their thresholds, even though they measure the association
in a qualitatively different manner. It is important to note that filtering out the
Attested-Patterns with a frequency of 1 significantly improves the results. We
believe this factor should be taken into consideration in future experiments.

Tab. 6: Association score of Attested-Patterns compared with statistical chance

MI Z-sc
Patterns >0 >0.5 >1 >0 >1.96 >3.29
Att-Patterns-5 85% 83% 80% 85% 83% 82%
Att-Patterns-4 84% 82% 79% 84% 82% 80%
Att-Patterns-3 82% 80% 77% 82% 80% 78%
Att-Patterns-2 78% 76% 72% 78% 76% 73%
Att-Patterns-all 68% 66% 62% 68% 65% 62%

35 5,285 of the BI-patterns coincide with Attested-Patterns.
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As a complementary evaluation, we directly compared the association scores
of the Attested-Patterns with those of the BI-Patterns. Table 7 shows the average
association scores for the two types of patterns36. The Attested-Patterns have a
much higher degree of association than the BI-Patterns. In the case of MI, the
Attested-Patterns obtain scores more than two times higher than the BI-Patterns.
In the case of Z-sc, the Attested-Patterns obtain scores between 30% and 100%
higher than the BI-Patterns.

Tab. 7: Average association score of Attested-Patterns and BI-patterns

Patterns Average MI Average Z-sc
Attested-Patterns-5 3.90 52
Attested-Patterns-4 3.86 49
Attested-Patterns-3 3.80 46
Attested-Patterns-2 3.70 42
Attested-Patterns-all 3.50 35

BI-Patterns 1.72 27

The obtained results disprove 𝐻01 and confirm Hypothesis 1. That is, we
can conclude that the Attested-Patterns are semantically coherent.

Evaluating 𝐻02.1:
We checked how many of the Unattested-Patterns were present in Diana-

Araknion++. As a baseline we used the FL-Patterns. Both Unattested-Patterns
and FL-Patterns are not directly obtained, but are rather a result of generalization
and generation using different methodologies. For each group, we calculated the
percentage of the patterns that appear once and the percentage of the patterns
that appear at least five times. Table 8 shows the results obtained.

Unattested-Patterns appear much more frequently than the patterns gener-
ated by simply combining frequent lemmas. 56% of the Unattested-Patterns were
observed in Diana-Araknion++. This is more than double the observance rate of
the FL-Patterns-15 and five times higher than for FL-Patterns-30. 24% of the
Unattested-Patterns appear in Diana-Araknion++ with a frequency of 5 or more.
This is almost three times higher than FL-Patterns-15 and six times higher than
FL-Patterns-30. The results of FL-Patterns-all are much lower, showing that
unfiltered pattern generation is not effective. Unattested-Patterns are linguistic
patterns given that they appear in a corpus with a much higher probability than

36 The average is calculated as a simple average of all patterns of the corresponding type.
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Tab. 8: Occurrence of Unttested-Patterns and FL-Patterns

Patterns Occurred Once Occurred Five Times
Unattested-Patterns 54% 24%

FL-Patterns-15 24% 9%
FL-Patterns-30 11% 4%
FL-Patterns-all 4% 0.6%

patterns generated using a simpler frequency based methodology. These results
disprove 𝐻02.1.

Evaluating 𝐻02.2:
We calculated the association score (MI and Z-sc) between the lemmas

in each of the Unattested-Patterns that occurred at least 5 times37 in Diana-
Araknion++. We compared the scores with the same thresholds we used when
evaluating 𝐻01. Table 9 shows the percentage of patterns with a score higher
than the statistical chance thresholds.

Tab. 9: Association scores of Unttested-Patterns

MI Z-sc
Patterns >0 >0.5 >1 >0 >1.96 >3.29
Unattested-Patterns 93% 86% 76% 93% 80% 70%

The observed degree of association is very high. Over 90% of the observed
Unattested-Patterns obtained a positive association score with respect to both
measures. When comparing them with the statistical chance thresholds, the
obtained results are similar to those obtained by Attested-Patterns in 𝐻01.
The Unattested-Patterns, when observed in a different corpus, are semantically
coherent. This disproves 𝐻02.2.

In conclusion, the automated statistical evaluation of the patterns obtained
by DISCOver shows that: (1) Attested-Patterns are semantically coherent, as they
outperform two baselines: statistical chance thresholds and BI-Patterns. These re-
sults disprove 𝐻01.; (2) A significant percentage (56%) of the Unattested-Patterns
can be found in Diana-Araknion++, which is much higher than the occurrence

37 Calculating this score for patterns with lower frequency is unreliable due to the
low-frequency bias in some of the measures.
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of FL-Patterns. These results disprove 𝐻02.1; (3) Whenever Unattested-Patterns
occur in Diana-Araknion++, the statistical association between the lemmas in
the patterns is much higher than the statistical chance baseline. This disproves
𝐻02.2.

As we have disproved all 3 of the null hypotheses, we can conclude that
the patterns obtained by the DISCOver methodology have both properties of
constructions: syntactic and semantic coherence and generalizability. Therefore
they are good candidates-to-be-constructions.

We also performed a manual evaluation of the lexico-syntactic patterns. This
complementary validation reinforces the results obtained in the two statistical
evaluations. We prepared a dataset of 600 patterns for the manual evaluation: 300
patterns obtained by applying the DISCOver methodology (the patterns were
randomly selected from all Attested and Unattested Patterns) and 300 of the
FL-Patterns-15. Three experts were asked to classify each pattern as a correct or
incorrect construction. The instructions given to them were: a) evaluate whether
the pattern is a possible Spanish pattern in your judgement as a native speaker;
b) in case of doubt, consult the Google Search engine to check whether it is used
by users. Our research questions in this evaluation were: 1) How do the experts
evaluate the patterns obtained by DISCOver?; 2) Are experts more likely to
accept patterns obtained by DISCOver than random patterns of frequent words?

The average percentage of agreement between the three annotators was
81.67% (see Table 10), which is considered high for a semantic evaluation task.
The corresponding Fleiss Kappa score is 0.602 with expected agreement of 0.539,
which is statistically significant.

Tab. 10: Interannotator agreement test

Annotators (A) %Agreement
A1 and A2 85%
A1 and A3 80.17%
A2 and A3 79.83%

A1, A2 and A3 81.67%

The results of the evaluation are shown in Table 11. We use three pattern
quality categories. “Strict Positive” includes patterns that were annotated as
positive by all three annotators, “Positive” includes patterns that were annotated
as positive by at least two annotators and “Negative” groups together patterns
that were annotated as positive by one or none of the annotators. The experts
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accepted the majority of the DISCOver patterns as constructions. At the same
time they rejected the majority of the FL-Patterns. We also want to highlight
that the percentage of “Strict Positive" patterns is very similar to the percentage
of patterns that obtain a high association score. These findings confirm the
results that we obtained in the automatic evaluation (See Tables 6 and 9).

Tab. 11: Expert evaluation

DISCOver FL-Patterns
Strict Positive 84% 14%
Positive 93% 38%
Negative 7% 62%

5 Conclusions and Future Work
This article describes DISCOver, an unsupervised methodology for automatically
identifying lexico-syntactic patterns to be considered as constructions. We based
this methodology on the pattern-construction hypothesis, which states that the
linguistic contexts that are relevant for defining a cluster of semantically related
words tend to be (part of) a lexico-syntactic construction.

Following this assumption, we developed a bottom-up language independent
methodology to discover lexico-syntactic patterns in corpora. The DSM developed
allows us to model the contexts of words (lemmas) taking into account their
dependency directions and dependency labels. We applied a clustering process
to the resulting matrix to obtain clusters of semantically related lemmas. Then
we linked all the clusters that were strongly semantically related and we used
them as a source of information for deriving lexico-syntactic patterns, obtaining
a total number of 220,732 candidates to be constructions. We evaluated the
DISCOver methodology by applying different evaluations. First, the patterns were
automatically evaluated using statistical association measures and a different,
much larger, corpus. We evaluated whether the patterns we generated obtained a
significantly higher association score than statistical chance. We also compared the
asociation scores of the DISCOver patterns with a baseline of bigrams. DISCOver
obtained better results with respect to both baselines. The patterns obtained
by generalization were additionaly evaluated against a baseline of randomly
generated patterns. DISCOver significantly outperforms these baselines. Second,
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the patterns were manually evaluated by expert linguists obtaining good results
(89.33%).

This methodology only requires having at one’s disposal a medium-sized
corpus automatically annotated with POS tags and syntactic dependencies.
Therefore, our methodology can be easily replicated with other corpora and
other languages. For instance, the DISCOver patterns were also used in a text
classification task [Franco-Salvador et al., 2015]. The patterns obtained using
our methodology have been compared to other representations (i.e., tf-idf, tf-idf
n-grams, and enriched graph). The use of these patterns results in an accuracy
of 91.69%, which outperfoms the representations based on tf-idf (25.26%), tf-idf
n-grams (79.26%) and an enriched graph (43.98%), proving to be the best option
to represent the content of the corpus.

Furthermore, our methodology increases the descriptive power of the source
corpus. First, the lexico-syntactic patterns generated constitute a structured and
formalized semantic representation of the corpus. Second, the linking process
enlarges the content of the initial data with new relationships not directly present
in the corpus (i.e., a total of 167,443 Unattested-Patterns).

The Diana-Araknion-KB38 can be used as a source of information to derive
relevant linguistic information, such as the selection restrictions of verbs, nouns
and adjectives; to disambiguate syntactic analysis in order to discard candidate
parse trees; to provide a knowledge base of related words with a high degree of
association measures for psycholinguistic research; and, to allow for a fine-grained
corpus comparision.

The methodology presented and the results obtained, which are available in
the Diana-Araknion-KB, open several lines of future research.

First, the Diana-Araknion-KB can be used as a source of information for
the development of patterns at different levels of abstraction, in such a way
as to obtain a hierarchy of patterns with components belonging to different
levels of linguistic knowledge, that is, combining lexical, morpho-syntactic and
semantic information. Second, since the same semantic category can be shared
by more than one cluster, we could group them into metaclusters containing all
the clusters with the same semantic category. Third, a further cluster linking
process could be carried out allowing all members of a metacluster to combine
with all the target clusters that are related with at least one of the members of
the metacluster. Fourth, constructions could be linked in terms of transitivity to
obtain larger structures. That is, if cluster A combines with cluster B, and B
combines with cluster C, we have the candidate construction: A+B+C. Fifth,

38 Available online.
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the methodology can be used to extract and study patterns in corpora from a
specific area, such as the Biomedical domain.

To sum up, we consider that this methodology for discovering constructions
outperforms the results of other proposals in the sense that it is fully automatic,
language independent, and easily replicable in other corpora and languages. The
quality of the results obtained and their wide range of possible applications
confirm the DISCOver methodology as a promising line of research and DSMs
as a good choice for discovering linguistic knowledge.
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