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Abstract: The goal of this paper is to study, on an invented quantum game, the relevance that
betting different amounts has on the outcome of the game. Two different scenarios are laid out to
find the best strategy for each player: when both players know everyting, and when one of them
has lack of information. Finally, the same game is thought from the viewpoint of a gambling house,
where this game is presented in front of a crowd of players, who may or may not be professionals.

I. INTRODUCTION

Game theory has been studied by many scientists dur-
ing the last century. It is common to describe and under-
stand complex concepts of this field using simple games.
In many articles, such as [2] and [3], some traditional
well-known games have been studied, like the prisoner’s
dilemma among others.

Based on the work of John von Neumann, the mathe-
matician David A. Meyer wrote paper [1], where a vari-
ation of the traditional penny flipover game was intro-
duced, involving a “quantum penny”.

The traditional penny flipover game consists on a
penny placed head up and then three consecutive turns
(player 1, then player 2, then player 1) flipping the penny
over or not, without being able to see what the other
player has done before. At the end of the game, player
1 wins if and only if the penny is still head up. Doing
an easy probabilistic calculation, it can be seen that the
probability that player 1 wins is exactly 1/2.

Founded on the well-known television series Star Trek,
Meyer posed a game between Q (a player with quantum
strategies) and Captain Picard (P, a player with tradi-
tional classic moves). In this paper, Meyer showed that
Q (player 1), playing an appropriate quantum strategy,
is always able to increase his expected payoff, in relation
to the case that both players can only play classically.

Afterwards, other scientists wrote different variations
on Meyer’s paper. For instance, whereas in [1] both play-
ers act on a single coin, in [2] the game consists on a pair
of entangled coins so that there is a single state space for
the pair of coins. However, in spite of all the variations
where the advantage of the quantum player was demon-
strated, the obligation to pay more in order to be able to
make a better (quantum) movement has not been stud-
ied enough, and it is not clear if, in that case, the game
is still favourable for the quantum player.

Inspired by the work of Meyer, it is known that if Q
knows everything about the game, then Q can always
win. For this reason, the goal of this paper is to design
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a game such that trying not to get a clear victory for Q
is possible, and it will be done keeping the relevance of
betting in mind.

II. QUANTUM GAME

An orthonormal basis B = {|1〉, |2〉} can be defined,
where |1〉 and |2〉 represents the winning state of player 1
(who is a quantum player) and player 2 (who is a classic
player), respectively. So any state can be represented as

|ψ〉 =

2∑
i=1

ai|i〉, (1)

such that |a1|2 + |a2|2 = 1.

The two-player game presented consists in an alter-
nate sequence of turns in which it is compulsory to put
a certain amount of money on the table, which allows
the player to do a specific movement over the penny.
Starting with the penny in a quantum superposition fair
(equiprobable) state

|ψ〉0 =
1√
2

(|1〉+ |2〉), (2)

in the first turn, player 1, after putting PQ (quantum
payment) on the table, is allowed to change the state of
the penny with a matrix rotation R(θ) such that

R(θ) =

(
cos θ sin θ
sin θ − cos θ

)
, θ ∈ [−π, π]. (3)

This matrix can represent any rotation on the xy-plane in
an anticlockwise way and satisfies that R2(θ) = I (where
I represents the identity matrix), so R−1(θ) = R(θ).
The way to flip a quantum penny classically is applying
the matrix Pauli σx over the state, which coincides with
σx = R(θ = π/2).

To further understand the theory, an aside can be made
at this point to prove easily what Meyer postulated in [1].
The game starts with the penny placed completely head
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up, that is in the winning state of player 1, so |ψ′〉0 = |1〉.
Then, three consecutive movements have to be applied
over the state |ψ′〉0 in order to play the game. These
movements can either be R(θ2) ◦ I ◦ R(θ1) if player 2
does not flip over the penny, or R(θ2) ◦ σx ◦ R(θ1) if
player 2 does so. Meyer showed that Q (player 1) can
always win. That is because, in the first case, Q can
choose θ2 = θ1, since R(θ1) ◦ I ◦ R(θ1) = I ∀θ1; and
in the second case, Q can choose θ2 = π/2 − θ1, which
satisfies that R(π/2−θ1)◦σx ◦R(θ1) = R(θ = 0), which,
in turn, fulfills that R(θ = 0)|ψ′〉0 = |ψ′〉0. Thus, if Q
does not know the action taken by the second player, Q
can easily secure his victory playing with some θ1 such
that π/2− θ1 = θ1, that is θ1 = π/4. This means that Q
will play both turns with the matrix R(θ = π/4), which
is also called as the Hadamard matrix. Hence, it has just
been showed that whether or not player 2 flips the penny,
player 1 is guaranteed a win.

Continuing with the game that was being explained,
in the second turn, player 2 can either pay the classic
payment PC < PQ with probability p, in order to reverse
(flip over) classically the state of the penny (option A),
or pay PI (identity payment) with probability 1 − p, in
order to stop the game and measure the final quantum
state (option B). Finally, only in the case that player
2 has paid PC (option A), there is a third turn, where
player 1 has to pay PI mandatorily to stop the game and
measure the final state.

At the end of the game, as the penny can be in a su-
perposition of states of B, there is a measure of the final
quantum state in order to decide, according to the prob-
ability of winning of each player, who is the winner of
the game and can take all the money bet on the table.
However, as developed below, this is equivalent to think-
ing, in terms of the expected value of the earnings, that
all the money bet on the table will be shared out among
both players, proportionally to the probability of winning
of each one of the final state.

Following the rules of the game, player 1 will turn the
initial state |ψ〉0 into

|ψ〉1 = R(θ)|ψ〉0 =
1√
2

[(sin θ+cos θ)|1〉+(sin θ−cos θ)|2〉].

(4)
Afterwards, the final state can either be

|ψ〉Af = σx|ψ〉1 =
1√
2

[(sin θ− cos θ)|1〉+ (sin θ+ cos θ)|2〉]

(5)
with probability p (in option A), or |ψ〉Bf = |ψ〉1 with

probability 1− p (in option B).

The earnings Gi of player i = 1, 2 can be defined as
Gi = pGA

i + (1 − p)GB
i , where Gj

i , j = A,B, represents,
respectively, the earnings of player i in each option A
(with probability p) or B (with probability 1− p). Each

of these Gj
i is calculated as follows: Gj

i =Probj{|i〉}M j
T−

M i,j
B , where Probj{|i〉} is the modulus squared of the

coefficient ai of the final state in choice j, M j
T is all the

money put on the table at the end of option j, and M i,j
B

is only the money bet by player i in case j.
Therefore, the earnings of player 1 can be calculated

as follows:

G1 = (1− p)
[

1

2
(1 + sin(2θ))(PQ + PI)− PQ

]
+p

[
1

2
(1− sin(2θ))(PQ + PC + PI)− (PQ + PI)

]
. (6)

Just from the definitions of the earnings G1 and G2, it is
clear to see that G1 +G2 = 0.

III. OPTIMAL STRATEGIES

A. Complete information

The purpose of this section is to determine which rota-
tion player 1 has to do in order to win, that is G1 > G2

or, equivalently, G1 > 0. This inequality depends on a
value p0 defined as

p0 ≡
PQ + PI

2(PQ + PI) + PC
, (7)

such that 0 < p0 ≤ 1/2, which is a restriction over the
probability p.

(a) If p < p0, then G1 > G2 if and only if

sin(2θ) > Λ =
PQ − PI + p(2PI − PC)

PQ + PI − p[2(PQ + PI) + PC ]
. (8)

(b) If p > p0, then G1 > G2 if and only if sin(2θ) < Λ.

(c) If p = p0, then G1 < G2 always.

It can be observed that, in case (a), Λ should satisfy
Λ < 1, which is equivalent to p < p−0 < p0, where p−0 is
defined as

p−0 ≡
PI

2PI + PQ
. (9)

Similarly, in case (b), Λ should satisfy Λ > −1, which is
equivalent to p > p+0 > p0, where p+0 is defined as

p+0 ≡
PQ

PQ + PC
. (10)

Another way to determine which rotation is the best
option for player 1 is optimising G1 with respect to the

angle θ, that is
∂G1

∂θ
. It can be seen that this optimisation

also depends on the probability p of player 2 compared
to p0, so a rotation that maximises G1 independently of
the probability of player 2 does not exist in general.
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(a) If p < p0, then

Gmax
1 = G1

(
θ =

π

4
,
−3π

4

)
= PI − p(2PI + PQ). (11)

It is observed that the same restriction as before is
obtained, because Gmax

1 > 0 ⇐⇒ p < p−0 < p0.

(b) If p > p0, then

Gmax
1 = G1

(
θ =
−π
4
,

3π

4

)
= −PQ + p(PQ + PC). (12)

It can be seen that also the same restriction as be-
fore is obtained, since Gmax

1 > 0 ⇐⇒ p > p+0 > p0.

(c) If p = p0, then G1 < G2 always.

In conclusion, if everything is known, then the quan-
tum player can not always win, because he needs to know
the probability player 2 plays with, in order to choose the
suitable θ. Regarding the classic player, if he plays with
p = p0, his victory is guaranteed. So it is not a very fair
game because player 2 can always win easily, reason why
it is necessary to change a little bit the rules of the game
so it can be played appropriately.

B. Incomplete information

Currently, the following situation is set out: player 2
does not know PQ, therefore he is not able to choose
p0 because it depends on PQ, so the winning strategy
can not be chosen. However, if player 2 plays with some
p 6= p0 and player 1 discovers this probability p, then the
first player always has a possible movement θ to win, as
it has already been said when Λ was introduced the first
time in Eq. (8).

The main goal of this section is to determine which is
the optimal movement for player 2 in front of his lack
of knowledge, that is finding his minimum loss without
knowing p0.

It can be shown that

G2(p = p0) =
PQ(PQ + PI)− PCPI

2(PQ + PI) + PC
> 0. (13)

Since PQ is unknown, it is possible to think G2(p = p0)
as a function of PQ, in order to determine the minimum
value of G2(p = p0) with respect to PQ. It can be seen

that
∂G2(p = p0)

∂PQ
6= 0 ∀PQ, which means that the min-

imum is on one of the endpoints of the interval PQ ∈
(PC ,∞). However, G2(p = p0) is an increasing function
for PQ, so if G∗2 is defined as G∗2 = min

PQ

{G2(p = p0)},

then

G∗2 = G2(p = p0, PQ = PC) =
P 2
C

3PC + 2PI
, (14)

which coincides with the minimum earnings guaranteed
by player 2 with the strategy adopted. This is, in fact,
nothing more than a minimax problem: the maximum
G2(p = p0) is requested and the minimum PQ = PC is
looked for.

Therefore, after doing this reasoning, player 2 can play
with a probability

p∗0 = p0(PQ = PC) =
PC + PI

3PC + 2PI
< p0, (15)

since G2(p = p∗0) > G∗2.

Even so, due to the fact that both players are rationals
and each one is aware of the rationality of the other,
player 1 can foresee his opponent’s action and analyse
which is the best angle θ to take. Owing to the fact that
p−0 < p∗0 < p0 and according to Eq. (11), if player 2
plays with p = p∗0, then Gmax

1 < 0, which means that
player 1 has lost the game because G1 < 0, but his loss
will be the least possible one when he takes an angle
θ ∈ {π/4,−3π/4}, that is, when he is winning (or rather,
losing) Gmax

1 .

So the classic player wins again, but his victory is fairer
than the one exposed in section III A, due to the fact that
his earnings is not the highest possible one (is not the one
described by Eq. (13)), or in other words, the quantum
player’s loss is not that great.

Finally, player 2, who wants to achieve the maximum
profit and knows that player 1 is rational and will lose as
little as possible, will win

Gmax
2 (p = p∗0) = G2

(
p = p∗0, θ ∈

{
π

4
,
−3π

4

})
=
P 2
C + (PQ − PC)(PC + PI)

3PC + 2PI
. (16)

Lastly, it can be shown that 0 < G∗2 < Gmax
2 (p = p∗0) ≤

G2(p = p∗0) < G2(p = p0).

IV. MULTIPLE PLAYERS

Another way that the described quantum game can be
dealt with is thinking of it as a gambling house would
do so, that is analysing everything that can take place
and always keeping in mind that, for their benefit, the
condition 〈Gmax

1 〉p > 0 must be met. In this case, player
1 is the bank and it does not necessarily have to know
if player 2 is clever, professional and perfectly logical or
not.

Bearing in mind what has been done so far, Fig. 1
represents the current situation:
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FIG. 1: Relationship between the sign of Gmax
1 and p0, p

−
0 , p

+
0 .

The first way to think about the problem is to imag-
ine playing it in front of a crowd of amateur players.
Thinking of it as a bingo, in the sense that classic am-
ateur players will choose randomly a probability p, the
expected value of Gmax

1 can be calculated over all the
probability p ∈ [0, 1], and it results that

〈Gmax
1 〉p =

1

2

[
PQ(PC − PQ) + (PC + PI)2

2(PQ + PI) + PC

]
. (17)

Defining x and y as x =
PC

PQ
(which satisfies 0 < x < 1,

because PC < PQ is the only assumption made) and

y =
PI

PQ
(0 ≤ y is the only condition that can be said),

the previous expected value can be rewritten as

〈Gmax
1 〉p =

1

2
PQ

[
x2 + x− 1 + y2 + 2yx

2(1 + y) + x

]
. (18)

With these definitions, p0 can also be rewritten as

p0 =
1 + y

2(1 + y) + x
. (19)

It is observed that for 0 < x < 1 and defining x0 =√
5− 1

2
= Φ− 1, the following conditions are satisfied:

(i) x2 + x− 1 < 0 ⇐⇒ 0 < x < x0.

(ii) x2 + x− 1 > 0 ⇐⇒ x0 < x < 1.

In order to determine when 〈Gmax
1 〉p > 0, it is neces-

sary to differentiate cases of x =
PC

PQ
as a function of

x0.

(a) If x is supposed to satisfy x0 < x < 1, then

〈Gmax
1 〉p >

1

2
PQ

y2 + 2yx

2(1 + y) + x
≥ 0. (20)

Thus, in this case, 〈Gmax
1 〉p > 0 always.

(b) If x is supposed to satisfy 0 < x < x0, then

〈Gmax
1 〉p ≥ 0 ⇐⇒ y2 + 2xy + (x2 + x− 1) ≥ 0, (21)

that is

〈Gmax
1 〉p ≥ 0 ⇐⇒ y ≥ y0(x) =

√
1− x− x. (22)

In addition, it can be shown that, in this case,
y0(x) < 1, as depicted in Fig. 2.
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1 > p 0
x = x0

FIG. 2: Relationship between y and x with the expected
value.

(c) If x = x0, then 〈Gmax
1 〉p =

1

2
PQ

y2 + 2yx0
2(1 + y) + x0

≥ 0,

and the inequality holds if and only if y = 0.

So, from the point of view of a casino, they will lay
down that the relation between PQ and PC is such that
x0PQ ≤ PC , since in these cases 〈Gmax

1 〉p > 0 is always
satisfied, and in this way their victory can be more easily
secured.

Besides, it is also reasonable to think that players will
be a little bit more clever and they will not play with a
random p ∈ [0, 1], but they will play with some probabil-
ity such that it belongs to an interval of length δ around
p0, that is [p0−δ/2, p0 +δ/2]. So thinking that the prob-
ability p follows a uniform distribution ω(p) = 1/δ, it can
be shown that

〈Gmax
1 〉p =

[PCPI − PQ(PQ + PI)]

2(PQ + PI) + PC
+
δ

8
[2(PQ+PI)+PC ],

(23)
and it is easy to see that

〈Gmax
1 〉p > 0 ⇐⇒ δ >

8[PQ(PQ + PI)− PCPI ]

[2(PQ + PI) + PC ]2
. (24)

Moreover, it is observed that, at least,

0 <
8[PQ(PQ + PI)− PCPI ]

[2(PQ + PI) + PC ]2
< 2. (25)
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Furthermore, it is also logical to think that p follows

a distribution like ω(p) =
1

(p− p0)2 + δ2
, instead of a

uniform distribution. Now, in this case,

〈Gmax
1 〉p =

1

δ
arctan

(
1

2

){
2[PCPI − PQ(PQ + PI)]

2(PQ + PI) + PC

}
+

1

2
ln

(
5

4

)
[2(PQ + PI) + PC ]. (26)

Finally, similarly to what has been done before,

〈Gmax
1 〉p > 0⇔ δ >

4 arctan
(
1
2

)
ln
(
5
4

) {
PQ(PQ + PI)− PCPI

[2(PQ + PI) + PC ]2

}
.

(27)

It can be noticed that this restriction over δ is very
similar to the one obtained before in Eq. (24) in the

uniform distribution of length δ, since
4 arctan

(
1
2

)
ln
(
5
4

) '

8.3112 ≈ 8.

V. CONCLUSIONS

The main goal of this paper was to study the relevance
of betting in a quantum game. Knowing that a game is
favourable for the quantum player, the question is if the
obligation to pay more for doing a quantum movement
than a classic one changes the fate of this game, making
the classic player the most favourable winner.

The game explained in section II is a variation of the
game between Q and Captain Picard exposed by Meyer
in [1]. The main difference introduced here is that play-
ers have to pay to be able to do a quantum or classic
movement, and also the fact that the second player has
to choose with some probability p which option (A or B)
wants to take. This distinction is what makes this plot
twist and changes the favourable winner.

As seen in section III A, when all the information is
known, a move which allows player 1 to always win does
not exist (unlike in Meyer’s game, where the first player
could win with the Hadamard matrix), whereas the clas-
sic player can choose his probability as p = p0 and his
victory will be always assured.

In order to complicate the game for the second player,
that is preventing him from using his winning strategy
with p = p0, some information is hidden. With this lack
of information, player 2 looks for the maximum possible
earnings with the details given. As seen in section III B,
in spite of this lack of information, player 2 will always
again win by following this strategy.

So, in both cases, the classic player, who has more
restricted movements, with an optimal strategy is the
favourable winner.

Finally, assuming that the quantum player role is taken
by the bank, the last question is to determine if it would
be a suitable game in a gambling house. If everybody
was professional and knew the winning strategy, as it
has been said before, the game would make no sense for
the bank. However, taking into account that this game
will be played in front of a crowd of players who might
or might not be professionals, there is always an option
for the bank to get 〈Gmax

1 〉p > 0.
As shown in section IV, choosing PQ and PC such that

x0PQ ≤ PC , the condition 〈Gmax
1 〉p > 0 is satisfied when

all players act like monkeys with no strategy and choose
randomly their probabilities p ∈ [0, 1]. Additionally, if
the game is played in front of more experienced play-
ers, following their own rational strategies, the bank can
choose values of PQ, PC and PI such that Eq. (24) and
Eq. (27) are fulfilled, depending on the level of skill of
the players, or in other words, on how little δ is.

So in any case, there is always a way such that this
game can be introduced in a gambling house, since there
is always a strategy to obtain 〈Gmax

1 〉p > 0.
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