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Abstract: During tissue development, cells differentiate creating a cellular pattern thanks to
communication frameworks like the one studied, the Notch signalling pathway. In such mechanisms a
cell interacts with the surrounding cells through proteins called ligands. With a numerical simulation
program we manage to confirm the formation of cell patterns and doing a lineal stability analysis
we find under which conditions the pattern can arise for a sustained signal activation. Furthermore,
when implementing a transitory pulsating signal dynamics we find that a minimum interaction time
is required if the cells are to differentiate.

I. INTRODUCTION

Cellular differentiation is key for a proper biological
development of a living organism. To ensure this, cells
need to communicate between each other [1]. One of such
communication frameworks is the so-called Notch/Delta
signalling pathway and it is present in a vast variety of
species [2]. This pathway enables communication be-
tween neighbouring cells and usually drives an inhibitory
interaction called lateral inhibition: a cell in a certain
cellular state prevents its neighbouring cells from devel-
oping in the same way.

Several models for this communication framework have
been proposed in the last decades [2, 3]. However, in or-
der to reduce its biochemical complexity we simplify its
description to the short-range interaction between the
ligand (Delta) of a cell with the receptors (Notch) of the
neighbouring cells as it is done in [3]. According to the
mentioned model, a cell with high Delta activity may in-
duce a high Notch activity in its neighbours. Likewise, in
the intra-cellular domain, the high Notch expressed cell
may reduce its own Delta activity. This feedback loop in-
volves two adjacent cells that mutually inhibit each other.
It could lead to the formation of a pattern where a high
Delta - low Notch expressed cell is adjacent to low Delta
- high Notch expressed cells.

In this report we implement the basic model proposed
by Collier et al. [3] and discuss how a pattern arises.
We pay special attention to the two cell system since the
locality of this interaction enables us to gain valuable
insight of this behavior from it. In fact, there are exper-
imental scenarios where lateral inhibition occurs in iso-
lated pairs of cells [4]. Furthermore, in their recent and
experimental work [5], Elowitz group have shown that
Notch signalling can be activated whether in a sustained
or in a transitory way leading to different cell responses.
In the last section of this report, we take into account
their results including this new conception of transitory
activation.

II. DEVELOPING SECTIONS

A. The model

We take the model proposed by Joanne Collier and col-
leagues in [3]. This model offers a mathematical frame-
work for the Notch / Delta signalling pathway assuming
a sustained activation (no explicit time dependence). In
short, the equations ruling this communication mecha-
nism are:

ṅi = f(d̄i)− ni
ḋi = v[g(ni)− di] (1)

where ˙ denotes d/dt. In order to reduce the number of
parameters involved in the model we have taken the di-
mensionless equation system [3]. ni , di stand for the
Notch and Delta activity normalized with the constants
N0, D0 (typical levels of Notch and Delta) respectively,
so ni, di ∈ [0, 1]. These two variables determine the cell
state in any instant. f is a monotonically increasing func-
tion that describes how Notch production grows with the
Delta level of the neighbouring cells; d̄i is the average
Delta activity of the first neighbours of the i−cell. g is
a monotonically decreasing function describing the inhi-
bition of Delta activity due to the of Notch level in the
i−cell. Moreover, both, Notch and Delta production,
are balanced by an exponential decay. Timescale has
been adimensionalized to the characteristic decay time
of Notch. Parameter v = ρ/µ gives the measure of the
relative time-scales over which the levels of and Delta and
Notch vary in terms of their respective decay rates: ρ, µ.

As the functions f and g we take a form that is vastly
used in the literature and as proposed in [3] :

f(x) =
xk

a+ xk
; g(x) =

1

1 + bxh
(2)

∀x ≥ 0 and with a, b, h, k > 0.
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B. Particular case: The two cell system

It is interesting to introduce a two-cell finite system
since it gives us sufficient information of the phenomenol-
ogy. Under this condition the equation system reduces
to four equations:

ṅ1 = f(d2/2)− n1 ; ḋ1 = v[g(n1)− d1]

ṅ2 = f(d1/2)− n2 ; ḋ2 = v[g(n2)− d2] (3)

In this system each cell has only a single neighbour and
we consider they interact through half of their surface,
so d̄1 = d2/2 and analogously d̄2 = d1/2.

Furthermore, this situation allows a visual representa-
tion of the phase plane of each characteristic cell-state
variable di, ni. The Delta phase-plane (d2 vs d1) will be
of interest when the Delta variable has a relative slow
dynamics compared to Notch. That means v < 1. Oth-
erwise, if v > 1 we will be interested in the Notch phase-
plane (n2 vs n1).

In the phase plane we can look for the equilibrium
states by representing the null-clines. In order to in-
troduce these null-clines we define them particularly in
the Delta plane. In this case the null-cliens for each
variable will be given by ḋ1 = ḋ2 = 0 leading us to:
d1 = g(n1) ; d2 = g(n2). If we make a quasi-steady-state
assumption that ṅ1 = ṅ2 = 0 the Delta null-clines are
given by:

d1 = g(f(d2/2)) ; d2 = g(f(d1/2))

Hence, the cut points of the null-clines in the phase-
planes will be, by definition, the equilibrium states. Since
f is a monotonically increasing function and g a mono-
tonically decreasing one, there is exactly one homoge-
neous steady state (deq1 = g(f(deq2 /2)) = deq2 ). Depending
on the values of parameters {a, b, h, k} one or more pair
of additional cut points of the null-clines can be found.
These points shall not appear on the bisectrice of the
plane (d1 = d2) but in states such as deq1 6= deq2 . We shall
refer to these points as heterogeneous steady states.

We propose a set of values {a, b, h, k} for a system with
a single homogeneous steady state (4) and a set which
results in three steady states (5). These sets are chosen
because they offer a proper visual representation of the
null-clines in both phase planes. Despite we define these
parameters for a two cell system, they are used in all the
numerical simulations involving the functions in (2)

a = 0.07 , b = 40 , k = 1 , h = 1 (4)

a = 0.07 , b = 40 , k = 2 , h = 3 (5)

C. Numerical simulations

In order to evaluate the model dynamics we integrate
equations (1) in time taking parameters that ensure three
equilibrium states for a pair of interacting cells (set (5)).

FIG. 1: Trajectories d2(d1) (yellow lines) in Delta phase plane
for a three steady states situation. The initial conditions are
set in the edge of the figure for Delta: d1 = 1, d2 = 1, d1 = 0
or d2 = 0; and homogeneous for Notch. For the numerical
integration of (1) we take the set (5) and v = 0.1. Green and
purple lines show the Delta null-clines with the steady states
in the cut points.

We use our own python program where we implemented
an order four Runge-Kutta method.

Firstly, we investigate the two cell system for different
initial conditions and for v = 0.1, slow Delta dynamics.
In Figure 1, all simulated trajectories for v = 0.1 are rep-
resented in the Delta plane. It can be seen that every
path dies in one of the two heterogeneous steady states,
depending only on the initial condition. Separating the
phase plane by the bisectrice (d2 = d1) we can see that
the trajectories with an initial condition above the sep-
aratrix evolve to the heterogeneous steady state above
the separatrix, and analogously for an initial condition
below it. For the particular case of a trajectory with an
initial condition near to an homogeneous state, initially
it evolves towards the saddle-point (homogeneous steady
state) following the bisectrice and then it shall escape
to one of the two heterogeneous steady states depending
on the initial perturbation. So, the phase plane has two
symmetric parts separated by the line d2 = d1. We find
that in any case the stationary stable state corresponds
to a high Delta (low Notch) activity for one cell and a
low Delta (high Notch) activity for the other. In order
to see how a pattern arises, we study larger systems with
periodic boundary conditions and set an initial condition
close to an homogeneous state: ni ≈ ni+1 ; di ≈ di+1 ∀i.
Considering a one dimensional array of ten cells or a
10 × 10 2 dimensional cell system we have a quite vi-
sual representation of the stationary pattern. As shown
in Figures 2 and 3, adjacent cells achieve opposite cell
states creating an ordered periodic pattern of cell states.
Therefore, the lateral inhibition communication amplifies
the small differences between cells and drives patterning.

In order to analyse the effect of the dynamics we ex-
pand Collier’s model including an order parameter for the
one-dimensional array of N cells with periodic boundary
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FIG. 2: Stationary activity profiles for Notch (purple) and
Delta (green) in each cell position (x) for a one dimensional
array of ten cells. We integrate equations (1) assuming peri-
odic boundary conditions and an almost homogeneous initial
condition for both Notch and Delta. As numerical parameters
we use set (5) and v = 1.

FIG. 3: Stationary Delta activity profile for a two dimensional
squared cell grid. For representation purposes we can denote
each cell as a square. We integrate equations (1) assuming pe-
riodic boundary conditions and an almost homogeneous initial
condition for both Notch and Delta. As numerical parameters
we use set (5) and v = 1. Yellow correspond to a high Delta
activity whereas blue to a low one. (x, y) give the position of
the cell in the grid.

conditions:

φn(t) =
1

N

N∑
i=1

[ni(t)− ni+1(t)]2

φd(t) =
1

N

N∑
i=1

[di(t)− di+1(t)]2. (6)

These magnitudes are zero when the system is in an ho-
mogeneous state. Otherwise they are positive saturating
in a maximum value when the system reaches an hetero-
geneous steady state.

The evolution of the order parameter allows us to eas-
ily compare situations with different dynamics. In Figure

FIG. 4: Time evolution of the Notch order parameter, φn(t),
for different values of v. A one dimension array of 10 cells with
periodic boundary condition set initially in the homogeneous
steady state has been considered. The integration has been
computed using the parameter set (5).

4 we present the evolution of φn(t) for v = 0.1, 1, 10. As
expected, it is seen that the smaller the v value is, the
longer it takes to reach the heterogeneous steady state.
Moreover, when taking the system initially in a scant
perturbed homogeneous steady state, we can define a re-
maining time in this state, τ , as the time needed to reach
a value of the order parameter greater than a given quan-
tity δ: φn(t > τ) , φd(t > τ) > δ. That is the time needed
for the perturbation to expel the system from the homo-
geneous state. Time τ grows for slower Delta dynamics
(small values of v).

D. Linear stability analysis

In the previous section we have seen how a system ini-
tially in an homogeneous situation evolves towards an
steady heterogeneous state, meaning the homogeneous
equilibrium state is unstable. In order to find the con-
ditions for a stable homogeneous state we do the linear
stability analysis, as done in [3] and [6].

Consider a one-dimensional array of N cells with peri-
odic boundary conditions. The evolution of this system
is ruled by equation (1). We have already discussed the
existence of a cut point of the null-clines on the bisec-
trice (an homogeneous steady state) which satisfies x0 =
f(g(x0)), being neqi = x0 , d

eq
i = g(x0) ∀i. We analyse

the stability of the homogeneous steady state by study-
ing the time evolution of a small perturbation in a system
initially in this state. Since |nj − x0|, |dj − g(x0)| << 1
we can do a Taylor development of the equation system
(1) around the homogeneous steady state:

d

dt
[nj − x0] =

α

2
{dj−1 + dj+1 − 2g(x0)} − [nj − x0]

d

dt
[dj − g(x0)] = v{β(nj − x0)− [dj − g(x0)]} (7)

where α = f ′(g(x0)) and β = g′(x0). For definition

Treball de Fi de Grau 3 Barcelona, June 2020



TITLE Macià Mut Sbert

of f(x) and g(x), α > 0 , β < 0 , ∀x0 ∈ R. Letting the
perturbations be expressed as a superposition of modes
in Fourier space:

nj − x0 =

N∑
s=1

ξs exp

(
2πi

sj

N

)

dj − g(x0) =

N∑
s=1

ηs exp

(
2πi

sj

N

)
(8)

and replacing (8) in (7), the system can be expressed as:

dξs
dt

= α cos

(
2πs

N

)
ηs − ξs

dηs
dt

= v (βξs − ηs) (9)

where we have accounted for the uniqueness of the
Fourier series. When diagonalizing the Jacobian matrix
(J ) of the differential equation system (9), the solution
for (ξs , ηs) can be written as the sum of the eigenstates
of J times eλst, being λs the corresponding eigenvalue.

If we are to consider the homogeneous steady state
unstable, at least one of the eigenvalues must have a real
positive part so the perturbation indefinitely grows in
time. If we do the diagonalization process we find:

λs± =
1

2

{
−(1 + v)±

√
(1 + v)2 − 4v

[
1− αβ cos

(
2πs

N

)]}
.

Several cases can occur. If the discriminant is nega-
tive so λs± ∈ C, we have Re(λs±) = − 1+v

2 < 0 , ∀v > 0.
On the contrary, when the discriminant is positive, the
eigenvalue is real and we need to study λs+ and λs− sepa-
rately. Since λs− consists in the addition of two negative
quantities, λs− < 0 in any case.

The case of λs+ ∈ R is far more complex. The con-

dition for λs+ > 0 is 1 − αβ cos
(
2πs
N

)
< 0. Since

αβ = f ′(g(x0)) · g′(x0) < 0, necessarily cos
(
2πs
N

)
< 0.

However, it is not sufficient as the cosine is an enclosed
function: cos

(
2πs
N

)
> −1. Hence, a sufficient condition

to ensure λs+ > 0 is |αβ| > 1, so the stability condition
can be written as

|αβ| = |f ′(g(x0)) · g′(x0)| = |(fg)′(x0)| < 1 (10)

Else, it exists one or more modes such as their eigenvalues
are λs+ > 0. Equation 10 gives us an analytical condition
for the stability of the homogeneous steady state. We can
numerically check it for the sets of parameters {a, b, k, h}
presented in section II B for the functions f(x), g(x).

Set (5), used in all simulations in section II C, cor-
responds to a situation where the null-clines present
three cut points, one in the bisectrice (homogeneous)
and two in heterogeneous states (see Figure (1)). More-
over, according to our numerical results the homogeneous
steady state is unstable. For x0 = 0.425, g(x0) = 0.225:
|α·β|set 5 = 2.832 > 1. On the other hand, when studying

the null-clines for set (4) a single cut point on the bisec-
trice is found. For x0 = 0.5375 g(x0) = 0.175 and the
stability condition results in: |α · β|set 4 = 0.0921 < 1. In
both cases the analytical condition (10) for the stability
fits with the numerical results.

Furthermore, we can interpret λ+(v) as a growing rate
for the perturbations and define a characteristic time for
the perturbation, τ(v). This time is given by the largest
mode, s and is found for s/N = 1/2, meaning that the
dominant mode results in a period two pattern. So, we
define τ(v) = λ−1max(v).

λmax = λ
s=N/2
+ = − (1 + v)

2
+

1

2

√
(1− v)2 − 4vαβ

We can predict analytically the behaviour of this time-
scale as a function of v studying the limits for v → 0,∞ of
λmax(v). In the first case, v → 0, we find lim

v→0
λmax(v) =

0. That is, when Delta has a much slower dynamics, the
stability time, τ(v → 0), its indefinitely large. Whereas
for the opposite case lim

v→∞
λmax(v) = −(1 + αβ) > 0,

meaning that if Notch is the slow variable, there is a
lower bound for the remaining time. Figure 4 shows how
τ for v = 0.1 is far more larger than τ for v = 1, 10 which
have comparable time-scales.

E. Transitory activation

It has recently been observed that some ligands do not
activate the Notch signalling in a sustained way, as dis-
cussed in the previous sections, but in a pulsating transi-
tory way [5]. As a first approach, we try to model a tran-
sitory activation modifying the Notch production equa-
tion with a Heaviside function:

dni
dt

= f(d̄i) ·Θ(T − t)Θ(t)− ni (11)

In this new model, the signalling pathway is operative
only for a time interval, given by T .

Numerically integrating the new equations for a sys-
tem set at an initial homogeneous state we see that the
signalling pathway needs a minimum performing time if
it is to differentiate the cellular state (Figure 5-A). This
time depends on the relative dynamics of the system (v).
Assuming v = 1, our results give a minimum time around
T ∼ 20 to create a pattern. This time exceeds the exper-
imental results given in [5]. They find for proteins (Delta
and Notch) with life-times such as τp ∼ 3− 4h, pulses of
a duration of the order of 12h.

As a first approach we identify the proteins life-times
as their decay rates: ρ, µ (see section II A), and we work
in a dimensionless unit system in which the time has been
normalized to Notch decay rate µ. So, according to ex-
perimental results, if we consider that both proteins have
the same life-time (v = 1), a real time of 12 h corresponds
to a simulation time T ∼ 3− 4.
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FIG. 5: Time evolution of the Delta order parameter, φd(t),
in a transitory activation; using equation 11. A: φd(t) for
different T values and assuming v = 1. B: φd(t) for different
values of v and taking T = 50. In both cases a one dimen-
sional array of 10 cells with periodic boundary conditions set
initially in the homogeneous steady state has been considered.
Parameters in (5) have been used.

Nevertheless, when simplifying the biological back-
ground of the process, the model has a lack of realism.
Firstly, the estimation of the protein life-times as the ex-
ponential decay rates is not accurate. Furthermore, com-
munication is considered to be immediate, when there is
experimental evidence that the processes in the intra-
cellular domain result in a time delay that might be im-
portant [7]. Despite these biological considerations, we
have seen that larger v result in a smaller response times
(Figure 5-B). So, our results may suggest that, with a
quicker Delta dynamics, a time such as T ∼ 12h could
be enough to induce cell differentiation.

III. CONCLUSIONS

Implementing and analysing Collier’s model [3] we
have seen how the feedback loop described by equations
in (1) can lead to the cell differentiation creating a cel-
lular pattern. That is, in the stationary state two cell

states are possible and they are orderly distributed [3].
Moreover, analysing the stability of the equations system
(1) around its homogeneous solution (deq1 = deq2 ), we have
found its stability condition (10), as it is done in [3]. For
a given parameters {a, b, k, h} values, if inequation (10)
is satisfied, the homogeneous steady state is stable and
no pattern arises. Otherwise, the system finds its sta-
bility in an heterogeneous state and the stationary state
results in a pattern.

A more realistic model could be designed taking into
account the cell morphology and contact surface [2]. Be-
sides, this basic model can be expanded including a long
range interaction via filopodia [2] or diffusive ligands [6],
among others.

Current research on this topic focuses on the role of
the activation dynamics in the signalling pathway [5].
We made a first approach to a transitory dynamics in
equation (11). Our results suggest that the formation of
a pattern does not only depend on the stability of the
homogeneous state but on the time the communication
is active (T ) and the relative dynamics (v). Further anal-
ysis of Figure 5 shows how the pattern disappears after
the pulse duration (T ). Due to Notch exponential decay
the new stationary state would correspond to a homo-
geneous system in which all cells have saturated Delta
activity and null Notch activity. Experimentally, it has
been observed that more than one pulse can occur re-
peatedly, but not necessarily periodically. One arising
question would be whether cells dispose of mechanisms
capable to keep the pattern once it has been formed and
the signal has decayed or the pattern appears and disap-
pears as the pulses occur.
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