
BRIEF RESEARCH REPORT
published: 10 July 2019

doi: 10.3389/fnsys.2019.00027

Frontiers in Systems Neuroscience | www.frontiersin.org 1 July 2019 | Volume 13 | Article 27

Edited by:

Olivia Gosseries,

University of Liège, Belgium

Reviewed by:

Andrea Piarulli,

University of Pisa, Italy

Silvia Scarpetta,

University of Salerno, Italy

*Correspondence:

Anira Escrichs

anira.escrichs@upf.edu

Gustavo Deco

gustavo.deco@upf.edu

Received: 26 January 2019

Accepted: 27 June 2019

Published: 10 July 2019

Citation:

Escrichs A, Sanjuán A, Atasoy S,

López-González A, Garrido C,

Càmara E and Deco G (2019)

Characterizing the Dynamical

Complexity Underlying Meditation.

Front. Syst. Neurosci. 13:27.

doi: 10.3389/fnsys.2019.00027

Characterizing the Dynamical
Complexity Underlying Meditation

Anira Escrichs 1,2*, Ana Sanjuán 1, Selen Atasoy 3, Ane López-González 1, César Garrido 4,

Estela Càmara 2,5 and Gustavo Deco 1,6*

1Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and

Cognition, Universitat Pompeu Fabra, Barcelona, Spain, 2Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research

Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain, 3Department of Psychiatry, University of Oxford, Oxford,

United Kingdom, 4 Radiology Unit, Hospital Clínic Barcelona, Barcelona, Spain, 5Department of Cognition, Development and

Educational Psychology, University of Barcelona, Barcelona, Spain, 6 Institució Catalana de la Recerca i Estudis Avançats,

Barcelona, Spain

Over the past 2,500 years, contemplative traditions have explored the nature of the

mind using meditation. More recently, neuroimaging research on meditation has revealed

differences in brain function and structure in meditators. Nevertheless, the underlying

neural mechanisms are still unclear. In order to understand how meditation shapes

global activity through the brain, we investigated the spatiotemporal dynamics across

the whole-brain functional network using the Intrinsic Ignition Framework. Recent

neuroimaging studies have demonstrated that different states of consciousness differ

in their underlying dynamical complexity, i.e., how the broadness of communication is

elicited and distributed through the brain over time and space. In this work, controls

and experienced meditators were scanned using functional magnetic resonance imaging

(fMRI) during resting-state and meditation (focused attention on breathing). Our results

evidenced that the dynamical complexity underlying meditation shows less complexity

than during resting-state in the meditator group but not in the control group. Furthermore,

we report that during resting-state, the brain activity of experienced meditators showed

higher metastability (i.e., a wider dynamical regime over time) than the one observed in

the control group. Overall, these results indicate that the meditation state operates in a

different dynamical regime compared to the resting-state.
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1. INTRODUCTION

During the last 2,500 years, contemplative traditions have explored the nature of the mind through
self-discipline and self-observation.Meditation per se is not a philosophy or a religious practice, but
a method of mental training which enables to cultivate a variety of human abilities, ranging from
developing a clearer mind and enhancing attention to cultivating altruistic love and compassion
toward other beings (Ricard et al., 2014).

In the last decade, MRI studies exploring the neural correlates of meditation have revealed
important insights into how this mental training changes brain function and structure (Brewer
et al., 2011; Kilpatrick et al., 2011; Froeliger et al., 2012; Hasenkamp et al., 2012; Taylor et al., 2013;
Garrison et al., 2014; Marchand, 2014; Tang et al., 2015; Panda et al., 2016; Kyeong et al., 2017;
Mooneyham et al., 2017; Marusak et al., 2018). Yet, little is known about howmeditation influences
the capability to transmit information across the whole-brain functional network.
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Recently, it has been proposed that a brain state can be
defined by measuring how the broadness of communication
is elicited and distributed through the brain over time, i.e.,
by characterizing its underlying dynamical complexity (Deco
et al., 2017). Investigating the propagation of the neural activity
by measuring their dynamical implications (Hutchison et al.,
2013) across the whole-brain network may help to explain
the fundamental principles of the underlying mechanisms of
different brain states (Deco et al., 2011, 2015; Sporns, 2013;
Allen et al., 2014). Theoretical methods have been successfully
applied to characterize different states of consciousness such as
wakefulness, sleep, anesthesia or psychedelic states (Tagliazucchi
and Laufs, 2014; Tagliazucchi et al., 2014; Atasoy et al., 2017,
2018; Deco et al., 2017; Jobst et al., 2017).

Here, we investigate the brain’s macro-scale mechanisms
underlying meditation as well as meditation-induced long-term
changes in resting-state using the Intrinsic Ignition Framework
(Deco and Kringelbach, 2017; Deco et al., 2017). This data-
driven method allows to study the spatiotemporal dynamics
across the whole-brain functional network by measuring the
effect of naturally occurring local activation events on whole-
brain integration.

2. METHODS

2.1. Participants
A total of forty participants were recruited for this experiment.
Half of the participants were experienced meditators (mean
(SD) age = 39.8 (10.29); education years = 13.6; mean (SD)
hours meditation experience = 9526.9 (8619.8); 7 females) and
were recruited from Vipassana communities of Barcelona. All of
them had a minimum of 1,000 h of meditation experience and
confirmed that they maintained daily practice (>1 hour/day).
The other half were well-matched control participants with no
prior meditation experience (mean (SD) age = 39.75 (10.13);
education years= 13.8; 7 females). Participants reported no
history of neurological disorder, provided written informed
consent, and were compensated for their participation. The study
was approved by the Ethics Committee of the Bellvitge Hospital
in accordance with the Helsinki Declaration on ethical research.

2.2. Resting-State and Meditation fMRI
A total of 450 brain volumes in each condition were analyzed
(≈15 min). During rest, participants were asked to look at a
fixation cross on the screen, remain as motionless as possible,
not to think about anything in particular as well as not to fall
asleep. After resting acquisition, all participants were engaged
in meditation. Meditators were asked to practice anapanasati
meditation (focused attention on breathing). In this type of
meditation, subjects try to concentrate all their attention on
natural breathing, and when they realize that the mind wanders,
they need to recognize it and come back to natural breathing
without judgment. Controls were instructed in meditation before
being scanned following the instructions as taught by S.N.
Goenka (Hart, 1987), who was a Vipassana meditation teacher.
Controls confirmed that they understood the procedure after
the simulation.

2.3. MRI Data Acquisition
MRI images were acquired on a 3T TIM TRIO scanner (Siemens,
Erlangen, Germany) using 32-channel receiver coil. The high-
resolution T1-weighted images were acquired with 208 slices in
the sagittal plane, repetition time (TR) = 1,970ms, echo time (TE)
= 2.34ms, TI = 1,050ms, flip angle = 9°, field of view (FOV) = 256
mm, voxel size 1× 1× 1mm. Resting-state andmeditation fMRI
were performed by a single shot gradient-echo EPI sequence (TR
= 2,000 ms; TE = 29 ms; FOV = 240 mm; in-plane resolution 3
mm; 32 transversal slices with thickness = 4mm; flip angle = 80°).

2.4. Preprocessing
Preprocessing was computed using the Data Processing Assistant
for Resting-State fMRI (DPARSF) (Chao-Gan and Yu-Feng,
2010). Preprocessing included: manually reorienting T1 and
EPI images; discarding the first 10 volumes due to magnetic
field inhomogeneities; slice-timing correction; realignment for
head motion correction; T1 co-registration to functional image;
European regularization segmentation; removal of spurious
variance through linear regression: six parameters from the head
motion correction, the global mean signal, the white matter
signal, and the cerebrospinal fluid signal, CompCor; removal of
the linear trend in the time-series; spatial normalization to the
Montreal Neurological Institute (MNI); spatial smoothing with 6
mm FWHM Gaussian Kernel; and band-pass temporal filtering
(0.01-0.25Hz) (Biswal et al., 1995; Lowe et al., 1998). Finally, we
extracted the time-series according to a resting-state atlas of 268
nodes, which ensures the functional homogeneity within each
node (Shen et al., 2013).

One meditator was removed due to incidental findings in the
MRI session. In addition, 3 controls during meditation and 1
control during rest were excluded due to a head rotation >2 mm
or 2°. Moreover, the frame-wise displacement (FD) (Jenkinson
et al., 2002) was calculated due to its consideration of voxel-wise
differences in motion in its derivation (Yan et al., 2013). Subjects
with head motion >2 standard deviations above the group
average and movement in more than 25% of time points were
excluded from the analysis. FD correction led to the exclusion of
1 control during meditation. Therefore, the final sample of the
study included: 19 controls during rest and 16 controls during
meditation, 19 meditators during rest and 19 meditators during
meditation. After exclusion, no significant differences in terms of
age, educational level and gender were observed between groups.

2.5. Intrinsic Ignition Framework
The Intrinsic Ignition Framework (Deco and Kringelbach, 2017)
measures the degree of elicited whole-brain integration of
spontaneously occurring events across time. Figure 1 describes
the algorithm to obtain the intrinsic integration across events
of each brain area. First, the time-series are filtered within the
narrowband 0.04–0.07 Hz to avoid artifacts (Glerean et al., 2012).
Then, for each brain area, driving events are captured for each
timepoint and fixed as a binary signal by transforming the filtered
time-series into z-scores, zi(t). A threshold θ is imposed given
by the sum of the mean and the standard deviation of the
signal in each brain area, such that the binary sequence σ (t)
= 1 if zi(t) > θ and is crossing the threshold from below and
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FIGURE 1 | Measuring intrinsic ignition. (A) Events were captured applying a

threshold method Tagliazucchi et al. (2012) (see green area). For each event

elicited (gray area), the activity in the rest of the network was measured in the

time-window of 4TR (see red area). (B) A binarized matrix was obtained

representing the synchronized events in each time window (i.e., when two

brain areas have triggered an event) (C) Applying the global integration

measure Deco et al. (2015), we obtained the largest subcomponent. By

repeating the process for each driving event, we calculated the mean and the

variability of the Intrinsic-Driven Integration for each brain area across the

whole-brain network. Adapted from Deco and Kringelbach (2017).

σ (t) = 0 otherwise (Tagliazucchi et al., 2012). If a brain area has
triggered an event (Figure 1A green line) then the integration
in the rest of the network is measured within the set time
window of 4TR (Figure 1A gray time window). A binary matrix
is constructed (Figure 1B) representing the synchronized events
in each timepoint (i.e., when two brain areas have triggered
an event). Afterwards, the global integration measure (Deco
et al., 2015) is defined as the largest component in the binarized
connectivity matrix, given by the length of the connected
component considered as an adjacency matrix (Figure 1C).
Finally, the Intrinsic-Driven Mean Integration (IDMI) is defined

as the averaged integration across events, and the variability as
the standard deviation of the Intrinsic-Driven Integration. We
would like to remark the similitude of our quantitative measure
of ignition and the avalanche framework (see, for example, Beggs
and Plenz, 2003).

2.6. Surrogate Analysis
To ensure that the observed results were not obtained by chance,
we applied a surrogate data testing method. Specifically, we
randomly permuted the original timeseries across time and
measured the ignition in each spontaneous event on the shuffled
data. After repeating the process 50 times, we tested whether
the empirical ignition values were significantly higher than the
surrogates’ ignition values.

2.7. Statistical Analyses
Here, we compared the IDMI and the variability values for each
group (controls and meditators) between conditions (resting
and meditation), and we examined if there were differences
between groups in the same condition (resting and meditation).
Furthermore, we validated our results by comparing the real
conditions vs. the randomized ignition data. To do so, we used
a Monte-Carlo permutation method. We randomly shuffled
the labels between conditions to obtain two new simulated
conditions (10,000 permutations). Then, we evaluated howmany
times the difference between the simulated conditions was
higher than the difference between the real conditions. This
is, we computed the p-value of the null hypothesis that the
two random distributions show higher difference than the real
conditions. Additionally, we applied the Bonferroni correction
for multiple comparisons.

3. RESULTS

3.1. Intrinsic-Driven Mean Integration
(IDMI)
Figure 2A shows the IDMI for each group and brain state,
while Figure 2C shows the IDMI for each group and each brain
area. The IDMI captures the spatial diversity as differences in
average intrinsic ignition profiles across the different nodes.
The brain activity of meditators during resting-state showed the
highest values of the IDMI compared to the control group (p
< 0.001, Monte-Carlo simulations after Bonferroni correction).
Furthermore, this value decreased significantly when meditators
were engaged in meditation (p< 0.001, Monte-Carlo simulations
after Bonferroni correction). In contrast, controls did not show
any differences between resting-state and meditation conditions.

3.2. Variability of Intrinsic-Driven
Integration
Next, we calculated the variability of the Intrinsic-Driven
Integration in both states (resting-state and meditation) for
each group (controls and meditators). Figure 2B shows the
variability for each group and brain state. The variability
describes the heterogeneity of each brain area, which is
closely connected to its local metastability (Deco and
Kringelbach, 2017). Thus, it describes how the local activity
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FIGURE 2 | (A) Mean of the Intrinsic-Driven Integration (IDMI) for each group during resting-state and meditation state. The IDMI was higher in meditators than in

controls during resting-state and lower in meditators during meditation. No significant differences were observed in controls between conditions. Furthermore, we

show the box plot from the surrogate IDMI data (on the bottom in green). The randomized data were significantly smaller than the original time-series, showing the

robust statistical comparisons. (B) Both controls and meditators showed higher local metastability across the whole-brain during resting-state compared to

meditation. However, the effect was significantly larger for meditators. Furthermore, the metastability in resting-state was significantly higher for experienced

meditators than for controls. P-values are based on Monte-Carlo simulation after Bonferroni correction, *p ≤ 0.025, ***p ≤ 0.0005 and n.s represents not significant.

(C) IDMI across events for each group during resting-state and meditation for 268 brain regions.

in each brain area changes across time. High levels of
metastability in a node represent a more dynamic function
over time, while lower levels represent greater stability.
The brain activity of controls and experienced meditators
showed higher functional variability (i.e., metastability) in
resting-state than in meditation. Nevertheless, the effect was
significantly larger for meditators (p < 0.001, Monte-Carlo
simulations after Bonferroni correction) than for controls
(p = 0.022, Monte-Carlo simulations after the Bonferroni
correction). Furthermore, the metastability in resting-state
was significantly larger for experienced meditators than
for controls (p < 0.001, Monte-Carlo simulations after the
Bonferroni correction).

4. DISCUSSION

A growing scientific interest lies in the characterization of the
meditation state. Hasenkamp and colleagues (Hasenkamp et al.,
2012) captured the interactions between four cognitive phases
during meditation, but disregarded the dynamical properties that
contain relevant spatiotemporal information. Mooneyham and
colleagues applied a dynamical functional connectivity approach
dissociating mental states during a meditation scan. The authors
reported that after a 6 weeks intervention mindfulness program,
subjects spent more time in the state of focused attention and
less time in the state of mind-wandering (Mooneyham et al.,

2017). In addition, a study that applied graph theoretical analysis
(Jao et al., 2016) characterized the degree of the hierarchical
organization during meditation. This study revealed that the
nodes that had the highest integration degree during rest had
the lowest integration degree during meditation, and vice versa.
Our work extends these findings by exploring the brain activity
during meditation by characterizing the dynamical complexity
in terms of how local information is broadcasted across the
whole-brain.

Here, we have characterized the dynamical complexity
underlying resting-state and meditation in healthy controls
and experienced meditators as evidenced by the level of
intrinsic ignition. Specifically, in meditators but not in
controls, we observed a significant increase of intrinsic ignition
during resting-state compared to meditation (Figure 2A). In
addition, during resting-state, meditators showed the maximal
variability of intrinsic ignition (i.e., metastability) across
the whole network, revealing a state of maximum network
switching (Figure 2B).

Our results showing an increase of intrinsic ignition during

rest compared to meditation are consistent with recent studies

on information propagation across the brain. Irrmischer and
colleagues found a shift from more complex brain dynamics

during rest to a state of reduced information propagation during
meditation, importantly, only in meditators (Irrmischer et al.,
2018). Furthermore, Gard and colleagues demonstrated using
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graph theory that yoga and meditation practitioners showed
greater network integration than controls during rest (Gard et al.,
2014). In addition, the increase of metastability in meditators
during resting-state is congruent with the increase of the
temporal complexity of oscillations during rest in meditators
as observed in the previously mentioned study (Irrmischer
et al., 2018). Moreover, studies applying a dynamical functional
connectivity approach found that individuals with high trait
mindfulness transitioned more frequently between brain states at
rest (Lim et al., 2018; Marusak et al., 2018).

To sum up, these results demonstrate that experienced
meditators can voluntarily alter their whole-brain dynamics
when engaged in a meditative state. Furthermore, expertise
in meditation leads to increased ignition and metastability
at rest. This means that expert meditators are able
to regulate the level of exploration of the dynamical
repertoire, restricting it during meditation, and enhancing it
during rest.
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