Evolution of functional connectivity in neuronal cultures
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Abstract: We study the temporal evolution of three-dimensional rat cortical neurons in wvitro.
Data is obtained through calcium fluorescence imaging, allowing us to record the spontaneous ac-
tivity of the culture. We monitor these cultures during their second and third week after formation
and use graph theory to characterize some relevant network parameters, allowing us to pinpoint the
functionality and complexity of such cultures. We show that cultures are more synchronous as they
mature, with a higher global efficiency and connectivity. We also discuss about the reliability of
current existing methods to estimate the richness of the network in terms of activity and the impact
of spatial constraints on the functional traits of the cultures, particularly at early days.

I. INTRODUCTION

For many years, scientists from a wide variety of fields
have been trying to understand how such a complex and
unknown structure as the brain works. The impressive
complex structural network that is formed by the neu-
ronal elements of the brain has been known since the
nineteenth century [1]. Networks are an object of study
in a wide range of disciplines as a phenomena of the natu-
ral, social and technological world. Network science uses
graph theory as a common toolset to analyze the prop-
erties of networks. This branch of mathematics repre-
sents a system as a number of nodes and describes the
interrelations among them as edges. Research has been
carried out in multiple species, using graph theory to ob-
tain descriptive measures that report on local and global
features of network topology. The data acquired shows
nonrandom behavior, such as big clustering and short
path length, and network communities (modules) linked
by highly connected hub nodes [2].

The vast majority of connectivity studies in neuronal
networks has been carried out in small living systems
called neuronal cultures, which are dissociated neurons
grown in vitro. This kind of cultures allows for a wide
variety of preparations, from simple homogeneous assem-
blies to complex bioengineered designs, as they are acces-
sible and easy to manipulate [3]. In vitro preparations of
animal neurons have been broadly used for making note-
worthy scientific advance in the understanding of neu-
rodegenerative diseases and neuronal functional develop-
ment. Specifically, rodents’ brain cells are the most usual
resort for cells in vitro due to their affordability, easy ma-
nipulation and also the fast formation and maturation of
the neuronal networks [4].

The essential purpose of these cultures is to offer a con-
trolled, scaled—down and reproducible stage in which the
analysis of intricate brain functions can be done. Gener-
ally, efforts aimed at grasping the complex functioning of
neuronal networks are based mostly on two—dimensional
studies. However, the natural environment of neurons is
a complex three-dimensional (3D) extracellular matrix

where they can project connections in all directions. Con-
sequently, 3D cultures furnish physiological conditions
much closer to the brain and enable the reproduction
of much more complex architectures. Furthermore, such
cultures enhance cell growth and differentiation, improve
cell-to-cell and cell-to-matrix interactions, and eventu-
ally neurons exhibit richer functional dynamics and an
extensive repertoire of activity patterns [4].

II. EXPERIMENTAL SETUP AND
PROCEDURE

A. Neuronal cultures in hydrogels

Our 3D neuronal cultures were prepared in a semi-
synthetic hydrogel named PEGylated Fibrinogen (Fig. 1).
Hydrogels are elastic, gelatinous structures made from
cross—linked polymer chains. These biomaterials imi-
tate the native extracellular matrix of the brain and that
maintains the structural integrity of the neurons. This
type of culturing in hydrogels maintains the advantages
of in vitro preparations (accessibility, easy manipulation)
while advancing towards more realistic, brain-like in vivo
models [4].

FIG. 1: ‘PEGylated Fibrinogen’ hydrogel culture of cortical
neurons from rat embryos. (A) Sketch of culture preparation,
combining neurons from rat brains, the GCamp6s fluorescence
indicator and the hydrogel. (B) Photo of a typical hydrogel
culture. Adapted with permission from Ref. [4].
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FIG. 2: Analyzed data. Columns correspond to DIV 9, 13 and 21, respectively. Top: raster plots of neuronal activations in the
culture. Center: cross-correlation matrix. The color bar is the Pearson correlation coefficient. Bottom: representation of the
network using Gephi. Colors indicate modules of preferentially connected neurons.

B. Calcium fluorescence imaging

Calcium imaging was used in this study to analyze 3D
neuronal cultures for the purpose of describing their in-
teractions as a network. The functioning of fluorescence
microscopy is that a fluorophore excited by a certain en-
ergy (through radiation of a specific wavelength) emits
a light that can be detected. Normally, green fluores-
cence proteins that emit green light (A = 514 nm) when
irradiated by blue light (A = 490 nm) are employed.

Neurons are highly polarized cells, with such polariza-
tion being the basis of the flow of information in the ner-
vous system. Consequently, neurons display a low intra-
cellular calcium concentration (= 100 nM) that will rise
around to orders of magnitudes at the moment of firing.
Therefore, we can track calcium transients when neu-
rons activate by using calcium-binding fluorescent pro-
teins. Our optical system will detect those changes and
will register a increase in the fluorescent signal at the
moment that a neuron fires.To record these activations,
cells in the neuronal culture were infected with adeno-
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associated viruses (AAV) encoding for the fluorescence
indicator GCaMP6 at the moment of preparation [4, 5].
Neurons will genetically encode the indicator and express
it continuously. Thus, we can track the same culture
again and again for several days.

In the present study 3D homogeneous primary cultures
in which neurons are distributed uniformly were used.
Given the COVID-19 pandemic, it was not possible to
carry out full experiments in the laboratory from the
beginning. Therefore, Dr. Soriano provided three previ-
ously recorded videos, corresponding to neuronal cultures
in day in vitro (DIV) 9, 13 and 21, in which firing neurons
were observed as bright objects. All the recordings had
approximately the same duration, around 500 seconds.
Once the videos were available they were processed us-
ing NETCAL, Dr. Soriano’s Lab software, through which
data about the position of each neuron or region of in-
terest (ROI) and the times of firing for each ROI were
acquired (Fig. 2). With the obtained data a statistical
analysis was conducted with Python, except the repre-
sentation of the network, which was done in Gephi.

Barcelona, June 2020
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III. RESULTS AND DISCUSSION
A. General network properties

An important remark is that cultures evolve and there-
fore they change behavior constantly, with neurons creat-
ing new connections among them, or even degrading and
dying due to changes in the environment or the deterio-
ration of the hydrogel. However, despite these changes,
we observed a general trend in which the culture gained
synchrony over the days. This is shown in the raster plots
of Fig. 2, with neurons starting to fire in small groups to
gradually fire neatly together by DIV 22.

The analysis of synchrony leads to the study of the
correlation among neurons. In order to do so, the cross—
correlation (CC) amongst ROIs was computed using
Python library SciPy, which includes a function that eval-
uates Pearson Correlation between two vectors, i.e., our
ROIs. Following this method the adjacency matrix was
obtained (Fig. 2), which indicates which neuron con-
nects more strongly with others based on the Pearson
value. Such figure provides a graphic representation of
the modularity of the network (box-like groups along
the diagonal of the matrix) and the connections exist-
ing among modules. The network displays a modular
behavior particularly in the first day, as 4 modules can
be seen in DIV 9 adjacency matrix. This modules can
be represented over the space (Fig. 2, bottom), and in-
dicate that they are spatially compact, suggesting that
neurons preferentially connect to their neighbors. In the
following days the modularity of the culture seems to de-
crease as the neurons become more interconnected. This
observation suggests the creation of well-interconnected
communities. The spatial maps show a complete mix-
ture, indicating that many connections are long range.

A convenient method to estimate the modularity of the
network in each DIV is using the Louvain algorithm for
community detection, which provides a parameter that
describes the proportion of within-group connections in
relation to between-group connections [4], being Q = 1
the value corresponding to completely isolated neurons
and @ = 0 an all-to-all connectivity. As shown in Fig. 3,
Q@ shows a noticeable decrease in the first days, whilst in
the later days it displays a light increase that suggests
that the culture is reinforcing local connectivity.

B. Global efficiency and degree evolution

The analyses of the network in the previous section did
not provide any details on how information is exchanged
globally across the culture. For the purpose of quantify-
ing the transport and communication within the network
we use the Global Efficiency, given by [4, 6]

1 1
E=Sw—D 2 @ (1)
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where d;; is the shortest path between nodes i and j, i.e.
the minimum number of edges to be crossed to reach one
another.
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FIG. 3: Modularity decreases in the first 4 days, then it sta-
bilizes seeking balance between activity and energy consump-
tion. If data from subsequent DIV was available the figure
would show a stability plateau. The inset shows a sketch of
the decrease in modularity in a model network.

Evolution of global efficiency
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FIG. 4: Global efficiency rapidly grows in 4 days indicating
that the neurons are becoming more connected, then it stabi-
lizes.The inset shows an example of a model network in which
the global efficiency increases as more edges are created.

Figure 4 shows that E abruptly rises between DIV
9 and 13, which concurs with the creation of well-
interconnected communities of neurons mentioned in the
previous section. Afterwards, between DIV 13 and 21, as
local connectivity is enhanced and the network becomes
slightly more modular in correspondence with Fig. 3,
global efficiency experiments a slight decrease.

Another interesting parameter to monitor throughout
the days is the degree distribution, which measures the
probability py (k) that a node has k connections to other
nodes [6]. These distributions are shown in Fig. 5 as
histograms. It is noticeable that DIV 13 and 21 present
a much higher number of important nodes or hubs, i.e.
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FIG. 5: Histograms of degree distribution of the network and average degree (red line) for each DIV, displaying the creation of
densely linked nodes with time, i.e. neurons with very high degree. This is observed by the shift of the distributions towards
the right, high k values.

nodes that exhibit a large number of links to other nodes, them in order to maximize activity so that the neu-
as compared to DIV 9, again indicating an increase in ronal culture becomes active as soon as possible. Then,
connectivity along time. between DIV 13 and DIV 21, homeostatic mechanisms

rapidly eliminate edges of the network so as to find a

balance between activity and energy consumption.
Evolution of dynamical richness
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C. Functional complexity and dynamical richness
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As a way to provide a direct measure for spatiotem-
poral variability let us introduce dynamical richness (©),
following Yamamoto et al. [7] and Zamora-Lépez et al.
[8], in order to quantify the ability of the network to ex-
hibit a vast variety of dynamical states. The higher the
1 /\ value, the richer the neuronal culture is. Consequently,
] a network will present © = 0 for either completely ran-

9 13 17 21 dom activity or persistent whole-network synchroniza-

o tion, and © = 1 for a full range of coactivation patterns.
Dynamical richness is computed as

Dynamical richness
=4 o
o o
w -

o
o
[~

4
o
-

e
=]
=]

FIG. 6: Evolution of the dynamical richness of the culture
throughout the DIV measuring the global network activations

using different bin sizes and dynamical richness as a function ©=0cc Oana =

of bin size for each DIV. m m 1
(1 -~ 2(m—1) Z pu(rij) — mD :
It is also noteworthy that the average degree of the cul- p=1
tures is maximum in DIV 13 instead of DIV 21 (Fig. 5), m m 1
as would be expected if the neurons kept creating con- . (1 - Z pu(Te) — D . (2)
nections. We conjecture that this occurs because of neu- 2(m —1) =1 m

ronal homeostatic plasticity, in which the culture prunes

connections to balance activity and energy consumption, where the first term refers to the variability among pair-
effectually reaching an optimal ‘set point’. Neuronal plas- wise cross—correlations (CC), defined as functional com-
ticity can be classified in two groups: Hebbian plasticity plexity by Zamora-Lépez et al. [8], and the second one
and homeostatic plasticity. Hebbian plasticity is a pos-  describes the variability of global network activations

itive feedback that increases synaptic strength as a re- (GNA). © is then computed by using the distributions
sult repeated activations between neurons that facilitate  p(r;;) and p(I';) for CC and GNA, respectively, and
subsequent activations, whereas homeostatic plasticity is m = 20 as the number of bins used for evaluating the
a negative feedback that attempts to reach an optimal  distributions.
basal ‘set point’ of firing rates by either increasing or A parameter that plays an essential role when estimat-
decreasing synaptic strength [4]. ing the distribution for the GNA is the size of the time
Thus, we conjecture that between DIV 9 and DIV bin that is considered to contain neurons that are firing
13 neurons create a large number of connections among simultaneously. To illustrate the importance of the bin
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size, dynamical richness was computed through different
bin sizes using the data of the three DIV (Fig. 6).

As the analyzed culture is homogeneous, it does not
exhibit a high value for © in any of the DIVs (Figs. 6
and 7). Nevertheless, it is possible to notice that all the
bin sizes studied display the same behavior throughout
the days as © grows between DIV 9 and 13. This is
because neurons keep creating connections and © slightly
decreases between DIV 13 and 21 due to the emergence of
synchronization. It is also observable that these changes
are more significant when using a large bin size (Fig. 6).

Fig. 7 shows the changes in dynamical richness within
the same DIV using different bin sizes. It is noteworthy
that increasing the size of the bin does not have the same
effect for all three days, since DIV 13, which displays the
higher value of O, is much more sensitive to the modifi-
cation of this parameter. Therefore, it may be sensible
to suggest that above a certain threshold of richness and
complexity of the neuronal culture, the © value of the
network heavily depends on the chosen binning.

Dynamical richness variation with binsize
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FIG. 7: Dynamical richness of the network as a function of
bin size for each DIV.

IV. CONCLUSIONS

The previously exposed results and figures lead us to
two meaningful results of great importance in order to

comprehend the evolution of neuronal cultures in terms
of their functional connectivity and activity.

Firstly, the representation of the network in Fig. 2
clearly shows that connections among neurons in the
early days are of short range, whereas in the last days
of observation correlation among neurons can be exhib-
ited in a much larger range. This shows that neuronal
cultures, specially during the early days, are an exam-
ple of networks in which spatial embedding plays a key
role during the formation and development of the net-
work, which confers an additional feature to the strictly
mathematical graph theory.

Furthermore, it is also shown that we still lack of a
solid method to quantify the richness of a network in
terms of its activity. All existing techniques require the
definition of a bin width that will contain global network
activations, which affects the analysis considerably. With
a view to elect the optimal bin size to evaluate the com-
plexity of the network, one can try to extract from the
raster plot the approximate duration of a single activa-
tion. Thus, we could avoid both splitting such activation
in two different bins and considering different firings to
have the same origin.

In summary, despite the great progress made in neuro-
science towards the understanding of neuronal cultures, a
new procedure to estimate the complexity of the network
that is not unbiased by the bin size needs to be found. In
addition, the metrical dependence when creating connec-
tions among nodes needs to be taken into account if we
wish to extrapolate the results obtained from the study
of our 3D culture to such an intricate system as the brain.
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