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Abstract: Virtual screening (VS) is an outstanding cornerstone in the drug discovery pipeline.
A variety of computational approaches, which are generally classified as ligand-based (LB) and
structure-based (SB) techniques, exploit key structural and physicochemical properties of ligands
and targets to enable the screening of virtual libraries in the search of active compounds. Though LB
and SB methods have found widespread application in the discovery of novel drug-like candidates,
their complementary natures have stimulated continued efforts toward the development of hybrid
strategies that combine LB and SB techniques, integrating them in a holistic computational framework
that exploits the available information of both ligand and target to enhance the success of drug
discovery projects. In this review, we analyze the main strategies and concepts that have emerged in
the last years for defining hybrid LB + SB computational schemes in VS studies. Particularly, attention
is focused on the combination of molecular similarity and docking, illustrating them with selected
applications taken from the literature.

Keywords: ligand-based techniques; structure-based methods; combined strategies; virtual screening;
drug discovery

1. Introduction

Predicting with chemical accuracy the biological activity that a small drug-like compound can
attain against its target is a major challenge in drug discovery. In the late stages of lead optimization,
this task can be accomplished by resorting to enhanced sampling techniques, such as free energy
calculations [1–3], which can estimate the binding affinity between a ligand and its macromolecular
target. Remarkably, the effort spent in developing robust algorithms in conjunction with efficient
configurational sampling methods permit to estimate the binding affinity with a chemical accuracy
close to the 1 kcal/mol limit [4–7], though at the expense of a significant computational cost that
prevents their application in large datasets. Nevertheless, attempts have been made to alleviate this
limitation through the development of automated workflows for the in silico prediction of binding
affinities [8,9], which will facilitate the usage of these sophisticated techniques to nonexpert researchers
in computational chemistry.

Molecules 2020, 25, 4723; doi:10.3390/molecules25204723 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0003-4400-6378
https://orcid.org/0000-0001-7837-3593
https://orcid.org/0000-0002-8049-3567
http://www.mdpi.com/1420-3049/25/20/4723?type=check_update&version=1
http://dx.doi.org/10.3390/molecules25204723
http://www.mdpi.com/journal/molecules


Molecules 2020, 25, 4723 2 of 27

A different scenario occurs in the early stages of drug discovery, where attention is focused on
the identification of potential hit compounds endowed with a promising activity against a druggable
target or, alternatively, the search of novel chemotypes that may lead to innovative strategies in
the treatment of diseases and pathological disorders. In these stages, the suitability of several
computationally demanding methods, such as steered molecular dynamics (MD) and quantum
mechanical-based approaches, has been explored, generally when the interest is focused on a reduced
set of compounds [10–12]. Nevertheless, when one keeps in mind the diversity of the chemical
universe that can a priori be explored [13–15], the ability to discriminate between actives and inactives
still represents a formidable challenge that makes it necessary to resort to simplified computational
approaches. At this point, it is worth noting that the number of different compounds that could be
synthesized has been estimated to be around 1020–1024 molecules [16]. The vast amount of drug-like
chemical libraries can be explored using in silico virtual screening (VS) techniques, which encompass
a variety of computational algorithms and formalisms in the search of novel bioactive molecules.
They have proven their applicability in numerous studies, leading to hit rates competitive with the
results derived from experimental high-throughput screening and at a much lower cost [17–19].

VS techniques can be grouped into two major categories, depending on the available structural
information. The term structure-based virtual screening (SBVS), often denoted as target-based VS,
encompasses methods that exploit the three-dimensional (3D) structure of the target. The most widely
used SBVS technique is molecular docking, which uses the structural and chemical complementarity
resulting from the interaction between a fragment-like or drug-like compound and its target receptor,
predicting the preferred pose of ligands in the binding site through the use of scoring functions,
often supplemented with pharmacophoric constraints [20–23]. On the other hand, ligand-based virtual
screening (LBVS) relies on the structural information and physicochemical properties of the chemical
scaffold of known active and inactive molecules, which are examined under the molecular similarity
principle [24]. Accordingly, the relationships between compounds in a given library and one or
more known actives are examined by similarity measurements using suitable molecular descriptors.
These measurements can be performed based on 1D and 2D descriptors, generally encoding information
about the chemical nature of compounds and their topological features [25–27], and 3D descriptors
associated to molecular fields [28–31], shape and volume [32,33], and pharmacophores [28,34].

The combined integration of SBVS and LBVS techniques may be a promising strategy when data
about both the structure of ligand-target complexes and similarity relationships to active compounds
are available, leading to a holistic framework suitable to enhance the success of drug discovery
projects [35,36]. As an example of the potential impact of combining SBVS and LBVS, we limit
ourselves to cite a couple of representative studies. The first is the work by Spadaro et al. [37], who used
a pharmacophoric model derived from the analysis of X-ray crystallographic data in conjunction with
LBVS techniques for disclosing novel inhibitors of the 17β-hydroxysteroid dehydrogenase type 1
(17β-HSD1) enzyme, leading to the identification of a keto-derivative compound with an inhibitory
potency in the nanomolar range (Figure 1A). In the second example, Debnath et al. [38] used a combined
VS strategy to identify selective non-hydroxamate histone deacetylase 8 (HDAC8) inhibitors (Figure 1B).
To this end, a database of 4.3 × 106 molecules was explored using a pharmacophore model, and the
top 500 hits retrieved were filtered using ADMET (Absorption, Distribution, Metabolism, Excretion
and Toxicity) criteria. The selected compounds were subsequently assessed by molecular docking.
Among the final hits selected for in vitro biological evaluation, compounds SD-01 and SD-02 inhibited
the HDAC8 enzyme with IC50 (i.e., the concentration of inhibitor that gives half-maximal response)
values of 9.0 and 2.7 nM, respectively. These two examples suffice to demonstrate that a judicious
choice of LB and SB techniques, adapted to the available information about the ligands and target,
may be powerful in disclosing drug-like compounds.
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compounds, the chemical features of the ligands present in the training set may affect the optimal 
choice of the pharmacophoric restraints. Moreover, the available activity data may turn out to be 
inadequate for selecting a structural and functional pool of compounds, often limited by the 
absence of data relative to poorly active or inactive compounds, which may be valuable to calibrate 
the merits of the pharmacophore model in distinguishing between actives and inactives. On the 
other hand, accounting for protein flexibility is a major drawback for docking methods. The binding 
site of a protein is flexible and can adopt diverse conformational states, generally at the level of side 
chain residues but often also involving structural changes in loops and the remodeling of secondary 
structural elements induced upon ligand binding [42–45]. Furthermore, the outcome of docking 
studies may be largely affected by the identification of water molecules that mediate the 
interactions of the ligand in the binding pocket, making it necessary to explore the potential role of 
bridging waters or networks of ordered waters in docking calculations [46–50]. On the other hand, 
providing an accurate score and even estimating the binding affinity at a reasonable cost 
compatible with the screening of large chemical libraries is still challenging for docking methods 
[51–54]. Finally, the outcome of LBVS and SBVS also appear to exhibit a strong target dependency 
[55,56]. For the sake of brevity, a detailed discussion of these weaknesses is omitted here, and the 
reader is addressed to previous studies in the literature [57–60]. 

In this context, searching for computational strategies that can mitigate the limitations of LB 
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screening effort on targeted chemical libraries that would facilitate the task of hit identification [61–
65]. This can be achieved via automated algorithms of molecular generation or de novo design, 
often assisted by artificial intelligence techniques, which aim to create sets of compounds endowed 
with properties similar to the structural and chemical features found in real cases, including a bias 
toward specific ranges of physicochemical properties or toward compounds active against a given 
target. Alternatively, a balanced combination of LB and SB methods may be devised to exploit 
synergistically the merits of these VS techniques, while counterbalancing their limitations, in order 
to increase the success rate in the screening of large chemical libraries. 

Figure 1. Representative cases of two combined ligand-based (LB) and structure-based (SB) strategies
leading to the discovery of potent inhibitors of (A) 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1)
and (B) histone deacetylase 8 (HDAC8) enzymes. LB and SB methods are highlighted in blue and
green, respectively. VS: virtual screening.

Several strategies have been proposed to combine LBVS and SBVS in order to reinforce the mutual
complementarity of these approaches and palliate their individual weaknesses [39–41]. The major
shortcoming in LBVS is the bias toward the reference template, which may result in overfitting to the
input structures. When a pharmacophore is used to guide the screening of the compounds, the chemical
features of the ligands present in the training set may affect the optimal choice of the pharmacophoric
restraints. Moreover, the available activity data may turn out to be inadequate for selecting a structural
and functional pool of compounds, often limited by the absence of data relative to poorly active or
inactive compounds, which may be valuable to calibrate the merits of the pharmacophore model in
distinguishing between actives and inactives. On the other hand, accounting for protein flexibility
is a major drawback for docking methods. The binding site of a protein is flexible and can adopt
diverse conformational states, generally at the level of side chain residues but often also involving
structural changes in loops and the remodeling of secondary structural elements induced upon
ligand binding [42–45]. Furthermore, the outcome of docking studies may be largely affected by the
identification of water molecules that mediate the interactions of the ligand in the binding pocket,
making it necessary to explore the potential role of bridging waters or networks of ordered waters in
docking calculations [46–50]. On the other hand, providing an accurate score and even estimating
the binding affinity at a reasonable cost compatible with the screening of large chemical libraries is
still challenging for docking methods [51–54]. Finally, the outcome of LBVS and SBVS also appear
to exhibit a strong target dependency [55,56]. For the sake of brevity, a detailed discussion of these
weaknesses is omitted here, and the reader is addressed to previous studies in the literature [57–60].

In this context, searching for computational strategies that can mitigate the limitations of
LB and SB methods has been actively pursued in the last years. One alternative is to focus the
screening effort on targeted chemical libraries that would facilitate the task of hit identification [61–65].
This can be achieved via automated algorithms of molecular generation or de novo design, often
assisted by artificial intelligence techniques, which aim to create sets of compounds endowed with
properties similar to the structural and chemical features found in real cases, including a bias toward
specific ranges of physicochemical properties or toward compounds active against a given target.
Alternatively, a balanced combination of LB and SB methods may be devised to exploit synergistically
the merits of these VS techniques, while counterbalancing their limitations, in order to increase the
success rate in the screening of large chemical libraries.
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Here, our attention is focused on the methodologies and computational approaches undertaken
to enrich the outcome of VS by combining LB and SB techniques. In particular, we review the main
strategies that have been proposed combining molecular similarity and docking. The strengths and
weaknesses of the combined approaches are illustrated by selecting representative studies reported
in the literature, primarily dealing with the efforts reported in the last five years. Overall, the aim
of this review is to provide useful guidelines for the application of combined LB and SB methods in
drug discovery.

2. LB and SB Strategies in VS

Different schemes can be adopted to combine LB and SB methods. The classification proposed by
Drwal and Griffith will be adopted in this review [40]. Accordingly, the discussion of the combined LB
and SB strategies can be completed following three main categories: sequential, parallel, and hybrid,
which are summarized in Figure 2.
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Figure 2. Schematic representation of the three main strategies adopted for combining LB and
SB methods.

(i) Sequential approaches divide the VS pipeline in consecutive steps with the aim to perform
a progressive filtering in the library of chemical compounds toward the most promising candidates,
which will be selected for biological testing at the end of this multi-step process. Generally, prefiltering
is performed at the beginning of the VS process using LB techniques due to their reduced computational
cost, whereas the most computationally demanding SB methods are exploited in the final stages of the
selection process. Thus, this strategy attempts to optimize the tradeoff between the computational
expensiveness and the complexity of the formalism that underlies the filtering technique along the VS
process. However, they do not exploit all the available information at once and maintain the limitations
of the individual methods.

(ii) In the parallel approach, both LB and SB methods are run independently, and the best
candidates identified from each separate method are selected for biological testing. Swann et al.
reported a prospective application of this approach in 2011 [66], and subsequent studies have examined
distinct functional forms for combining the ranks obtained from LB and SB methods (see below).
In particular, the compounds obtained in the final rank order lead to meaningful increases in both
performance and robustness over the single-modality approaches, but the results also demonstrate the
sensitivity of the performance to the target structural details (i.e., the nature of the template ligand in
measurements of molecular similarity and the reference protein pocket in docking studies) [67,68].
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(iii) Finally, the hybrid strategies comprise approaches that represent a true combination of LB
and SB techniques into a standalone method. Two main combinations have been followed to achieve
this goal: (i) interaction-based methods and (ii) similarity-docking methods. The former translates the
observed protein-ligand interactions into pharmacophoric features and quantitative structure-activity
relationship (QSAR) models [39,69,70], which have been used for several applications, such as VS,
the profiling of ligands, the analysis of pseudo-receptors, and de novo designs [71–74]. On the other
hand, the combination of molecular similarity and docking techniques has been examined in the last
years as an alternative procedure to assess the reliability of predicted poses of ligands by measuring
the overlay against suitable templates [75–80].

3. Sequential LB and SB Methods

High-throughput VS may be computationally demanding when large sets of compounds have to
be evaluated. In this scenario, decomposing the VS pipeline into a multi-step process can be valuable
to reduce progressively the number of compounds and enrich the chemical library toward the most
promising scaffolds before screening with more expensive methods.

LB techniques are generally used in the prefiltering step, as illustrated in different works that have
exploited 2D fingerprints [81,82], 3D molecular similarity [83–85] and pharmacophore models [86–88].
To enhance the drug-likeness of the compounds, knowledge-based in silico ADMET or pan-assay
interference compounds (PAINS; [89]) filters can also be applied. For cases with a reduced number
of compounds, the results obtained from the SBVS can be further refined, resorting to the structural
stability observed in MD simulations [90–93].

As an example that illustrates the sequential application of LB and SB techniques, Khan et
al. [84] performed multi-step LBVS and SBVS to identify G protein-coupled estrogen receptor-1
(GPER-1) modulators (Figure 3A). LBVS was performed based on a GPER-1 selective agonist
(1-((3aR,4S,9bS)-4-(6-bromobenzo[d][1,3]dioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta(c)quinolin-8-
yl)ethan-1-one) as a query model for screening of the eMolecules library (about 7.2 million compounds
used in [84]) using Rapid Overlay of Chemical Structures (ROCS; [32]) and electrostatic potential
screening (EON; [94]). Then, after generation of a GPER-1 homology model, FRED [95,96] was used to
screen the top-scored hits from LBVS. Next, the top-ranked hits retrieved by molecular docking were
clustered based on the similarity between their scaffolds. Finally, the prospective validation in SK-BR-3
and MCF-7 cell lines resulted in two compounds with an EC50 (i.e., effective drug concentration that
gives half-maximal response) antiproliferative activity in the micromolar range.

Alternative LB and SB sequential protocols have also been adopted, as in the study by
Dawood et al. [97], where the SBVS was followed by a LBVS (Figure 3B). An in-house database
of 1720 phytochemicals used in traditional Egyptian medicine was screened to search for inhibitors of
the human aromatase enzyme. The initial size of the library allowed the direct use of molecular docking
using Glide [98–100]. Subsequently, a LB pharmacophore was used to filter the ranked compounds
with PHASE [101,102]. In vitro testing revealed that the methylene chloride extract of Artemisia annua
showed the most significant aromatase inhibitory activity with an IC50 of 2.2 µg/mL, thus opening a
path for the use of secondary metabolites in the search for new therapeutic leads.
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Figure 3. Schematic representation of two sequential VS processes (LB and SB methods are highlighted
in blue and green, respectively). (A) Sequential application of LB (shape-based and electrostatic-based
similarity search) followed by SB (docking). The two most active compounds found, SK0 and SK0P,
exhibited antiproliferative activities against SK-BR-3 and MCF7 cell lines in the micromolar range.
(B) Sequential VS of SB followed by LB over an in-house database. The compound 49ARA was detected
among the top-ranked compounds included in the methylene chloride extract of Artemisia annua (IC50 of
2.2 µg/mL). ROCS: Rapid Overlay of Chemical Structures.

4. Parallel LB and SB Approaches

The application of different LB and SB methods generates distinct sets of ranked compounds for
the same target. Given that there is no single method that consistently ranks a database of compounds
in the best decreasing order, a combination of the ranks obtained from multiple LB and SB searches into
a single ranking could lead to a better overall enrichment and a wider diversity of hit structures [103].

In this context, LBVS approaches have been combined under the framework of data
fusion [104,105], targeting the search for new entities, drug repurposing, polypharmacology, and safety
profile analysis [106–109]. With regard to SBVS, distinct methods have been examined to yield a
“consensus scoring” [110–113], relying on three main strategies: (i) the same docked poses have been
evaluated with different scoring functions to build the final ranking, (ii) the results obtained for an
ensemble of different protein structures of the same target have been combined to obtain a final score,
and (iii) multiple docking methods have been used against a single-protein structure [54,114,115].

Efforts have also addressed the development of parallel protocols for combining LB and SB
methods [66,67,103]. Table 1 summarizes different fusion strategies that have been adopted to combine
the results of LB and SB techniques in benchmarking studies. The parallel selection seems to perform
better than other rank fusion metrics, although the quality of the structural information and the specific
physicochemical features of the target system may influence the overall performance. For instance,
Tan et al. [116] evaluated the performance of a parallel protocol that combined docking and similarity
search calculations using 2D fingerprints on nine target enzymes. The results were combined through
rank fusion, where the ranks from docking and similarity searching were added to generate the
final ranking, or the parallel selection method, where compounds are alternately selected according
to the ranks obtained separately for LB and SB screenings. These combinations yielded an overall
improvement in compound recall in 25% of the calculations. Furthermore, parallel selection was found
to be more effective than rank fusion.
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Table 1. Description of selected fusion algorithms implemented in parallel ligand-based (LB) and
structure-based (SB) strategies. VS: virtual screening.

Algorithm Description Case Studies

ADDITION
algorithms

Adds together the ranks from the different VS methods rank lists.
Standard statistical measures, weighted or not, are used (i.e., sum,

average, and median or max. value) to combine rank positions.
[66,67,103,116]

PARETO ranking
Ranks a compound based on how many other compounds are better
in all screening methods. Ties could be broken using the sum rank,

as example.
[103]

PARALLEL
selection

Compounds are alternatively selected among the top-ranked
compounds obtained from each screening method until the desired

number of compounds is reached.
[81,103]

Swann et al. examined the combination of LBVS (2D graph-based extended connectivity fingerprint
(ECFP6) [117] and ROCS) and SBVS (chemical Gaussian overlay, CGO [95]) within a probabilistic
framework that returns a quantitative likelihood (or probability) of observing bioactivity for the selected
compounds [66]. The analysis of the results obtained for a set of 18 targets showed that the retrieval
rates for the cumulative probability (obtained from the fusion of the individual LB and SB values) are
equal to or better than the highest retrieval rate achieved with any single method. Similar trends were
observed for an additional external validation set of six targets, and, importantly, the method was
successful in the identification of novel hit compounds in a prospective study performed against four
targets not included in the training and validation sets.

A number of studies dealing with the application of the parallel strategy in the search of
novel hits have been reported in the last years [118–121]. An illustrative example is the work by
Vucicevic et al. [119], who reported the identification of compounds with anticancer potential effects
through a parallel LB and SB screening protocol (Figure 4A). Starting from a large virtual library with
more than 9 × 106 compounds, those molecules that showed good ranking in both approaches were
selected for biological testing. The most active compound exhibited a cytotoxic profile similar to the
positive control and enhanced the apoptotic response to doxorubicin, thus representing an adjuvant
chemotherapeutic strategy for doxorubicin-insensitive cancers.
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similarity assays, was used for both approaches. The most active compound exhibited an IC50 in the
micromolar range. (B) Parallel VS over a ZINC database subset. Glide was run for SB and PHASE for
LB. Among the 20 hits selected, three compounds showed activity in the micromolar range.
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Finally, a more recent example is the work by Costa et al. [121], where they performed a parallel
VS application followed by MD simulations in the search of a novel compound able to inhibit human
immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) RNA-dependent DNA polymerase
activity (Figure 4B). More than 143,000 natural compounds commercially available in the ZINC
database were screened. As a result, 20 hit molecules were chosen and tested in biochemical assays.
However, instead of merging the output rankings, compounds shared in both LB and SB VSs were
selected. Among them, three compounds were identified as novel non-nucleoside RT inhibitors in the
low micromolar range.

As a final remark, let us note that, compared to sequential methods, parallel LB and SB screenings
imply a larger computational cost, as several VS techniques have to be simultaneously run in order to
derive their respective rankings, which will subsequently be used to generate the final selection.

5. Hybrid Approaches

As noted above, hybrid LB and SB strategies can be grouped into two major categories, which are
denoted as (i) interaction-based approaches and (ii) similarity-docking methods.

5.1. Interaction-Based Methods

These methods rely on the identification of patterns of protein–ligand interactions, which are
subsequently used in the screening of compounds through the usage of pseudo-receptor and
pseudoquery methods. Since SB information is not effectively incorporated in pseudo-receptor
models, we limit ourselves to giving a brief description for the sake of completeness but omit a detailed
discussion, which can be found elsewhere [73].

Pseudo-receptor methods rely on the mapping of the potential interactions that may be formed
by a set of reference ligands suitably aligned in their bioactive conformation to mimic their overlaid
arrangement in the binding pocket [122–124]. This process leads to a rough definition of the overall
shape and key anchoring points of the binding pocket, which can be exploited for the screening of
chemical libraries. The performance of these models is strongly affected by the chemical space of the
ligand dataset and the overlay of the ligands. The model can only account for those features present in
the starting set of ligands, and the superposition of ligands is sensitive to minor modifications in the
chemical scaffold, especially for highly flexible ligands.

In contrast with the preceding approaches, pseudoquery methods exploit the experimental
structures of protein–ligand complexes in order to extract a profile of the interaction pattern established
by the ligands bound to the protein target. This pattern is generally translated into fingerprints that
encode ligand–target interactions or, alternatively, into pharmacophoric features and then used in
similarity searches to find ligands that match the interaction pattern [123–131] (see Table 2 for a brief
description of several formalisms). In addition, the search of novel hits can be performed, imposing
constraints related to the shape and volume of the binding site.
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Table 2. Selection of pseudoquery methods categorized by the underlying protein-interaction model.

Model Methods Description

Interaction fingerprint-based

SIFt [132] Fingerprint encoding seven predefined types of
target–ligand interactions.

PLIP [133]
A web service for the detection and visualization

of seven protein–ligand interaction types
considering a 3D space.

FLIP [134] For each residue, 7 different interactions are
represented in 10 bits.

PADIF [135]
Fingerprints with the inclusion of information

relative to the strength of interactions and
unfavorable ones.

Pharmacophore-based

LigandScout [125]
Pharmacophores derived from six types of
nonbonded protein-ligand interactions and

volume constraints.

FLAP [126] Four-point pharmacophore fingerprints with a
shape component.

IChem [136] Converts the protein–ligand interaction pattern
in fingerprints and graphs.

TIFP [137]
Encodes a string of unique triplets (two

interacting atoms and an interaction
pseudo-atom).

The pioneering methods included key elements of the protein–ligand complex, such as the
formation of hydrogen bonds, hydrophobic or aromatic interactions, or contacts with acidic and basic
groups, often supplemented by isocontours of the binding site. As an example, Salentin et al. [138]
resorted to PLIP to perform a pharmacophoric search of over more than 170,000 complexes using
protein-ligand interaction profiles, leading to the disclosure of the FDA-approved malaria drug
amodiaquine as the top-ranking hit, which was subsequently validated as a potential anticancer
agent showing inhibitory activity on the target protein Hsp27. This demonstrates the potential of
pseudoquery methods for drug repurposing.

Recent methods have evolved to include solvation and entropy effects. For instance, Tran-Nguyen
et al. [131] included in their pseudoquery pharmacophoric tool the desolvation component of the
protein–ligand interaction energy using a Poisson−Boltzmann treatment. Furthermore, the analysis
was decomposed in three consecutive steps: (i) the detection of druggable cavities at the surface of the
protein target and the identification of pharmacophoric features, (ii) the generation of cavity-based
pharmacophore queries in the 3D space, and (iii) molecular alignment exploiting the cavity-based feature.
The proposed pharmacophoric model was benchmarked using DUD-E [139]. Unique chemotypes
were retrieved from high-throughput VS, being as efficient as state-of-the-art docking [140] and
shape-matching [32] methods in both pose prediction and ranking power.

As noted above, pseudoquery methods have also exploited interaction fingerprint patterns (IFP)
containing information about the contacts of the ligand with the protein, thus condensing the 3D
structural binding information into a 1D binary string, leading to a drastic reduction in the cost of VS.
This is exemplified by the Structural Interaction Fingerprint (SIFt; [132]) method, where crystallographic
ligands are divided into two groups of fragments: (i) atoms involved in protein–ligand interactions
(interaction fragments, IFs) and (ii) fragments generated by the random deletion of ligand atoms
used as a control. Then, for each ligand and the corresponding fragments, MACCS (Molecular
ACCess System) structural keys [141] were calculated and used as a fingerprint for similarity searching.
The results of their validation work suggested that IFs used as templates can increase the similarity
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search performance of conventional structural fingerprints. SIFt is included in Arpeggio [142], a web
server for the analysis of protein interactions with small-molecule ligands, proteins, and DNA.

The concept of IF has been adopted in alternatives models to outperform conventional
scoring functions in predicting the correct poses for drug-like compounds [143], similarity-based
screening [137,144–148], binding/unbinding kinetics [146], and drug resistance [147].

5.2. Similarity-Docking Strategies

An important challenge in VS is to create accurate scoring and ranking functions to identify hit
compounds active against specific targets. In this context, similarity measurements between compounds
can be used to assist molecular docking to score sampled poses [148–154] and to discriminate between
active and inactive molecules [155,156]. Exploiting the synergy between molecular similarity and
docking has received increasing interest in the last years, leading to hybridized tools, such as
HomDock [157] and Hybrid [96].

5.2.1. Predicting the Pose of Ligands

A direct application of merging molecular similarity and docking is related to improving the
prediction of the ligand pose in the binding pocket. At this point, exploiting the experimental
information on the binding mode of active compounds has been shown to enhance the performance
of predicting the pose of drug-like compounds [158–160]. For instance, the participants of the Drug
Design Data Resource (D3R) Grand Challenge 3 were challenged in predicting the binding poses of 24
cathepsin S ligands. Kumar and Zhang [161] tested the performance of three methods (PoPSS [150],
CDVS [162], and PoPSS-Lite) based on the concept of ligand 3D shape similarity. PoPSS evaluates the
shape similarity with existing crystallographic compounds bound to the target protein for predicting
the poses of query ligands with unknown binding modes. The ligand with the highest shape similarity
score was selected and placed into the binding pocket. After ligand placement, side-chain residues of
the binding pocket were repacked based on the query ligand conformation, followed by Monte Carlo
energy minimization of the protein-ligand complex. Finally, ligand-bound structures were scored using
the Rosetta energy function [163]. For CDVS and PoPSS-Lite, 3D shape similarity calculations were
also used to identify the ligand pose. However, once the suitable ligand–receptor pair was identified,
CDVS performed a standard docking using Glide, and PoPSS-Lite refined the pose with an energy
minimization. PoPSS-Lite exhibited an excellent performance in this challenge, leading to the lowest
mean root mean square deviation (RMSD) values between the native and predicted poses. Moreover,
CDVS and PoPSS were located among the best 15 methods tested for both metrics.

Shape similarity between the ligand conformation and the crystallographic ligand is the most
common scheme adopted for guiding the pose prediction. However, other similarity measurements and
methodological refinements have been explored. As an example Jacquemard et al. defined a benchmark
constituted by 2376 high-quality structures representing 64 proteins and compared the performance
of three rescoring schemes applying the similarity of IFP, graph matching of interaction patterns
(GRIM [137]), and ROCS [78] (Figure 5). GRIM and ROCS were more efficient than IFP rescoring based
on 2D fingerprints, even when the comparison involved structurally dissimilar molecules. In addition,
the speed of calculation for all the methods was improved, facilitating the processing of a large number
of poses.

The search for methodological innovations is also exemplified by Kumar and Zhang [151],
as they modified PoPSS to account for water-mediated protein–ligand interactions using a continuum
Poisson-Boltzmann (PB) solvation model, leading to the PoPSS-PB model. PoPSS-PB demonstrated an
excellent performance in D3R GC4, with mean and median RMSDs of 1.20 (ranked 10th out of 74) and
1.13 (ranked 9th out of 74) Å, improving the performance obtained for PoPSS and PoPSS-Lite.
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Figure 5. Overview of rescoring methods coupled to interaction fingerprints (IFP), graph matching
(GRIM), and ROCS. (a) In the IFP score Tc denotes the Tanimoto coefficient. (b) In the GRIM score, Nlig

is the number of aligned ligand points, Ncenter stands for the number of aligned centered points, Nprot

is the number of aligned protein points, SumCl is the sum of clique weights over all weights, RMSD is
the root mean square deviation of the matched cliques, and DiffI stands for the difference between the
number of interaction points in the query and the template compound. (c) The ROCS score is based on
the Tversky coefficient. Reprinted with permission from Springer Nature [79].

Finally, Varela-Rial et al. [164] also evaluated in the D3R Grand Challenge 4 an algorithm
named SkeleDock to define the binding mode based on the structure of a protein−ligand complex.
The algorithm defines graphs for the query and the template molecules, and then, these graphs are
compared to extract a common subgraph, which describes a continuous set of atoms whose element
(node) and bonds (edges) are equivalent in the two molecules (Figure 6). Thus, a mapping that links
atoms in query and template compounds can be identified, facilitating the conformational adjustment
of the atoms in the query ligand onto those in the template molecule, whereas atoms in the query
molecule with no equivalent counterpart in the template are positioned by using a tethered template
docking protocol. The algorithm was ranked 15th out of 74 according to the mean RMSD (1.33 Å) and
9th according to the median RMSD (1.02 Å).
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5.2.2. Similarity-Guided Score Scheme

In addition, to assist the prediction of the ligand pose in the binding cavity, similarity measurements
can also be used as a weighting factor in the reranking of the docked compounds. In fact, considering that
LB 3D-shape matching algorithms often produced better enrichments than docking, assessing the
overlay of docked poses relative to known crystallographic ligands could be valuable to retrieve active
compounds in screening studies. To this end, the scoring function in docking calculations could be
supplemented with 3D molecular similarity measurements to build the final ranking in the VS process,
taking into account that positive candidates accommodated in the active site are expected to share
similar structural and physicochemical features that resemble those of known actives in cocrystal
structures and improve the ranking of the screened ligands.

The first implementations of this LB and SB scheme in docking programs were performed by
Marialke et al. [157] and McGann [96] in the development of HomDock and Hybrid, respectively.
HomDock is a combination of optimization methods with graph-based molecular alignment
(GMA; [165]) that superposes a query molecule on a rigid template. GMA places candidate ligands
over the template and optimizes their placement in the field of the protein. Then, the ligands are
ranked according to their interaction with the protein and/or their structural similarity with the
ligand. On the other hand, Hybrid uses an exhaustive search algorithm, treating ligand and protein
structures as rigid bodies. Both the protein and ligand flexibility are addressed through multiple
conformers. Subsequently, the CGO ligand-based scoring function is applied. CGO scores based on
how well the docked molecule matches the shape and 3D arrangement of the chemical features of the
crystallographic ligand bound to the active site.

In another vein, Anighoro and Bajorath published a series of comparative studies where the best
poses of commercial docking software are directly scored using 3D similarity methods, such as the
whole-ligand 3D shape similarity and protein–ligand IFP similarity [76,155,156]. The protocol was
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validated by performing retrospective VS calculations for different targets, including dihydrofolate
reductase, glucocorticoid receptor, HIV-1 protease, vascular endothelial growth factor receptor-2,
adenosine A2A receptor, and β2 adrenergic receptor. As noted in Figure 7, the hybridized approach
yielded better performance in retrieving active compounds against the targets included in the validation
set. Thus, the results showed that ranking by whole-ligand 3D similarity calculations outperformed
the force field-based ranking tested for both global performance and early enrichments. It was also
shown that a ligand was less suitable as a reference for 3D similarity calculations if it contained
large solvent-exposed groups not directly interacting with the target. Finally, they highlighted the
importance that reference ligands should be engaged in interactions within the binding site as much
as possible.
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Under the same framework, our group has recently presented a 3D similarity scheme to enrich
the docking performance based on the usage of lipophilic descriptors [168] determined from quantum
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mechanical-based continuum solvation models [80]. The 3D similarity was determined by comparing
the 3D distribution of atomic lipophilicity computed by PharmScreen [31,169] (Figure 8), and the
similarity measurements were exploited in conjunction with the poses obtained by using three docking
programs: Glide, rDock [170], and GOLD [171]. Two hybrid algorithms were examined over 44 sets:
(i) rescoring ranking (RR), where the final ranking was determined according to the score obtained from
the 3D lipophilic similarity of the best pose generated by the docking method and the co-crystallized
ligand, and (ii) consensus ranking (CR), where the final score of the compounds was obtained by
merging the rankings provided directly from the docking method and from the RR. The results
obtained support the synergy of the hybrid LB and SB approaches, as the CR consistently showed
better performance than using only either the LB or SB methods. In addition, the results suggest that
CR may overcome the existence of multiple binding modes differing from the experimental pose of the
co-crystallized ligand.
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Figure 8. Representation of the hydrophobic molecular overlay exploited by PharmScreen.
(Top) Overlay of ZINC02046793 (template) and ZINC1489956 (active) pertaining to glycogen
phosphorylase®. (Bottom) Molecular alignment of ZINC0384989 (template) and ZINC1529323 (active)
pertaining to the dihydrofolate reductase. Orange and green contours denote the fields originated from
the cavitation and electrostatic components of the molecular lipophilicity. Reprinted with permission
from the American Chemical Society [80].

6. Exploiting Chemical Libraries and Biological Data

While selecting different LB and SB strategies may provide alternative approaches to enrich the
results of VS, the identification of a novel lead compound may be conditioned by the structural diversity
of the chemical space encoded in compound libraries. Therefore, the choice of a representative dataset
well-suited to the specific structural, physicochemical, and biological features of the macromolecular
target may be crucial for the successful outcome of a VS campaign, especially keeping in mind that
the available chemical libraries comprise only a small portion of the synthesizable chemical universe
of compounds.
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To facilitate this task, there has been continued progress in the availability of experimental data
in the public domain during the last two decades [172], which is exemplified in the consolidation of
curated databases of bioactive molecules with drug-like properties, as exemplified with ChEMBL [173],
PubChem [174], and DrugBank [175,176], where the user may find a comprehensive compilation of
diverse information, such as the chemical structure of the compounds, physicochemical properties,
biological assays data, related targets, pharmacokinetics and pharmacodynamics properties, metabolic
and signaling pathways, and patents. Currently, selection of the compounds can be performed through
a variety of chemical databases, which can be categorized into three main groups: public, commercial
(provided by vendors), and proprietary (Table 3; see references 177 and 178 for a detailed discussion).

Table 3. Examples of public and commercial databases (data taken from [177,178]).

Database Type No. Cpds

AstraZeneca with Enamine BBs Proprietary 1017

Boehr.-Ing. BICLAIM Proprietary 5 × 1011

CH/PMUNK Public >95 × 106

eMolecules Plus Commercial 5.9 × 108

Enamine Real Commercial >300 × 106

EVOspace Proprietary 1.6 × 1016

GDB-17 Public ~166 × 109

Lilly LPC Proprietary 2 × 1011

MASSIV Proprietary 1020

SAVI Public ~283 × 106

PGVL Proprietary 3 × 1012

PubChem Public 9.6 × 106

SCUBIDOO Public ~21 × 106

Sigma Aldrich Commercial 1.4 × 107

ZINC15 Commercial 2 × 106

In this context, rather than focusing the computational effort on the massive screening of larger
databases, one might consider the possibility to enhance the success of LB and SB strategies in the
search of novel hit compounds by resorting to the screening of targeted chemical libraries. An example
is the work by Miyao et al., who reported an algorithm for the exhaustive generation of chemical
structures based on inverse quantitative structure-property (QSPR)/activity (QSAR) relationships to
build datasets of compounds endowed with a suitable range of desired properties [179]. The synthetic
feasibility of the compounds may also be accounted from the availability of information about known
chemical reactions [180–182]. More recently, the de novo design algorithm for exploring chemical
space (DAECS) exploits the combination of a two-dimensional distribution of the chemical properties
with the projection of the biological activity for a set of training compounds in order to generate
structures in a specific target area of the chemical space [61,182]. A library of novel designed structures
is constructed through an iterative process that involves the selection of seed structures characterized
with selected chemical features and the generation of novel compounds by means of introducing slight
structural changes from the seed dataset.

The design of target chemical libraries is actually an undertaking of increasing interest, as illustrated
by a number of recent studies that have reported the implementation of artificial intelligence-based
algorithms [63–65,183–186]. One of them is the development of ReLeaSE (Reinforcement Learning
for Structural Evolution), which integrates a generative deep neural network with a predictive one
into a joint framework for the design of novel compounds satisfying certain chemical requirements,
as illustrated with the biased selection of compounds fulfilling a specific range of physical properties
(i.e., melting temperature and lipophilicity) or inhibitory activity against the desired target protein
(Janus protein kinase 2) [62]. Another example is the transfer-learning-based generation algorithm
proposed by Amabilino et al. [186], where recurrent neural networks are used as SMILES (Simplified
Molecular-Input Line-Entry System) generators and trained on a smaller set of molecules with the
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biological activity of interest for the design of focused libraries. On the other hand, the REINVENT
code proposed by Olivecrona et al. [187] also relies on a recurrent neural network model that operates
on a SMILES representation of molecules for the automated creation of molecules with predicted
biological activity. Very recently, this algorithm was adapted to enable the pair-based multi-objective
optimization of several molecular features based on Pareto dominance [188] and applied to the de novo
design of datasets of inhibitors targeting neuraminidase, acetylcholinesterase, and the main protease
of the severe acute respiratory syndrome coronavirus 2.

Another issue that deserves a brief discussion concerns the discovery of ligands able to modulate
protein–protein interactions (PPIs) in the early stages of drug discovery. Given the estimated 650,000
PPIs that comprise the human interactome, the stabilization and inhibition of PPIs may represent
a valuable strategy to alter the oligomerization equilibria of supramolecular protein complexes,
thus altering their physiological functions in the cell [189–191], which may thus be exploited in the
search of novel therapeutic approaches [192,193]. Nevertheless, the success of these studies may be
affected by the availability of chemical libraries with ligands suitable to interact with druggable pockets
at the interface of protein–protein complexes. In this context, it is worth noting the efforts made
toward the design of specific databases enriched in protein–protein modulators, such as PPI-HitProfiler,
which was developed to provide for any drug-like compound collection a focused chemical library
enriched in putative PPI inhibitors [194], 2P2IHUNTER, which is a learning machine tool for filtering
potential PPI modulators [195], and Fr-PPIChem, which reflects the collective effort of a French
consortium to provide a unique chemical library for PPI inhibition [196]. A comparative analysis of
different PPI-focused libraries was reported in the study by Zhang et al. [197], where they noticed
that PPI inhibitors tend to be larger and more hydrophobic than standard drugs and that PPI-focused
libraries, although designed using different strategies, tend to share common chemical subspaces.
Efforts have also been conducted for the application of combined strategies in the identification of
PPI modulators. As an example, Singh et al. [198] proposed a VS protocol using a hybrid SB and LB
method, highlighting the benefits of 3D topological descriptors to assess the post-docking output.
As a validation set, 11 PPI targets with known active and inactive compounds were considered. In a
first step, the compounds were docked using Surflex, and the docked poses were post-processed to
calculate the shape similarity and the structural interaction fingerprint similarity to the co-crystallized
PPI inhibitor. Notably, the hybrid protocol showed an improved performance for numerous targets,
supporting the application of these combined techniques for prospective studies of PPI modulators.

In a different context, it is also worth mentioning here the systemic chemogenomics/QSAR
procedure introduced by Cruz-Monteagudo et al. [199], which aimed to generate a disease-relevant
pool of ligands by combining phenotypic data with LB and SB information in a sequential process
that ended up with a phenotypic VS performed with QSAR models (Figure 9). The first step is
the selection of a representative set of ligands targeting a disease with a measurable therapeutic
phenotype, such as compounds successfully evaluated in clinical trials. Then, information about
the ligand–target interaction, key genes, or protein targets involved in the molecular interactions
and reaction networks are compiled to build a disease-relevant chemogenomics space, which should
encompass potential targets directly or indirectly (i.e., cascading effects) implicated in the physiological
response. Gene ontology is subsequently used to encode the systemic effect of each ligand in fingerprints
containing both chemical descriptors and biological information. The codified compounds are split into
two classes: ligands that significantly interact with at least one target (phenotype-positive class) and
compounds with no significant interaction with any of the targets associated with the desired phenotype
(phenotype-negative class). Finally, a QSAR-based VS methodology is performed. This protocol was
utilized in a retrospective study aimed at prioritizing ligands acting as neuroprotective agents in
Parkinson’s disease, and a significant fraction of the drug candidates used as starting points could be
recovered at early fractions of the screened data.
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As a final remark, it is worth emphasizing the relevance of curating the activity data in the analysis
of the compounds and the preparation of targeted chemical libraries, minimizing the bias introduced
by spurious hits, which can arise from a number of unexpected factors, such as covalent modification
of specific protein residues or changes in the redox state of a range of ligands. In particular, a large
number of cases have been attributed to self-aggregation of the ligand in an aqueous solution [200–202].
The tendency of small organic molecules to spontaneously form colloidal self-aggregates can lead to
undesired artifacts in the screening of drug-like compounds, resulting in the identification of false
positives [203,204]. The colloidal aggregates formed by these types of compounds exhibit common
trends, such as the lack of robust structure-activity relationships, as well as the identification of
time-dependent noncompetitive-like inhibition [200,205], likely reflecting the nonspecific inhibitory
mechanisms related to adsorption of the target protein onto the aggregates or the induction of
conformational alterations that affect the protein’s activity [206]. In these cases, a critical parameter
to be considered is the critical aggregation concentration of the compound, which turns out to be
in the micromolar range for a significant number of aggregating drug-like compounds [202,207].
Overall, this discussion suffices to emphasize the need to perform a detailed curation of the biological
data and of the conditions used in experimental assays, as this information may have an unexpected
influence on the efficacy of the bioactive compounds.

7. Conclusions

In the past decades, VS has been a powerful alternative to high-throughput screening assays due
to the reduced expensiveness, the continued progress in computer resources, and the refinement in LB
and SB techniques, often leading to hit rate enrichments that outperform the results obtained with
experimental screenings. Being the most widely used strategy for disclosing novel hit compounds in
the early stages of drug discovery, the success of VS campaigns is also severely affected by the intrinsic
shortcomings of both LB and SB methods, which makes it necessary to search for novel computational
strategies that exploit the merits of the individual techniques synergistically.
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In the last years, we have witnessed a flourishment of different combined LB and SB approaches,
ranging from the hierarchical application of techniques in multi-step filtering process to novel methods
that integrate LB and SB techniques into a standalone framework. The progress is encouraging, but it
can be anticipated that the adoption of these integrated strategies will depend on two main factors.
First, an extensive benchmarking of the distinct combination strategies, including a diverse sets of targets
covering distinctive structural and physicochemical features, the calibration of different descriptors
for similarity measurements, and docking algorithms in retrospective studies should be necessary,
eventually complemented with the prospective application to drug discovery projects. These studies
should be valuable to judge not only the improvement obtained with the usage of integrated methods
relative to either pure LB or SB techniques but, also, to identify the optimal combination strategy in
light of the druggability characteristics of the target protein. Second, the ability to implement the
combined LB and SB strategies in automated modeling platforms should provide user-friendly access
to the screening of targeted-oriented chemical libraries, guidelines for an appropriate design of the
combination strategy, and graphical display facilities to analyze the results. The implementation in
modern software will be necessary to facilitate the adoption of the combined strategies by the drug
discovery community.

Author Contributions: Conceptualization, J.V., E.H. and F.J.L.; writing—original draft, J.V.; and writing—review
and editing, J.V., M.L., E.G., E.H. and F.J.L. All authors have read and agreed to the published version of
the manuscript.

Funding: We thank the Ministerio de Economia y Competitividad (MINECO; Nos. SAF2017-88107-R,
MDM-2017-0767, and AEI/FEDER UE) and the Generalitat de Catalunya (Nos. 2017SGR1746 and 2015-DI-052) for
financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Free Energy Calculations. Theory and Applications in Chemistry and Biology; Chipot, C., Pohorille, A., Eds.;
Springer: Berlin/Heidelberg, Germany, 2007.

2. Abel, R.; Wang, L.; Harder, E.D.; Berne, B.J.; Friesner, R.A. Advancing drug discovery through enhanced free
energy calculations. Acc. Chem. Res. 2017, 50, 1625–1632. [CrossRef] [PubMed]

3. Williams-Noonan, B.J.; Yuriev, E.; Chalmers, D.K. Free energy methods in drug design: Prospects of
“alchemical perturbation” in medicinal chemistry. J. Med. Chem. 2018, 61, 638–649. [CrossRef] [PubMed]

4. Christ, C.D.; Fox, T. Accuracy assessment and automation of free energy calculations for drug design. J. Chem.
Inf. Model. 2013, 54, 108–120. [CrossRef] [PubMed]

5. Mondal, D.; Florian, J.; Warshel, A. Exploring the effectiveness of binding free energy calculations. J. Phys.
Chem. B 2019, 123, 8910–8915. [CrossRef] [PubMed]

6. Cournia, Z.; Allen, B.; Sherman, W. Relative binding free energy calculations in drug discovery: Recent
advances and practical considerations. J. Chem. Inf. Model. 2017, 57, 2911–2937. [CrossRef]

7. Zhang, H.; Gattuso, H.; Dumont, E.; Cai, W.; Monari, A.; Chipot, C.; Dehez, F. Accurate estimation of the
standard binding free energy of netropsin with DNA. Molecules 2018, 23, 228. [CrossRef]

8. Fu, H.; Gumbart, J.C.; Chen, H.; Shao, X.; Cai, W.; Chipot, C. BFFE: A user-friendly graphical interface
facilitating absolute binding free-energy calculations. J. Chem. Inf. Model. 2018, 58, 556–560. [CrossRef]

9. Jespers, W.; Esguerra, M.; Aqvist, J.; Gutiérrez-de-Terán, H.J. QligFEP: An automated workflow for small
molecule free energy calculations in Q. J. Cheminform. 2019, 11, 26. [CrossRef]

10. Gioia, D.; Bertazzo, M.; Recanatini, M.; Masetti, M.; Cavalli, A. Dynamic docking: A paradigm shift in
computational drug discovery. Molecules 2017, 22, 2029. [CrossRef]

11. Ruiz-Carmona, S.; Schmidtke, P.; Luque, F.J.; Baker, L.; Matassova, N.; Davis, B.; Roughley, S.; Murray, J.;
Hubbard, R.; Barril, X. Dynamic undocking and the quasi-bound state as tools for drug discovery. Nat. Chem.
2017, 9, 201–206. [CrossRef]

12. Cavasotto, C.N.; Aucar, M.G. High-throughput docking using quantum mechanical scoring. Front. Chem.
2020, 8, 246. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/acs.accounts.7b00083
http://www.ncbi.nlm.nih.gov/pubmed/28677954
http://dx.doi.org/10.1021/acs.jmedchem.7b00681
http://www.ncbi.nlm.nih.gov/pubmed/28745501
http://dx.doi.org/10.1021/ci4004199
http://www.ncbi.nlm.nih.gov/pubmed/24256082
http://dx.doi.org/10.1021/acs.jpcb.9b07593
http://www.ncbi.nlm.nih.gov/pubmed/31560539
http://dx.doi.org/10.1021/acs.jcim.7b00564
http://dx.doi.org/10.3390/molecules23020228
http://dx.doi.org/10.1021/acs.jcim.7b00695
http://dx.doi.org/10.1186/s13321-019-0348-5
http://dx.doi.org/10.3390/molecules22112029
http://dx.doi.org/10.1038/nchem.2660
http://dx.doi.org/10.3389/fchem.2020.00246
http://www.ncbi.nlm.nih.gov/pubmed/32373579


Molecules 2020, 25, 4723 19 of 27

13. Colizzi, F.; Perozzo, R.; Scapozza, L.; Recanatini, M.; Cavalli, A. Single-molecule pulling simulations can
discern active from inactive enzyme inhibitors. J. Am. Chem. Soc. 2010, 132, 7361–7371. [CrossRef] [PubMed]

14. Gimeno, A.; Ojeda-Montes, M.J.; Tomás-Hernández, S.; Cereto-Massagué, A.; Beltrán-Debón, R.; Mulero, M.;
Pujadas, G.; García-Vallvé, S. The light and dark sides of virtual screening: What is there to know? Int. J.
Mol. Sci. 2019, 20, 1375. [CrossRef] [PubMed]

15. Yasuo, N.; Sekijima, M. Improved method of structure-based virtual screening via interaction-energy-based
learning. J. Chem. Inf. Model. 2019, 59, 1050–1061. [CrossRef]

16. Ertl, P. Cheminformatics analysis of organic substituents: Identification of the most common substituents,
calculation of substituent properties, and automatic identification of drug-like bioisosteric groups. J. Chem.
Inf. Comput. Sci. 2003, 43, 374–380. [CrossRef]

17. Shoichet, B.K. Virtual screening of chemical libraries. Nature 2004, 432, 862–865. [CrossRef]
18. Schneider, G. Virtual screening: An endless staircase? Nat. Rev. Drug Discov. 2010, 9, 273–276. [CrossRef]
19. Westermaier, Y.; Barril, X.; Scapozza, L. Virtual screening: An in silico tool for interlacing the chemical

universe with the proteome. Methods 2015, 71, 44–57. [CrossRef]
20. Taylor, R.D.; Jewsbury, P.J.; Essex, J.W. A review of protein-small molecule docking methods. J. Comput.

Aided Mol. Des. 2002, 16, 151–166. [CrossRef]
21. Li, J.; Fu, A.; Zhang, L. An overview of scoring functions used for protein–ligand interactions in molecular

docking. Interdiscip. Sci. Comput. Life Sci. 2019, 11, 320–328. [CrossRef]
22. Torres, P.H.M.; Sodero, A.C.R.; Jofily, P.; Silva, F.P., Jr. Key topics in molecular docking for drug design. Int. J.

Mol. Sci. 2019, 20, 4574. [CrossRef] [PubMed]
23. Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for molecular docking: A review. Biophys. Rev. 2017, 9,

91–102. [CrossRef] [PubMed]
24. Concepts and Applications of Molecular Similarity; Johnson, M.A.; Maggiora, G.M. (Eds.) John Wiley & Sons:

New York, NY, USA, 1990.
25. Jørgensen, A.M.M.; Pedersen, J.T. Structural diversity of small molecule libraries. J. Chem. Inf. Comput. Sci.

2001, 41, 338–345. [CrossRef]
26. Ivanciuc, O.; Taraviras, S.L.; Cabrol-Bass, D. Quasi-orthogonal basis sets of molecular graph descriptors as a

chemical diversity measure. J. Chem. Inf. Comput. Sci. 2000, 40, 126–134. [CrossRef] [PubMed]
27. Duan, J.; Dixon, S.L.; Lowrie, J.F.; Sherman, W. Analysis and comparison of 2D fingerprints: Insights into

database screening performance using eight fingerprint methods. J. Mol. Graph. Model. 2010, 29, 157–170.
[CrossRef]

28. Cross, S.; Baroni, M.; Carosati, E.; Benedetti, P.; Clementi, S. FLAP: GRID Molecular interaction fields in
virtual screening. Validation using the DUD data set. J. Chem. Inf. Model. 2010, 50, 1442–1450. [CrossRef]

29. Mestres, J.; Rohrer, D.C.; Maggiora, G.M. MIMIC: A molecular-field matching program. Exploiting applicability
of molecular similarity approaches. J. Comput. Chem. 1997, 18, 934–954. [CrossRef]

30. Cheeseright, T.J.; Mackey, M.D.; Melville, J.L.; Vinter, J.G. FieldScreen: Virtual screening using molecular
fields. Application to the DUD data set. J. Chem. Inf. Model. 2008, 48, 2108–2117. [CrossRef] [PubMed]

31. Vázquez, J.; Deplano, A.; Herrero, A.; Ginex, T.; Gibert, E.; Rabal, O.; Oyarzabal, J.; Herrero, E.; Luque, F.J.
Development and validation of molecular overlays derived from three-dimensional hydrophobic similarity
with PharmScreen. J. Chem. Inf. Model. 2018, 58, 1596–1609. [CrossRef]

32. Hawkins, P.C.D.; Skillman, A.G.; Nicholls, A. Comparison of shape-matching and docking as virtual
screening tools. J. Med. Chem. 2007, 50, 74–82. [CrossRef]

33. Sastry, G.M.; Dixon, S.L.; Sherman, W. Rapid shape-based ligand alignment and virtual screening method
based on atom/feature-pair similarities and volume overlap scoring. J. Chem. Inf. Model. 2011, 51, 2455–2466.
[CrossRef] [PubMed]

34. Abrahamian, E.; Fox, P.C.; Nærum, L.; Thøger Christensen, I.; Thøgersen, H.; Clark, R.D. Efficient generation,
storage, and manipulation of fully flexible pharmacophore multiplets and their use in 3-D similarity searching.
J. Chem. Inf. Comput. Sci. 2003, 43, 458–468. [CrossRef] [PubMed]

35. Sperandio, O.; Miteva, M.; Villoutreix, B. Combining ligand- and structure-based methods in drug design
projects. Curr. Comput. Aided Drug Des. 2008, 4, 250–258. [CrossRef]

36. Talevi, A.; Gavernet, L.; Bruno-Blanch, L. Combined virtual screening strategies. Curr. Comput. Aided
Drug Des. 2009, 5, 23–37. [CrossRef]

http://dx.doi.org/10.1021/ja100259r
http://www.ncbi.nlm.nih.gov/pubmed/20462212
http://dx.doi.org/10.3390/ijms20061375
http://www.ncbi.nlm.nih.gov/pubmed/30893780
http://dx.doi.org/10.1021/acs.jcim.8b00673
http://dx.doi.org/10.1021/ci0255782
http://dx.doi.org/10.1038/nature03197
http://dx.doi.org/10.1038/nrd3139
http://dx.doi.org/10.1016/j.ymeth.2014.08.001
http://dx.doi.org/10.1023/A:1020155510718
http://dx.doi.org/10.1007/s12539-019-00327-w
http://dx.doi.org/10.3390/ijms20184574
http://www.ncbi.nlm.nih.gov/pubmed/31540192
http://dx.doi.org/10.1007/s12551-016-0247-1
http://www.ncbi.nlm.nih.gov/pubmed/28510083
http://dx.doi.org/10.1021/ci000111h
http://dx.doi.org/10.1021/ci990064x
http://www.ncbi.nlm.nih.gov/pubmed/10661559
http://dx.doi.org/10.1016/j.jmgm.2010.05.008
http://dx.doi.org/10.1021/ci100221g
http://dx.doi.org/10.1002/(SICI)1096-987X(199705)18:7&lt;934::AID-JCC6&gt;3.0.CO;2-S
http://dx.doi.org/10.1021/ci800110p
http://www.ncbi.nlm.nih.gov/pubmed/18991371
http://dx.doi.org/10.1021/acs.jcim.8b00216
http://dx.doi.org/10.1021/jm0603365
http://dx.doi.org/10.1021/ci2002704
http://www.ncbi.nlm.nih.gov/pubmed/21870862
http://dx.doi.org/10.1021/ci025595r
http://www.ncbi.nlm.nih.gov/pubmed/12653509
http://dx.doi.org/10.2174/157340908785747447
http://dx.doi.org/10.2174/157340909787580854


Molecules 2020, 25, 4723 20 of 27

37. Spadaro, A.; Negri, M.; Marchais-Oberwinkler, S.; Bey, E.; Frotscher, M. Hydroxybenzothiazoles as new
nonsteroidal inhibitors of 17®-hydroxysteroid dehydrogenase type 1 (17®-HSD1). PLoS ONE 2012, 7, 29252.
[CrossRef] [PubMed]

38. Debnath, S.; Debnath, T.; Bhaumik, S.; Majumdar, S.; Kalle, A.M.; Aparna, V. Discovery of novel potential
selective HDAC8 inhibitors by combine ligand-based, structure-based virtual screening and in-vitro biological
evaluation. Sci. Rep. 2019, 9, 17174. [CrossRef]

39. Wilson, G.L.; Lill, M.A. Integrating structure-based and ligand-based approaches for computational drug
design. Future Med. Chem. 2011, 3, 735–750. [CrossRef]

40. Drwal, M.N.; Griffith, R. Combination of ligand- and structure-based methods in virtual screening.
Drug Discov. Today Technol. 2013, 10, e395–e401. [CrossRef] [PubMed]

41. Wang, Z.; Sun, H.; Shen, C.; Hu, X.; Gao, J.; Li, D.; Cao, D.; Hou, T. Combined strategies in structure-based
virtual screening. Phys. Chem. Chem. Phys. 2020, 22, 3149–3159. [CrossRef] [PubMed]

42. Spyrakis, F.; Bidon-Chanal, A.; Barril, X.; Luque, F.J. Protein flexibility and ligand recognition: Challenges for
molecular modeling. Curr. Top. Med. Chem. 2011, 11, 192–210. [CrossRef]

43. Lexa, K.W.; Carlson, H.A. Protein flexibility in docking and surface mapping. Q. Rev. Biophys. 2012,
45, 301–343. [CrossRef] [PubMed]

44. Salmaso, V.; Moro, S. Bridging molecular docking to molecular dynamics in exploring ligand-protein
recognition process: An overview. Front. Pharmacol. 2018, 9, 923. [CrossRef] [PubMed]

45. Chen, Y.C. Beware of docking! Trends Pharmacol. Sci. 2015, 36, 78–95. [CrossRef] [PubMed]
46. Sridhar, A.; Ross, G.A.; Biggin, P.C. Waterdock 2.0: Water placement prediction for Holo-structures with a

Pymol plugin. PLoS ONE 2017, 12, e0172743. [CrossRef] [PubMed]
47. Rudling, A.; Orro, A.; Carlsson, J. Prediction of ordered water molecules in protein binding sites from

molecular dynamics simulations: The impact of ligand binding on hydration networks. J. Chem. Inf. Model.
2018, 58, 350–361. [CrossRef]

48. Sciebel, J.; Gaspari, R.; Wulsdorf, T.; Ngo, K.; Sohn, C.; Schrader, T.E.; Cavalli, A.; Ostermann, A.; Heine, A.;
Klebe, G. Intriguing role of water in protein-ligand binding studies by neutro crystallography on trypsin
complexes. Nat. Commun. 2018, 9, 3559. [CrossRef]

49. Maurer, M.; Oostenbrink, C. Water in protein hydration and ligand recognition. J. Mol. Recog. 2019, 32, e2810.
[CrossRef] [PubMed]

50. Geschwindner, S.; Ulander, J. The current impact of water thermodynamics for small-molecule drug discovery.
Expert Opin. Drug Discov. 2019, 14, 1221–1225. [CrossRef]

51. Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug
design strategies. Molecules 2015, 20, 13384–13421. [CrossRef]

52. Liu, J.; Wang, R. Classification of current scoring functions. J. Chem. Inf. Model. 2015, 55, 475–482. [CrossRef]
53. Guedes, I.A.; Pereira, F.S.S.; Dardenne, L.E. Empirical scoring functions for structure-based virtual screening:

Applications, critical aspects, and challenges. Front. Pharmacol. 2018, 9, 1089. [CrossRef] [PubMed]
54. Palacio-Rodríguez, K.; Lans, I.; Cavasotto, C.N.; Cossio, P. Exponential consensus ranking improves the

outcome in docking and receptor ensemble docking. Sci. Rep. 2019, 9, 5142. [CrossRef] [PubMed]
55. Hein, M.; Zilian, D.; Sotriffer, C.A. Docking compared to 3D-pharmacophores: The scoring function challenge.

Drug Discov. Today Technol. 2010, 4, e229–e236. [CrossRef]
56. Eckert, H.; Bajorath, J. Molecular similarity analysis in virtual screening: Foundations, limitations and novel

approaches. Drug Discov. Today 2007, 12, 225–233. [CrossRef]
57. Grinter, S.Z.; Zou, X. Challenges, applications, and recent advances of protein-ligand docking in

structure-based drug design. Molecules 2014, 19, 10150–10176. [CrossRef]
58. Li, Y.; Han, L.; Liu, Z.; Wang, R. Comparative assessment of scoring functions on an updated benchmark:

2. Evaluation methods and general results. J. Chem. Inf. Model. 2014, 54, 1717–1736. [CrossRef]
59. Antunes, D.A.; Devaurs, D.; Kavraki, L.E. Understanding the challenges of protein flexibility in drug design.

Expert Opin. Drug Discov. 2015, 10, 1301–1313. [CrossRef] [PubMed]
60. Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T. Comprehensive evaluation of ten docking

programs on a diverse set of protein-ligand complexes: The prediction accuracy of sampling power and
scoring power. Phys. Chem. Chem. Phys. 2016, 18, 12964–12975. [CrossRef]

61. Takeda, S.; Kaneko, H.; Funatsu, K. Chemical-space-based de novo design method to generate drug-like
molecules. J. Chem. Inf. Model. 2016, 56, 1885–1893. [CrossRef]

http://dx.doi.org/10.1371/journal.pone.0029252
http://www.ncbi.nlm.nih.gov/pubmed/22242164
http://dx.doi.org/10.1038/s41598-019-53376-y
http://dx.doi.org/10.4155/fmc.11.18
http://dx.doi.org/10.1016/j.ddtec.2013.02.002
http://www.ncbi.nlm.nih.gov/pubmed/24050136
http://dx.doi.org/10.1039/C9CP06303J
http://www.ncbi.nlm.nih.gov/pubmed/31995074
http://dx.doi.org/10.2174/156802611794863571
http://dx.doi.org/10.1017/S0033583512000066
http://www.ncbi.nlm.nih.gov/pubmed/22569329
http://dx.doi.org/10.3389/fphar.2018.00923
http://www.ncbi.nlm.nih.gov/pubmed/30186166
http://dx.doi.org/10.1016/j.tips.2014.12.001
http://www.ncbi.nlm.nih.gov/pubmed/25543280
http://dx.doi.org/10.1371/journal.pone.0172743
http://www.ncbi.nlm.nih.gov/pubmed/28235019
http://dx.doi.org/10.1021/acs.jcim.7b00520
http://dx.doi.org/10.1038/s41467-018-05769-2
http://dx.doi.org/10.1002/jmr.2810
http://www.ncbi.nlm.nih.gov/pubmed/31456282
http://dx.doi.org/10.1080/17460441.2019.1664468
http://dx.doi.org/10.3390/molecules200713384
http://dx.doi.org/10.1021/ci500731a
http://dx.doi.org/10.3389/fphar.2018.01089
http://www.ncbi.nlm.nih.gov/pubmed/30319422
http://dx.doi.org/10.1038/s41598-019-41594-3
http://www.ncbi.nlm.nih.gov/pubmed/30914702
http://dx.doi.org/10.1016/j.ddtec.2010.12.003
http://dx.doi.org/10.1016/j.drudis.2007.01.011
http://dx.doi.org/10.3390/molecules190710150
http://dx.doi.org/10.1021/ci500081m
http://dx.doi.org/10.1517/17460441.2015.1094458
http://www.ncbi.nlm.nih.gov/pubmed/26414598
http://dx.doi.org/10.1039/C6CP01555G
http://dx.doi.org/10.1021/acs.jcim.6b00038


Molecules 2020, 25, 4723 21 of 27

62. Popova, M.; Isayev, O.; Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv. 2018,
4, eaap7885. [CrossRef]

63. Fischer, T.; Gazzola, S.; Riedl, R. Approaching target selectivity by de novo drug design. Expert. Opin. Drug
Discov. 2019, 14, 791–803. [CrossRef]

64. Méndez-Lucio, O.; Baillif, B.; Clevert, D.-A.; Rouquié, D.; Wichard, J. De novo generation of hit-like molecules
from gene expression signatures using artificial intelligence. Nat. Commun. 2020, 11, 10. [CrossRef]

65. Yuan, Y.; Pei, J.; Lai, L. LigBuilder V3: A multi-target de novo drug design approach. Front. Chem. 2020, 8,
142. [CrossRef] [PubMed]

66. Swann, S.L.; Brown, S.P.; Muchmore, S.W.; Patel, H.; Merta, P.; Locklear, J.; Hajduk, P.J. A Unified, probabilistic
framework for structure- and ligand-based virtual screening. J. Med. Chem. 2011, 54, 1223–1232. [CrossRef]
[PubMed]

67. Cleves, A.E.; Jain, A.N. Structure- and ligand-based virtual screening on DUD-E+: Performance dependence
on approximations to the binding pocket. J. Chem. Inf. Model. 2020, 60, 4296–4310. [CrossRef]

68. Kooistra, A.J.; Vischer, H.F.; McNaught-Flores, D.; Leurs, R.; De Esch, I.J.P.; De Graaf, C. Function-specific
virtual screening for GPCR ligands using a combined scoring method. Sci. Rep. 2016, 6, 28288. [CrossRef]

69. Tan, L.; Lounkine, E.; Bajorath, J. Similarity searching using fingerprints of molecular fragments involved in
protein-ligand interactions. J. Chem. Inf. Model. 2008, 48, 2308–2312. [CrossRef]

70. Tan, L.; Bajorath, J. Utilizing target-ligand interaction information in fingerprint searching for ligands of
related targets. Chem. Biol. Drug Des. 2009, 74, 25–32. [CrossRef]

71. Meslamani, J.; Li, J.; Sutter, J.; Stevens, A.; Bertrand, H.O.; Rognan, D. Protein-ligand-based pharmacophores:
Generation and utility assessment in computational ligand profiling. J. Chem. Inf. Model. 2012, 52, 943–955.
[CrossRef] [PubMed]

72. Larsson, M.; Fraccalvieri, D.; Andersson, C.D.; Bonati, L.; Linusson, A.; Andersson, P.L. Identification of
potential aryl hydrocarbon receptor ligands by virtual screening of industrial chemicals. Environ. Sci.
Pollut. Res. 2018, 25, 2436–2449. [CrossRef]

73. Tanrikulu, Y.; Schneider, G. Pseudoreceptor models in drug design: Bridging ligand- and receptor-based
virtual screening. Nat. Rev. Drug Discov. 2008, 7, 667–677. [CrossRef] [PubMed]

74. Lloyd, D.G.; Buenemann, C.L.; Todorov, N.P.; Manallack, D.T.; Dean, P.M. Scaffold hopping in de novo design.
Ligand generation in the absence of receptor information. J. Med. Chem. 2004, 47, 493–496. [CrossRef]

75. Lorenzo, V.P.; Barbosa Filho, J.M.; Scotti, L.; Scotti, M.T. Combined structure- and ligand-based virtual
screening to evaluate caulerpin analogs with potential inhibitory activity against monoamine oxidase B. Rev.
Bras. Farmacogn. 2015, 25, 690–697. [CrossRef]

76. Anighoro, A.; Bajorath, J. Three-dimensional similarity in molecular docking: Prioritizing ligand poses on
the basis of experimental binding modes. J. Chem. Inf. Model. 2016, 56, 580–587. [CrossRef]

77. Anighoro, A.; Bajorath, J. A hybrid virtual screening protocol based on binding mode similarity.
Methods Mol. Biol. 2018, 1824, 165–176. [PubMed]

78. Jacquemard, C.; Drwal, M.N.; Desaphy, J.; Kellenberger, E. Binding mode information improves fragment
docking. J. Cheminform. 2019, 11, 24. [CrossRef]

79. Jacquemard, C.; Tran-Nguyen, V.-K.; Drwal, M.N.; Rognan, D.; Kellenberger, E. Local interaction density
(LID), a fast and efficient tool to prioritize docking poses. Molecules 2019, 24, 2610. [CrossRef] [PubMed]

80. Vázquez, J.; Deplano, A.; Herrero, A.; Gibert, E.; Herrero, E.; Luque, F.J. Assessing the performance of mixed
strategies to combine lipophilic molecular similarity and docking in virtual screening. J. Chem. Inf. Model.
2020, 60, 4231–4245. [CrossRef]

81. Ai, G.; Tian, C.; Deng, D.; Fida, G.; Chen, H.; Ding, L.; Ma, Y.; Gu, Y. A Combination of 2D similarity search,
pharmacophore, and molecular docking techniques for the identification of vascular endothelial growth
factor receptor-2 inhibitors. Anticancer. Drugs 2015, 26, 399–409. [CrossRef] [PubMed]
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