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Abstract: We determine the theoretical model for the characterization of the behaviour of
Newtonian and non-Newtonian fluids inside a microchannel with segments of different widths. This is
done in order to examine the accuracy of a prototype which consists in microscale electronic detection
of a fluid/air front advance in order to disclosure different diseases that can be distinguished by the
change in the normal rheological characteristics of blood or plasma. We will also test the accuracy
of the device when examining Newtonian fluids.

I. INTRODUCTION

Micro and nano scale fluidics has been a widely stud-
ied field over the last forty years and has contributed to
the progress of technologies such as drug delivery, bio-
logical processing, computation or encryption [1]. The
advantages of microfluidic devices are their small size,
the use of low amount of sample and their ability to re-
produce laminar flow conditions, as well as the low effect
produced by gravity in comparison with macroscale sys-
tems. However, phenomena such as surface tension and
capillary forces become relevant.
One potential application for this kind of technology is
its use for medical instruments development and/or im-
provement. Some serious diseases could be diagnosed
by the change in the rheological properties of blood [2],
a non-Newtonian fluid which its non-linear behaviour
varies mainly by the quantity of red blood cells it con-
tains (parameter characterized by the hematocrit). At
this moment, the most used technology for this kind of
diagnosis are tests based on macroscale analysis of blood
samples which cost a lot of time, sample quantity and
money.
The RheoDx team is working on the development of a
microscale device capable of getting the same results as
the ones given by the macroscale machine but using elec-
tronic detection of the fluid front flow in a microchannel,
which would give information like the viscosity, the shear
rate and other rheological properties of the sample.
The first step for achieving this goal is to create a the-
oretical model for the behaviour of the fluids inside the
microchannel and, once the prototype has been manufac-
tured, test its accuracy by running tests with well char-
acterized Newtonian fluids, such as water, and creating
a standard through the characterisation of whole healthy
blood. This first parts of the process is where this paper
is focused on.

II. EXPERIMENTAL SETUP

The experimental configuration consists of a pump
connected to a reservoir that holds the fluid inside and
which is also connected to the microchannel by a tube.

The pump is controlled through a computer with a
graphic interface, and the microchannel, fabricated on
polydimethylsiloxane (PDMS) attached on glass by using
plasma bonding, is on top of a plate which has electrodes
printed on it. In Figure 1 we can see an schematic rep-
resentation of the set-up.

FIG. 1: Experimental setup.

We must remark that in this specific experiment, we have
used a microchannel with four different segments which
differ in terms of width. This is because the aim of this
prototype is to be able to get a complete set of data from
the fluid in just one measurement and inducing just one
pressure, if we have different widths, we can get a whole
profile of data due to geometric factors, while if we just
had one width we could only get one single point. De-
tails on the set-up dimensions and the segment widths
are included in Table I and Table II respectively.
When we activate the pump, the fluid gets into the mi-
crochannel entering by the widest segment, and the front
is detected from the connection of an array of electrodes
(this is due to the fact that when a fluid with electric
conductivity,as water or blood, touches the two paired
electrodes these connect, producing an electric signal).
The detection is processed by the interface developed by
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RheoDx for this prototype, which will return the time
the fluid front has spent to reach each pair of electrodes
in the microchannel. Then it automatically creates a file
.txt type with the time for the 24 pairs of electrodes in
the setup.
An easy way to examine the behaviour of the fluid is to
study the fluid/air front advancement. In the microchan-

nel, the front velocity ḣ is defined as the difference in the
fluid front position h(t) through time, and h(t) is defined
as the average position of the front in the different fluid

layers h(t) = 1
N

∑N
j=1 hj(t), hj(t) being the fluid front

position in respect to the z axis, as it is shown in Figure
2. This allow us to work with values that are indepen-
dent of the position in z.
Since we know that between the electrode families there
is a gap of 8200µm and that between the electrodes of
the same family is 350µm, with the quick division of

ḣ =
∆d

∆t
(1)

where ∆d is the separation between the electrodes and
∆t the elapsed time, we subtract the mean front veloci-
ties of the front for all the sections of the microchannel.

FIG. 2: The velocity vx(z) is the x component of velocity
inside the microchannel on function of the height (z). h(t) is
the mean front position of the fluid.

All the values for the different parameters implied in
the experiment are

Lenght of the tube lt (mm) 20

Radius of the tube r (µm) 127

Lenght of the segments li (mm) 10

Height of the fluid-air interface in the reservoir hl (mm) 5

Height of the microchannel bi (µm) 290

TABLE I: Values of relevance of the experimental setup.

Segment 1 Segment 2 Segment 3 Segment 4

Segments width

wi (mm) 1 0.85 0.7 0.5

TABLE II: Values of the width of the different channel seg-
ments.

III. THEORETICAL MODEL

The simplest characterization model for linear and
non-linear fluids would have to be the Power Law Model,
also known as the Oswaldt-de-Waele model. In this two-
parameter model we relate the stress at which we submit
the fluid with the shear rate that at the same time is
related to the mean front velocity of the fluid like

γ̇ =
ḣ

b
(2)

And so

η(γ̇) = mγ̇n−1 (3)

As we see from this last equation, the viscosity of a non-
Newtonian fluids depend on the shear rate as well as of
the (n − 1) exponent and, is immediate to see, that if
n = 1, we recover the characteristic linear expression
for a Newtonian fluid. In the case of n < 1 we would
discern Shear Thinning behaviour which means that as
shear rate increases there is a descent in viscosity, and
if n > 1 we would discern Shear Thickening behaviour
which is when there is an increase in the viscosity as we
increase the shear rate. m would be a parameter that
also characterises the nature of the fluid, so if it is New-
tonian it will be equal to the viscosity of the fluid while
for a non-Newtonian when the γ̇ = 1, m will be the vis-
cosity at that specific value of the shear rate.
We are now going to consider our experimental coupled
system. As we have seen before, it is formed by three
main components; a reservoir, a tube and a microchan-
nel. We must take into account that the microchannel is
divided in four segments of different widths, which will
produce pressure drops as we move from one segment to
the next, so the pressure difference inside each region will
variate. As a result we have

∆Pi = Ppump + ρghl −∆Pt −
i−1∑
j=1

∆PRj
− Picap

(4)

Where Ppump is the pressure exerted by the pump, ρghl
is the hydrostatic pressure where hl is the height of the
fluid in the reservoir. ∆Pt is the pressure drop inside the
tube

∆Pt =
2ltm

(
1
n + 3

)n
r1+n

vt
n (5)

Picap
is the capillary pressure in every segment

Picap = 2τcosθ

(
1

bi
+

1

wi

)
(6)

That is calculated by means of the Young-Laplace equa-
tion for a rectangular channel and in which τ is the sur-
face tension coefficient between fluid-air, b and w are the
height and the width of this and θ is the contact angle of

Treball de Fi de Grau 2 Barcelona, June 2020



Point of care diagnostic of the non-linear rheology of biofluids Carla Riera Llobet

the meniscus with the walls of the channel, which we have
calculated for each segment and exerted pressure using
a program in python based on the recognition of circles
in an image. It must be calculated for all the different
injected pressures.
Lastly ∆PRj is the resistance pressure due to the filling of
every segment of the microchannel before the one where
we are measuring

∆PRj
=

2m

bj
lj ḣ

n
j

[
2

bj

(
1

n
+ 2

)]n
(7)

The pressure drop inside the tube and inside each mi-
crochannel is calculated by means of the Naiver-Stokes
equation and the flow rate definition. Here we will dis-
play only how it is done for the rectangular microchannel
as it is analog for the tube but in that we change to cylin-
drical coordinates.
We will start by calculating the flow rate of the mi-
crochannel. Due to the rectangular geometry ~v =
(vx(z), 0, 0). If we define

γ̇(z) =
∂vx(z)

∂z
(8)

Now considering ∇P = ∆P
h(t) and that the Naiver-

Stokes equation when considered a stationary regime is
∇η∇2v = ∇P we rewrite

dη(γ̇(z))γ̇(z)

dz
=

∆P

h(t)
(9)

Integrating this we find

γ̇(z) =

(
∆P

h(t)m
z

) 1
n

(10)

To continue we integrate Eq.(8) between ±b/2 with
boundary conditions non-slip so we obtain vx(z)

vx(z) =

(
∆P

h(t)m

) 1
n
(

1
1
n + 1

)(
z1+ 1

n −
(
b

2

)1+ 1
n

)
(11)

The flow rate

Q = 2

∫ w

0

dy

∫ b
2

− b
2

vx(z) dz =

2w

(
∆P

h(t)m

) 1
n
(

1
1
n + 2

)(
b

2

)2+ 1
n

(12)

It is obvious that in this equations it does not appear
the mean front velocity ḣ that we get from the experi-
mental data, but knowing the definition of the flow rate
Q = bwḣ(t), we can rewrite the general expression for
the pressure drop inside the segment as

∆P (t) =
2m

b
h(t)ḣ(t)

n
[

2

b

(
1

n
+ 2

)]n
(13)

The resistance pressure will have the same expression but
because it is due to the segment being completely filled,
hi(t) and ḣi(t) are replaced by the length of the segment

li and the mean front velocity in it ḣi.
Substituting now for each segment using Eq.(4) and
taking into account the principle of mass conservation
vtπr

2 = ḣ1w1b1 = ḣ2w2b2 = ḣ3w3b3 = ḣ4w4b4, as well as
grouping for convenience the terms that are not velocity
dependent in a term that we will call effective pressure
ΣPi = Ppump + ρghl − Picap

, we can rewrite a general
expression. Also from previously done experiments and
results, we know that in the existing conditions of our ex-
perimental setup and for all t, the resistance associated to
the fluid flow inside the segment in which we are calculat-
ing is much smaller than the ones associated to the tube

and the previous segments ∆Pi(t) <<
∑i−1
j=1 ∆PRi+∆Pt.

This conditions allow us to have constant velocity in re-

spect to time, ḣ 6= ˙h(t).

ΣPi = Ki(m,n)ḣni (14)

Ki(m,n) = m

[
2lt
(

1
n + 3

)n
r1+n

(
biwi
πr2

)n
+

i−1∑
j=1

lj
(

1
n + 2

)n(
bj
2

)1+n

(
wibi
wjbj

)n (15)

When n 6= 1, this equations will allow us to characterize
non-Newtonian fluids, and with n = 1 we will recover a
model for the Newtonian ones.

IV. EXPERIMENTAL METHOD

As a simple method to determine whether a fluid
is Newtonian or Non-Newtonian,we can use a two-
parameter power-law expression

ΣPi = Ki(m,n)ḣni (16)

Where n and m are characterizing fluid constants and
specifically n is the one we have already seen in the the-
oretical model equations. This type of equations are
comparable to the ones found with the theoretical model
(Eq.(14)).
With the data that we collect from the experiment (the
velocity for each applied pressure), we can find equations
like Eq.(16) with which we are able to define the fluids
nature. But although it would seem like we can control
every variable in the ∆P there are factors like fluctua-
tion of the pressure injected by the pump, changes in the
contact angle or others that may be significant and which
we can not quantify exactly.
In light of this possible effects, we created a little pro-
gram that will do the following: Firstly it will graph and
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show the equations for the Pressure of the pump in front
of the velocity but living a free parameter

Ppump = A′iḣ
n
′

i + C ′i (17)

C ′i can be interpreted as the rest of the contributions of
the exerted effective pressure, so the next step will be to
subtract this contribution to the pump pressure and once
done that, we will recalculate the equation

Ppump − C ′i = ΣPexpi = Aiḣ
n
i (18)

If we now take logarithms in both sides of Eq.(18) we get

log(ΣPexpi) = log(Ai) + n log(ḣi) (19)

The slope of Eq.(19) is n.
If we now compare Eq.(18) to Eq. (14), we can recognize
that

Ai = Ki(m,n) (20)

Isolating m from Eq.(20) we get

m =
Ai

2lt( 1
n +3)

n

r1+n

(
biwi

πr2

)n
+
∑i−1
j=1

lj( 1
n +2)

n(
bj
2

)1+n

(
wibi
wjbj

)n (21)

Recalling Eq.(3), we can rewrite an expression for the
viscosity for both Newtonian and Non-Newtonian fluids.
For Non-Newtonian we can rewrite a general expression
like

ηi(γ̇) =
Ai

2lt( 1
n +3)

n

r1+n

(
biwi

πr2

)n
+
∑i−1
j=1

lj( 1
n +2)

n(
bj
2

)1+n

(
wibi
wjbj

)n γ̇n−1

(22)

As for Newtoninan we know that η = m so its general
expression will be just Eq.(21) but substituting n = 1

ηi =
Ai

8lt
r2

(
biwi

πr2

)
+
∑i−1
j=1

12lj
bj2

(
wibi
wjbj

) (23)

For each segment the equations will be

η1 =
A1

8lt
r2

(
b1w1

πr2

) (24)

η2 =
A2

8lt
r2

(
b2w2

πr2

)
+ 12l1

b12

(
w2b2
w1b1

) (25)

η3 =
A3

8lt
r2

(
b3w3

πr2

)
+ 12l1

b12

(
w3b3
w1b1

)
+ 12l2

b22

(
w3b3
w2b2

) (26)

η4 =
A4

8lt
r2

(
b4w4

πr2

)
+ 12l1

b12

(
w4b4
w1b1

)
+ 12l2

b22

(
w4b4
w2b2

)
+ 12l3

b32

(
w4b4
w3b3

)
(27)

Due to Newtonian fluids having by definition the viscos-
ity as a characteristic that does not vary for a same fluid,
we know that η1 = η2 = η3 = η4.
The program will fit the corresponding data to Eq.(18)
and Eq.(22) if it is non-Newtonian or to Eq.(21) if it is
Newtonian.

V. EXPERIMENTAL RESULTS

We have used water to firstly test our experimental
setup accuracy because it is the broadest studied fluid
up until now, which leads to its rheological properties to
be very precisely characterized. This makes it easy for
us to compare our results to them and know with little
error if our setup is measuring something that actually
makes sense.
For instance we know that water viscosity at 22oC,
temperature at which our experiments have been done,
is of 1.0016 mPa·s [1] and that, because it is a Newtonian
fluid, the value of the n exponent is 1.
From our program we get the following graphs

FIG. 3: Effective pressure as a function of velocity for water
in the different segments

From Figure 3, where we find the regression of the
effective pressure in front of the mean front velocity,
we see that for the different segments we get different
slopes, this is due to the different geometries of the
segments and it is in accordance with our theoretical
model.
What is of importance but, it is that we obtain an
exponent n which, when we take into account the
experimental error, we see how they all fit the value for
a Newtonian fluid as water is. The values of n can be
found in Table III.

As for Figure 4, and as it is detailed in Table III, the
viscosity values are really similar between them and also
to the value in the literature [1], which make us consider
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FIG. 4: Viscosity as a function of the shear rate for water in
the different segments

that our experimental setup and data processing is ade-
quate to acquire the data we want in an effective way.

Segment 1 Segment 2 Segment 3 Segment 4

n 1.0228 0.9874 1.0126 0.9929

Viscosity (mPa*s) 1.11±0.05 1.15±0.05 1.08±0.05 1.01±0.05

TABLE III: n exponent and viscosity data of water in each
segment of the microchannel.

VI. CONCLUSIONS

We have build a theoretical model to describe both the
behaviour of Newtonian and non-Newtonian fluids inside

a microchannel with different widths when we apply di-
verse pressures and we have implemented it as a data
analysis program. After conducting experiments with a
widely studied Newtonian fluid as water is, we have used
this data as the input to our analysis program results
from which can be found in the Experimental Results
section. From this we may conclude that our model and
out experimental device works precisely for the character-
ization of Newtonian fluids and therefore the next step
would be test its performance for Non-Newtonian fluid
characterization.
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[3] Marc Pradas-Gené, Interfaces in Disordered Media, PH.D
Thesis (Universitat de Barcelona,2009).

[4] Trejo-Soto, C., Costa-Miracle, E., Rodriguez-Villarreal, J.
Cid, Alarcón, T. i Hernández-Machado, A.. ”Capillary
Filling at the Microscale: Control of Fluid Front Using
Geometry”. Plos One 11: 4-22 (2016).

[5] Trejo-Soto, C., Costa-Miracle, E., Rodriguez-Villarreal, J.
Cid, Alarcón, T. i Hernández-Machado, A.. ”Front Mi-
crorheology of the Non-Newtonian Behaviour of Blood:
Scaling Theory of Erythrocyte Aggregation by Aging”.
Soft Matter 13: 3042-3047 (2017).

[6] Méndez-Mora, L., Cabello-Fusarés, M., Farré-Torres, J.,
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