
Lensing effects on gravitational waves from compact binaries

Author: Helena Ubach Raya
Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

Advisor: Oleg Bulashenko

Abstract: Compact binary systems, such as black holes or neutron stars, are known to emit
gravitational waves as a result of energy loss while orbiting around their common center of mass.
Ground-based detectors like LIGO and VIRGO have been able to detect such radiation as a ”chirp”
signal in the range of frequencies emitted by these compact systems. It is known that gravitational
waves can experience gravitational lensing as they travel from the binary system to the observer
and pass near massive objects on their way. This produces a distortion which could be encoded in
the signal we detect. In this work we analyse wave effects on gravitational lensing of gravitational
waves (like interference and diffraction) which are of possible importance in future detections by
ground-based and/or space detectors.

I. INTRODUCTION

Gravitational waves (GWs) are disturbances of space-
time curvature produced by moving masses. Their effect
is extremely small, so only those created where the space-
time is greatly distorted can be detected today. One of
this cases, the one we will use for our studies, is binary
mergers: pairs of compact objects - black holes (BH) or
neutron stars (NS) - that orbit each other. They get
closer together by losing energy in form of GWs, until
they merge, creating a new compact remnant. The de-
tectable GWs are those generated just before and after
the merger. There are three phases: inspiral, merger and
ringdown. We will center in the inspiral phase.

These waves can be affected by the space-time cur-
vature created by masses along their way, and they get
distorted (gravitationally lensed); the intervening mass
is then called a gravitational lens.

Historically, gravitational lenses had first been treated
in the electromagnetic case (light). This should only be
possible by taking into account that light has inertia:
the first to write about the attraction of light due to
gravity was Isaac Newton in his book Opticks, imagin-
ing that light was corpuscular [1]. Later, other scientists
calculated the Newtonian value of the deflection of light
by a mass (Cavendish, Soldner). However, the theory
of gravity was not yet complete: in 1915 the theory of
General Relativity derived by Albert Einstein predicted
twice the Newtonian value, and the result was confirmed
by observations of the star position deviations during a
solar eclipse in 1919 (led by Arthur Eddington). From
that moment on, more investigations on this phenomenon
were made, and it was discovered that multiple images of
the same object can be seen when light is bent by gravity,
and that their luminosity can vary from its original value.
Eventually, this has been called gravitational lensing.

Recently, gravitational lensing of GWs has also been
taken into consideration in theoretical calculations, but
not as much as light. Now that GWs have been detected
with interferometers for the first time, more attention is
being paid to them.

In this work, we will first discuss the characteristic pro-
file of pure (unlensed) GWs generated by binary mergers,
called ”chirp” in Sec. II. Then, we describe how GWs get
lensed in Sec. III, and apply the results for a particular
lens model, the point mass lens in Sec. IV. Then, in Sec.
V we study the so called amplification factor, which is
a measure of the wave amplitude distortion due to the
gravitational lensing. Finally, in Sec. VI we review the
most important aspects of the work, that wave effects are
important, and possible future improvements.

II. CHIRP

In the inspiral phase, just before the merger, the grav-
itational waves coming from the binary system increase
in frequency, as a result of an increasing orbital fre-
quency (since it is quadrupolar radiation, the gravita-
tional wave frequency is double that of the orbital mo-
tion: fGW (t) = 2forb(t)). This increasing frequency
is called ”chirp” (all the signal, including the inspiral),
refering to the similarity with bird chirps. The chirp is
shown in Fig. 1 (This and all other figures in this work
are processed by Python.)

From the quadrupolar moment tensor one can obtain
the power radiated by the binary system [2] and from
this, the GWs frequency variation with time [3]:
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where G is the gravitation constant, c the speed of light
in vacuum, Mc ≡ (m1m2)3/5/(m1 +m2)1/5 is defined as
the chirp mass, and m1, m2 are the masses of the binary
system components. Solving for fGW , we get
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where τc is called coalescence time.
The strain h(t) = h0 cosφ is the instant amplitude of

the wave (with h0 the maximum amplitude and φ the
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FIG. 1: Strain function h(t) versus t during the inspiral phase
of a chirp signal from a stellar-mass binary system. We have
taken the GW150914 event parameters as a realistic example.

We can see that the h0 increases as h0 ∝ f2/3
GW ∝ (τc− t)−1/4.

It is the first part of the full chirp (little image below, Credit:
E. Schnetter et al., ”Astrophysical Applications of Numerical
Relativity - from Teragrid to Petascale”(2008)).

wave’s phase), which coincides with the relative length
compression which GWs produce when they pass through
an interferometer: ∆L/L, where L is the total object’s
length. It can have two polarisations, h× and h+, but we
use a generalised h0 (it could be any of both polarisations,
or a mix). The expressions for h0(t) and φ(t) are [3]

h0(t) = 2η3/5
(
RS
dS

)(
GMcπ

c3
fGW (t)

)2/3

, (3)

φ(t) = −2

(
5GMc

c3

)−5/8
(τc − t)5/8 + φ0, (4)

where η = m1m2/(m1 + m2)2 is the asymmetric mass,
RS = 2G(m1 +m2)/c2 is the Schwarzschild radius of the
system, dS is the distance from the observer to the source
and φ0 is the initial phase of the GWs in real space. To
see easier the frequencies involved in the chirp, it’s better
to move to the frequency domain, so we will have to
Fourier-transform h(t) into h̃(f), with f being the Fourier
variable. It is not possible to make an exact Fourier
transform, so we will proceed numerically (using a fast
Fourier transform, FFT). However, we would like to have
an analytical expression as close to the numerical result
as possible, so we will try to solve the Fourier transform
integral with approximations.

A. Stationary Phase Approximation

Stationary phase approximation (SPA) consists in con-
sidering that most of the contribution to an integral of

an oscillating function comes from a stationary point. In
our case the integral is the Fourier transform given by [4]

h̃(f) =

∫ ∞
−∞

h(t)ei2πftdt, (5)

with h(t) = h0(t) cosφ(t), from equations (3),(4) being
the detector’s response function. Following [4], one gets

the approximation of |h̃(f)| (we are interested in the
modulus for now):

|h̃(f)| = h0(tf )

2
√
ḟ(tf )

, (6)

where tf is the stationary point, which depends on f ,

and ḟ(tf ) is the time derivative of f . It turns out that
the stationary point corresponds to the condition that
fGW (tf ) = f . With this equality, we can use (1) to
obtain the following equation dependent on f :

|h̃(f)| =
√

5
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)1/6

f−7/6. (7)

In Fig. 2 we compare the numerical FFT with the SPA

FIG. 2: Detection response function |h̃| versus f (Fourier
space). The exact Fourier transform is plotted in blue. The

red line is the usual SPA |h̃| ∼ f−7/6, the black one is the

improved SPA, h̃inSPA.

approximation. It is seen that the SPA (in red) has the
same slope as the FFT (in blue). The curve follows the

SPA slope h̃ ∼ f−7/6. It does not have, however, the
oscillations appearing in the FFT result. If we want to
have an analytical expression for them, we have to go be-
yond SPA. Damour et al.[4] have obtained an analytical
expression for this oscillations: it is possible to improve
the SPA by taking into account border (finite time) ef-
fects (we haven’t taken an infinite time interval like Eq.
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(5)). We compare h̃inSPA with the numerical FFT re-
sult in Fig. 2, where we can see it can fit quite well the
oscillations.

III. GRAVITATIONAL LENSING OF
GRAVITATIONAL WAVES

Gravitational waves, as well as electromagnetic waves,
can be deflected by the space-time curvature. There are
some cases when a mass distribution is able to make rays
deflect very much like a lens, this mass is then called
a gravitational lens (although there are some differences
with respect to optical lenses).

If we want to know if wave effects will be important
in an electromagnetic or a gravitational wave, we have
to compare its wavelength λ with the Schwarzschild ra-
dius RS = 2GML/c

2, where ML is the lens’ mass. If
λ � RS , then the wave doesn’t notice the mass and
isn’t distorted. In the opposite limit, when λ � RS ,
there is gravitational lensing in the Geometrical Optics
(GO) limit. An intermediate case which is of our inter-
est is when diffraction and other interference phenomena
are important: that happens when λ & RS . This corre-
sponds to a lens’ mass that satisfies ML . 105(M�/f) Hz
(where M� is the solar mass and f the wave frequency).
These conditions are applicable both to electromagnetic
and gravitational waves. The condition for diffraction
is more easily fulfilled for gravitational waves than for
electromagnetic waves, since the wavelength is much big-
ger for GWs (in stellar-mass compact binary mergers at
least, λ ∼ 102 − 104 km). Furthermore, GWs experi-
ence nearly no absorption, unlike electromagnetic waves
(which get partially or fully absorbed by interstellar gas
and dust), so we receive them nearly neat, only distorted
by possible gravitational lensing on their way.

An important length scale is the Einstein radius, RE =√
2RSD, with D = dLdLS/dS the so-called reduced or ef-

fective distance, where dL is the observer-lens distance,
dS the observer-source distance and dLS the lens-source
one. For the case of interest we assume dL � dLS . Lens-
ing effects are expected to be significant when the source,
lens and observer are aligned within approximately the
angle θE = RE/dL, called Einstein angle. As we can see
in Fig. 3, for a circularly symmetric lens, the angles are
related as β = θ−α(θ), which is called the lens equation.

IV. POINT MASS LENS

There are several models of lens, depending on the size,
mass and density profile of the lensing mass distribution.
We will consider a point mass lens model. The corre-
sponding physical object could be a compact object (BH,
NS) or a massive star.

For this model, the virtual image positions are [5]

θ± =
β

2
± 1

2

√
β2 + 4θ2E . (8)

FIG. 3: Qualitatively general configuration of a circularly
symmetric gravitational lens (L). The observer, at O, sees
the virtual source S′ at an angle θ, but the real source S is in
fact further away and at a different angle, β. The difference
between these two angles is the reduced deflection angle α.
The wave propagation follows the solid line path. The hori-
zontal dashed line represents the optical axis. In the thin lens
approximation, the piece of path where the light is curved
should be much smaller than the total distance travelled.

That means we have two virtual images.
For small angles, the point mass lens gravity effects can

be treated analogously to having an index of refraction.
From the wave equation, and assuming h = ψ(R)eiωt

(where h is the GWs field, ψ(R) is the the amplitude
of the wave and ω = 2πf the angular frequency of the
gravitational wave), the wave equation in the weak field
limit can be written as a scalar wave equation [6]

∇2ψ +

(
k2 +

2κk

r

)
ψ = 0, (9)

where κ = 4πGMLf/c
3 with k = 2πf/c (the wave num-

ber), and r the distance to the lens. It turns out that
this wave equation is analogous to the time-independent
Schrödinger equation for Coulomb scattering [6]. This
means that the wave propagation will follow the same
paths that charged particles would follow in a scatter-
ing experiment (at the lowest order) with an attracting
Coulomb force. Here, κ = RS/λ, so κ is an indicator of
the regime where we are working (discussed in Sec. III).
This is valid for both electromagnetic and gravitational
waves.

The solution for Eq.(9) was found by W. Gordon in
1928 in an exact analytical form [7]

ψ(f) = eikr cos θeπκ/2Γ (1− iκ) 1F1(iκ, 1; 2ikr sin2 (θ/2)),
(10)

composed of the gamma function Γ, the confluent hyper-
geometric function 1F1 and exponentials. r and θ are the
spherical coordinates, with the optical axis as the z-axis
and the lens at the origin.

In our case we consider a gravitational field, unlike
the electrostatic field in the scattering, so the charges
are replaced by masses (as the sources of the field). It’s
interesting that both systems can be treated the same
way since they are different fields.
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V. AMPLIFICATION FACTOR

The lensed image is distorted and magnified, so the
amplitude and phase of the received wave are different
than what they would be without lens. The amplification
factor is defined as the wave amplitudes ratio [8]:

F (f) =
ψ(f)

ψ0(f)
, (11)

where ψ(f) and ψ0(f) are the amplitude of the lensed
and unlensed (if there was no lens) waves, respectively.

For a point mass lens, if the deflection zone is much
smaller than the total distance travelled (thin lens ap-
proximation), the amplification factor is [7–9]

F (f) = exp
{π

2
κ + iκ [ln (κ)− 2φm(y)]

}
× Γ (1− iκ) 1F1(iκ, 1; iκy2),

(12)

which comes from Eq.(10). Here, φm(y) ≡ (xm−y)2/2−
ln(xm), where xm ≡ (y +

√
y2 + 4)/2, being y = θ/θE

the normalised angle [8–10]. We can see its abso-

FIG. 4: Colour map of the absolute value of the amplifica-
tion factor |F | for a point mass lens. The normalised angle
y = θ/θE is represented in the y axis, and the normalised fre-
quency (τd being the delay time and f the GWs frequency) in
the x axis. Along the line of sight (y = 0), |F | has the largest
values, and moving along each axis, there are oscillating pat-
terns due to interference.

lute value |F | in Fig. 4, as a function of two vari-
ables: y and f . We introduce τd, the normalised de-
lay time, τd = ∆t/(4GML/c

3), where ∆t is defined as
the delay time, the difference in time between the dif-
ferent images. For a point mass lens, its expression is

τd = y
√
y2 + 4/2 + ln {[

√
y2 + 4 + y]/[

√
y2 + 4− y]} [8]

with two contributions: the difference in path length, and

FIG. 5: Absolute value of the amplification factor for different
angles y, as a function of the normalised frequency. These
are sections of fixed y of Fig. 4. Solid lines correspond to
the exact result and dashed lines to GO approximation, for
different y: each one represented by the same colour. We
can’t draw a y = 0 GO line (|F (f)| diverges), instead we
take y = 0.01 to see the comparison. The black dashed line
corresponds to the asymptotic result for y = 0 (Eq.(13)). We
can see that for high frequencies, GO is a good approximation,
but not for f . τ−1

d . These results agree with those obtained
by other authors [8],[9].

the slowing of time near massive objects. For a fixed y
and varying fτd (these would correspond to a change in
frequency from a slowly moving source, for example), |F |
oscillates with the same amplitude, which increases when
we approach y = 0. In y = 0 it grows exponentially, as
we will see. For a fixed f (which would correspond to a
monochromatic source moving perpendicular to the opti-
cal axis, thus changing y), there are also oscillations with
varying amplitude, peaking in y = 0. The oscillations are
due to the interference of waves coming from two images

In Fig. 5 we plot |F | as a function of the frequency
f for several fixed values of the angle y. We can see
that the GO approximation is good if f � τ−1d . It is

for f . τ−1d that wave effects need to be taken into ac-
count. The smaller y, the bigger the deviation in |F (f)|
from the exact result. For small f , all curves converge
to an asymptotic line (the square root of the maximum
magnification µmax [9]):

|F (y = 0)|2 = µmax =
2π2f

1− e−2π2f
. (13)

In Fig. 6 we plot |F | as a function of the angle y for
several fixed values of the frequency f . The figure shows
that for f � τ−1d there are more oscillations and the peak

is higher, whereas for f � τ−1d it’s the other way around,
it can even have only one oscillation. In GO, these last
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FIG. 6: Absolute value of the amplification factor for different
fτd, as a function of the angle y. These are sections of fixed
fτd of Fig. 4. All cases have a peak at y = 0 and have
decreasing oscillations (the number of which also depends on
fτd) as |y| increases.

case would have an infinite peak at y = 0, far from the
exact result.

VI. CONCLUSIONS

We have analysed the expression of the Fourier trans-
form of the ”chirp” from the gravitational waves gen-
erated in binary systems. We have obtained an analytic
expression for it with the stationary phase approximation
and its improved expression. For our purpose of identi-
fying variations due to gravitational lensing, it would be

convenient to search for a signal with a longer time inter-
val to reduce finite time effects. So, knowing some of the
recent detections, these would correspond to lower mass
compact binaries (NS) whose inspiral lasts longer.

Once the GWs propagate, they can encounter distri-
butions of mass with ML . 105(M�/f) Hz, which can
lens the GWs and produce wave effects. For a point mass
lens model, the wave deviates the same way as Coulomb
scattered particles. Depending on the angle y , the fre-
quency f and the distance, the lensing effect is different.
We have analysed the absolute value of the amplifica-
tion factor |F (f)|, and we have seen that wave effects
are manifested in the modulation of the wave amplitude,
which is a function of the angle of observation and of the
frequency.

To sum up, wave effects are important when the wave-
length of the gravitational wave is of the same order as
the Schwarzschild radius of the binary system, and need
to be taken into account.

Knowing the chirp waveform and the amplification fac-
tor expression, the next step would be to obtain a gravi-
tationally lensed chirp expression from a compact binary
merger by doing a Fourier transform of the product of
the unlensed waveform and the amplification factor.
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