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A B S T R A C T

Patients with solid tumours are at risk of impaired bone health from metastases and cancer therapy-induced
bone loss (CTIBL). We review medical management of bone health in patients with solid tumours over the past
30 years, from first-generation bisphosphonates to the receptor activator of nuclear factor κB ligand (RANKL)-
targeted monoclonal antibody, denosumab. In the 1980s, first-generation bisphosphonates were shown to reduce
the incidence of skeletal-related events (SREs) in patients with breast cancer. Subsequently, more potent second-
and third-generation bisphosphonates were developed, particularly zoledronic acid (ZA). Head-to-head studies
showed that ZA was significantly more effective than pamidronate for reducing SREs in patients with breast and
castrate-resistant prostate cancer (CRPC), becoming the standard of care for more than a decade. The RANKL
inhibitor denosumab was licensed in 2010, and head-to-head studies and integrated analyses confirmed its
superiority to ZA for preventing SREs, particularly in breast cancer and CRPC. Bisphosphonates and denosumab
have also been investigated for prevention of CTIBL in patients receiving hormonal therapy for breast and
prostate cancer, and denosumab is licensed in this indication. Despite advances in management of bone health,
several issues remain, notably the optimal time to initiate therapy, duration of therapy, and dosing frequency,
and how to avoid toxicity, particularly with long-term treatment. In summary, introduction of ZA and deno-
sumab has protected patients with bone metastasis from serious bone complications and improved their quality
of life. Ongoing research will hopefully guide the optimal use of these agents to help maintain bone health in
patients with solid tumours.

Introduction

Bone health is an important consideration in patients with solid
tumours, as both metastasis to bone and cancer therapy-induced bone
loss (CTIBL) can increase morbidity and reduce quality of life [1,2].
Bone is a common site of metastasis in patients with cancer, with
prostate, breast and lung the most frequent tumours leading to bone
metastasis, accounting for 34%, 22% and 20% of cases, respectively
[3]. A recent study in patients with solid tumours in the USA estimated
the incidence of bone metastases in patients with solid tumours to be
6.9% at 5 years after diagnosis and 8.4% at 10 years [4], while a meta-
analysis of 156 studies in breast cancer found that a median of 12% of
patients with stage I–III breast cancer developed bone metastases

during a median follow-up period of 60months [5]. The incidence of
bone metastasis is, however, difficult to estimate, with most studies
generally based on clinical records and autopsy data, and so may not
reflect current treatment patterns [4]. The true incidence of bone me-
tastasis is, therefore, unknown [2]. Metastasis begins when cancer cells
escape from the primary tumour and enter the circulation [1,2,6].
These circulating cancer cells have affinities for specific tissue types,
such as bone – this is known as the ‘seed and soil’ hypothesis. When
circulating cancer cells infiltrate bone, a vicious cycle is triggered in
which signalling between cancer cells and bone cells leads to the de-
velopment of the metastatic lesion [1,6]. Bone metastases can be
broadly classified as osteoclastic, characterised primarily by destruction
of normal bone, and osteoblastic, characterised by deposition of new

https://doi.org/10.1016/j.ctrv.2019.05.003
Received 13 December 2018; Received in revised form 23 April 2019; Accepted 13 May 2019

⁎ Corresponding author at: Kantonsspital Graubünden, Loëstrasse 170, CH-7000 Chur, Switzerland.
E-mail address: roger.vonmoos@ksgr.ch (R. von Moos).

Cancer Treatment Reviews 76 (2019) 57–67

0305-7372/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/03057372
https://www.elsevier.com/locate/ctrv
https://doi.org/10.1016/j.ctrv.2019.05.003
https://doi.org/10.1016/j.ctrv.2019.05.003
mailto:roger.vonmoos@ksgr.ch
https://doi.org/10.1016/j.ctrv.2019.05.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ctrv.2019.05.003&domain=pdf


bone [2].
Bone metastases are a major cause of morbidity, including skeletal-

related events (SREs, usually defined as fracture, spinal cord compres-
sion, need for radiation therapy or surgery, and less often tumour-re-
lated hypercalcaemia, although exact definitions can vary between
clinical trials), severe pain, impaired mobility, and bone marrow
aplasia [2]. Pathologic fractures occur in 10–30% of all cancer patients,
with higher rates in some cancers such as multiple myeloma (up to
37%) and breast cancer (up to 52%) [7,8]. Such fractures occur most
frequently in the ribs and vertebrae. As a result, bone metastases have a
substantial impact on patients’ quality of life and contribute to in-
creased healthcare costs [1,2,6,9–11].

The treatment of bone metastases in patients with solid tumours is
generally palliative, with very limited opportunities for complete era-
dication [12]. Bone metastases can be managed with a range of ther-
apeutic modalities, including external beam radiotherapy, endocrine
treatments, chemotherapy and radioisotopes, as well as orthopaedic
intervention to correct structural complications or nerve compression.
These treatments are accompanied by further medical care to prevent
fractures and other bone complications using various bisphosphonates
and the receptor activator of nuclear factor κB ligand (RANKL)-targeted
agent denosumab, which are licensed for the prevention of SREs in
patients with bone metastases due to solid tumours (Supplementary
Table 1; Fig. 1) [13–48].

In the early 21st century, the potential of bisphosphonates and de-
nosumab was recognised for the management of CTIBL, another bone-
related complication experienced by some patients with cancer [49,50].
Oestrogen and testosterone have both direct and indirect effects on
bone metabolism, and the reduced levels of these hormones resulting
from hormone ablation therapy in patients with breast and prostate
cancer may lead to loss of bone mass and an increased risk of osteo-
porotic fractures. Men receiving androgen deprivation therapy for
prostate cancer may also undergo loss of muscle mass, with resulting
indirect effects on bone [49].

The aim of this review is to provide a historical perspective on the
medical management and consequences of bone metastases and CTIBL,
using the available data to encourage best practice and to highlight the
benefits of early and sustained treatment.

History of the management of bone metastasis complications

Management of the consequences of bone metastases with bispho-
sphonates began in the 1980s with the development of the first-

generation intravenous bisphosphonate clodronate, which was licensed
in Europe in 1992 for management of osteolytic lesions, hy-
percalcaemia and bone pain associated with skeletal metastases in pa-
tients with carcinoma of the breast or multiple myeloma
(Supplementary Table 1). This was followed by the second- and third-
generation agents, most notably zoledronic acid (ZA), which was first
approved in 2001. Bisphosphonates are chemically stable analogues of
pyrophosphate compounds such as inorganic pyrophosphate, which are
found widely in nature [51]. The high affinity of bisphosphonates for
calcium ions means that they attach to hydroxyapatite binding sites on
the bone surface, especially in locations undergoing active resorption.
The bisphosphonate molecule is then internalised by osteoclasts during
resorption, leading to inhibition of osteoclast function [6]. With first-
generation, non-nitrogen-containing bisphosphonates, this process oc-
curs via the disruption of cellular metabolism, leading ultimately to
apoptosis [1].

The second- and third-generation bisphosphonates differ from first-
generation agents because they have a nitrogen-containing side group.
These agents can be divided into alkyl-amino bisphosphonates (the
second-generation agents pamidronate, alendronate, risedronate, and
the third-generation agent ibandronate) and heterocyclic bispho-
sphonates (the third-generation agent ZA; see below). The nitrogen-
containing bisphosphonates are generally more potent than first-gen-
eration agents as, in addition to hydroxyapatite binding, they impair
intracellular signalling in osteoclasts by inhibiting the enzyme farnesyl
diphosphate synthase [1,51]. The third-generation bisphosphonates
differ from second-generation agents in that the nitrogen group is
contained in the R2 side-chain, leading to more potent inhibition of
farnesyl synthase, a key enzyme in metabolic pathways involved in
osteoclast morphology and function [52].

In 2010, the first, and to date only, RANKL-targeted monoclonal
antibody, denosumab, was also licensed for management of the con-
sequences of bone metastases from solid tumours. Management of bone
metastases is generally evaluated in terms of the prevention of SREs,
using parameters such as time to first SRE, skeletal morbidity rate or
multiple-event analysis [12,53]. Other endpoints used to evaluate ef-
ficacy relevant from the patient’s perspective include bone pain (eval-
uated as an adverse event or using instruments such as the Bone Pain
Index), and survival.

First-generation bisphosphonates

Bisphosphonates were first used successfully in patients with cancer

Fig. 1. Timeline of key events in the development of bisphosphonates and denosumab in the management of bone health in patients with advanced malignancies. *

Not licensed in the USA. CRPC= castrate-resistant prostate cancer; CTIBL= cancer therapy-induced bone loss.
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for the treatment of hypercalcaemia in the early 1980s, many years
before data from large randomised, controlled trials showed they could
prevent SREs [51]. Hypercalcaemia of malignancy was the setting used
to derive active bisphosphonate doses for the treatment of bone me-
tastases. Small placebo-controlled studies of clodronate in women with
breast cancer metastatic to the bone began in the 1980s [54]. These
studies showed benefit in terms of bone pain, extension of bone me-
tastases into soft tissue and formation of new osteolytic foci, but ap-
proval by regulatory agencies did not occur until these data were
confirmed in larger randomised controlled trials [24]. In metastatic
castration-resistant prostate cancer (CRPC), the efficacy of clodronate is
limited, with no beneficial effect on SREs (Table 1) [25–27], and
treatment is not licensed in these patients.

Second-generation bisphosphonates

The clinical activity of nitrogen-containing bisphosphonates was
first demonstrated in studies of pamidronate by a number of European
groups in the early 1990s [55–57]. The first randomised, placebo-
controlled trials were conducted in the USA in the mid-to-late 1990s,
and results showed that pamidronate reduced skeletal morbidity by
∼33%, increased median time to SRE by ∼50%, and reduced the
proportion of patients who experienced SREs by ∼20% [28,29]. It is
important to note, however, that the therapeutic anticancer landscape

has changed considerably over the past 20 years, and so these values
must be interpreted in context and may no longer be valid with respect
to current standard of care.

By the late 1990s, the potential of bisphosphonates in the treatment
of patients with bone metastases had been confirmed [58–60]. In 1996,
pamidronate was approved for the treatment of complications arising
from osteolytic metastases in breast cancer, and soon became the
treatment of choice [30,61]. While other second-generation bispho-
sphonates, including alendronate, are available for the treatment of
osteoporosis, they are not licensed for the management of bone me-
tastasis complications.

Bisphosphonate treatment is generally well tolerated, the main side
effects being acute-phase reactions (e.g. chills, fever, bone pain and
fatigue) and changes in serum ion levels, particularly calcium, mag-
nesium and phosphorus [62]. Bisphosphonates are also associated with
a dose- and infusion-rate-dependent impact on renal function, and renal
function should be monitored during treatment [62]. In some patients
receiving long-term bisphosphonate therapy, particularly with ni-
trogen-containing bisphosphonates, osteonecrosis of the jaw (ONJ) has
been reported as a result of effects on osteoclast-mediated bone re-
sorption and osteoclast formation [63].

Table 1
Key results from studies of bisphosphonates and denosumab in patients with solid tumours and bone metastases.

Study Year Duration Treatment SRE, % Time to first SRE, days SMR, events per year

Breast cancer
Hortobagyi et al. [28] 1996 12 cycles Pamidronate

Placebo
43*

56
399*†

213†
–

Theriault et al. [29] 1999 24 cycles Pamidronate
Placebo

56*

67
317*†

210†
2.4*

3.8
Rosen et al. [30]† 2001 13months ZA

Pamidronate
44
46

373
363

1.13
1.40

Berenson et al. [32] 2001 10months ZA
Pamidronate

33
30

231
254

–

Rosen et al. [31]‡ 2003 25months ZA
Pamidronate

47
51

376
356

1.04
1.33

Body et al. [39] 2003 96weeks IV ibandronate
Placebo

51*

62
354*

232
–

Rosen et al. [33] 2004 12months ZA
Pamidronate

43
45

310*

174
0.98
1.55

Body et al. [40] 2004 96weeks Oral ibandronate
Placebo

45
52

632
454

–

Stopeck [41] 2010 34months# Denosumab
ZA

– NR
804†

0.45
0.58

Barrett-Lee et al. [34] 2014 96weeks ZA
Oral ibandronate

41
42

693
679

0.44
0.50

Castrate-resistant prostate cancer
Saad et al. [35] 2002 15months ZA

Placebo
33*

44
NR*

321
0.80
1.49*

Saad et al. [36] 2004 24months ZA
Placebo

38*

49
488*

321
0.77*

1.47
Fizazi et al. [42] 2011 11–12months# Denosumab

ZA
36
41

630*†

520†
–

Solid tumours
Rosen et al. [37] 2003 9months ZA

Placebo
38
44

230*

163
2.24
2.52

Rosen et al. [38] 2004 21months ZA
Placebo

39
46

236*

155
1.74*

2.71
Henry et al. [43]‡ 2011 7months# Denosumab

ZA
– 627†

496†
–

Henry et al. [44] 2014 6–7months# Denosumab
ZA

– 651*†

469†
–

Abbreviations: IV= intravenous; NR=not reached; SMR= skeletal morbidity rate; SRE= skeletal-related event; ZA= zoledronic acid.
* p < 0.05 vs comparator.
† Converted from months using the formula Days=Months× 30.4375.
‡ Also includes patients with multiple myeloma.
# Median duration.
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Third-generation bisphosphonates

The third-generation bisphosphonate ZA differs from other bispho-
sphonates in that the nitrogen-containing R2 side-chain is a hetero-
cyclic ring [64]. In addition to having increased potency on bone, ZA is
also administered in a 15-min infusion, compared with 2 h for pami-
dronate. Furthermore, data suggest that ZA has anti-neoplastic effects
resulting from decreased dissemination of tumour cells in bone marrow,
inhibition of tumour cell adhesion, invasion, and proliferation, induc-
tion of apoptosis and inhibition of angiogenesis [64–68]. The clinical
relevance of these effects has not been established.

In 1999, the first data demonstrating the clinical activity of ZA (in
patients with cancer-related hypercalcaemia) were published [69].
Subsequently, several placebo-controlled and head-to-head studies of
ZA versus other bisphosphonates were conducted in patients with me-
tastatic breast cancer [30–34] and CRPC [35,36]. ZA was found to be
more effective than pamidronate for reducing the incidence of SREs
(primary endpoint in most studies), although this difference was not
statistically significant in all studies (Table 1). One study in breast
cancer also demonstrated a significant increase in time to first SRE
(secondary endpoint) with ZA versus pamidronate [33]. The incidence
of bone pain was similar with these agents [30,31,33].

ZA is the only bisphosphonate shown to significantly reduce skeletal
complications from bone metastases in men with advanced prostate
cancer [12], but the benefits of ZA are less clear in men with hormone-
sensitive prostate cancer (HSPC) and bone metastases. Data from a
randomised, controlled trial showed no difference in overall survival
between ZA and placebo, and only a small numerical benefit for ZA in
terms of the time to first SRE [70]. Information about the efficacy of ZA
in other solid tumours is sparse. Most data come from a single rando-
mised, double-blind, placebo-controlled trial in patients with mixed
solid tumours, including lung cancer [37]. Overall, ZA was associated
with a slight reduction in the incidence of SREs (primary endpoint)
after 9months versus placebo, a significantly prolonged time to first
SRE and a reduced annual incidence of SREs. In the longer term
(21months), ZA significantly reduced the percentage of patients who
experienced SREs and prolonged the time to first SRE compared with
placebo (Table 1) [38]. Furthermore, in a retrospective analysis of data
from the study, ZA was associated with reduced mortality versus pla-
cebo in the subset of patients who had elevated levels of the bone
turnover marker N-telopeptide of type I collagen [71]. This positive
effect on survival in patients with poor prognostic features, including
elevated levels of bone markers, was confirmed in a subsequent ex-
ploratory analysis of three randomised controlled trials of ZA in pa-
tients with solid tumours [72]. ZA has also been the treatment of choice
for myeloma-related bone disease [73], further discussion of which is
outside the scope of the current paper.

Nephrotoxicity is one of the most clinically significant adverse
events associated with ZA. It can limit ZA use in patients receiving
chemotherapy agents such as cisplatin, particularly in patients who are
older, with comorbidities and, in the case of lung cancer, a history of
tobacco use [53]. Other notable side effects with ZA are similar to those
of the first- and second-generation bisphosphonates, including acute-
phase reactions, hypocalcaemia, and ONJ [53]. In an attempt to reduce
the increased risk of ONJ resulting from accumulation of ZA in bone
with prolonged administration, extended dosing intervals (every
12 weeks vs the standard dosing interval of 4 weeks) have been in-
vestigated [74–76]. Results to date suggest that dosing every 12 weeks
is non-inferior to dosing every 4 weeks in terms of prevention of SREs;
this may be related to the preferential binding, potency and accumu-
lation of ZA in bone, prolonging its pharmacologic activity. The in-
cidence of ONJ was similar or lower with dosing every 12 weeks
compared with dosing every 4 weeks [74–76]. In the largest study,
however, significantly more patients receiving ZA every 12weeks re-
quired bone surgery within 2 years of enrolment (secondary endpoint)
compared with 4-weekly ZA (4.8% vs 2.5%, respectively) [76]. It

should be noted, however, that this was an open-label non-inferiority
study in which a high percentage of patients (40%) withdrew before
experiencing an SRE, and there was no assessment of survival. Thus,
overall data from studies of extended-interval ZA dosing to date support
the use of 12-weekly treatment. It is not clear, however, whether there
are subgroups, such as those with aggressive bone disease, who would
benefit more from 4-weekly treatment or in whom 12-weekly treatment
should be introduced after a period (e.g. 1 year) of monthly treatment.

Ibandronate is a third-generation bisphosphonate approved in
Europe since 2003 as oral and intravenous formulations for prevention
of SREs in patients with breast cancer. In randomised, placebo-con-
trolled trials, oral and intravenous ibandronate were both found to
reduce the incidence of new bone events by 38% [39,40]. While
ibandronate has been shown to have similar effects on serum cross-
linked C-terminal telopeptide of type I collagen (CTX), urinary CTX,
bone alkaline phosphatase, amino-terminal procollagen propeptide of
type I collagen, and osteocalcin as ZA in a Phase III study [77], a second
Phase III study showed that oral ibandronate was inferior to ZA in terms
of preventing SREs [34]. Oral ibandronate may, however, be an alter-
native agent for patients who have a strong preference for oral treat-
ment or in whom convenience of treatment is an important factor
[34,78]. The third-generation bisphosphonate risedronate is licensed
for the treatment of osteoporosis in Europe and the USA, and Paget’s
disease in the USA, but has not been approved for the management of
complications arising from bone metastases.

Overall, data show that ZA is the most active bisphosphonate in
terms of preventing morbidity from bone metastases in patients with
breast cancer, CRPC, lung and other solid tumours [53,79]. From its
first approval in 2002 [80], ZA became standard of care for the pre-
vention of skeletal complications in patients with bone metastases from
solid tumours for more than a decade [81]. In the mid-2000s, it was
noted, however, that SREs still occurred in patients receiving ZA and
metastases continue to progress in the skeleton [82].

RANKL-targeted monoclonal antibodies: Denosumab

One of the key regulatory factors in bone remodelling is RANKL
[83]. RANKL mediates osteoclast formation, function and survival, and
is an important therapeutic target in the management of bone metas-
tases [84], as the receptor RANK is expressed in a range of tumour
types, including breast and lung cancers [81,85–88]. Denosumab is a
human monoclonal IgG2 antibody that acts by binding with high affi-
nity to membrane-bound and soluble forms of RANKL, decreasing os-
teoclast formation and activity [1,83,84]. Denosumab may also have
effects on tumour cells independent of its role in bone homeostasis
[81,89]. For example, the pro-tumourigenic effects of progesterone are
mediated largely via RANKL [87,90–92], while RANK signalling in-
duces stem-cell characteristics in human and mouse mammary epithe-
lial cells, increasing recurrence and metastasis [88,93,94]. These effects
have been observed primarily in preclinical studies, and their clinical
relevance is unknown, although a similar effect of RANKL as a mediator
of progesterone has also been observed in female mammary epithelia
from patients undergoing mammoplasties and in carriers of the BRCA1
gene [91,95]. This suggests a possible role for RANKL inhibitors in the
prevention of breast cancer in women at high risk.

Data from an early study utilising single denosumab doses of 0.1,
0.3, 1.0, or 3.0mg/kg demonstrated rapid suppression of bone turnover
in patients with bone metastases, as well as greater reductions in bone
turnover markers than with a single 90mg dose of pamidronate [96].
Numerous head-to-head studies of denosumab (120mg every 4 weeks)
versus ZA (4mg every 4 weeks) have been conducted in patients with
different tumour types, including breast cancer [41], prostate cancer
[42] and other solid tumours [43–45]. These pivotal studies were non-
inferiority trials, designed to allow superiority testing according to the
Hochberg method as a secondary endpoint and acknowledged by the US
Food and Drug Administration. In addition, pooled analyses have been
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conducted of three studies in breast cancer, prostate cancer, other solid
tumours and multiple myeloma (for which denosumab was recently
licensed; Fig. 1) [97,98]. In an integrated analysis of head-to-head
studies (n= 5723), denosumab significantly delayed the time to first
SRE compared with ZA in patients with solid tumours and bone me-
tastases (Table 2) [99]. Denosumab also delayed time to multiple SREs
and pain worsening, while the drugs had a similar effect on overall
survival and disease progression (Table 2). In the lung cancer subgroup
of a study in patients with solid tumours, however, denosumab was
associated with improved overall survival compared with ZA [45]. To
date there are no Phase III data to demonstrate that denosumab treat-
ment can prevent SREs in patients with metastatic HSPC [49], although
such tumours are covered by the product label [20,21].

Unlike many bisphosphonates, which are administered in-
travenously, denosumab is given subcutaneously as a single 120-mg
injection every 4 weeks, improving the convenience and acceptability
of treatment for patients [49,53,100], as well as the time required from
healthcare professionals to deliver the medication [101]. The safety
profile of denosumab is broadly similar to that of ZA, with both drugs
associated with a low incidence of hypocalcaemia and ONJ. However,
the incidences of hypocalcaemia and serious hypocalcaemia are higher
with denosumab [102], as potent inhibition of osteoclast function re-
duces the amount of skeletal calcium released into the circulation,
while the incidence of renal toxicity is higher with ZA [53]. Recent data
show that the incidence of hypocalcaemia in patients receiving deno-
sumab can be as high as 30% despite mandatory Vitamin D and calcium
substitution, although Grade 3+hypocalcaemia was rare (1.3%)
[103]. Unlike ZA, however, denosumab is not cleared by the kidneys
[104]. The incidence of hypocalcaemia is increased in patients with
severe renal impairment receiving denosumab compared with patients
with milder or no renal impairment. Other risk factors for hypo-
calcaemia include prostate cancer or small-cell lung cancer, reduced
creatinine clearance, and higher baseline levels of the bone turnover
markers urinary N-telopeptide of type I collagen and bone-specific al-
kaline phosphatase [105]. Recent data have shown, however, that the
appearance of hypocalcaemia is very rare after 12months of treatment
[103].

Overall, denosumab has benefits over ZA in metastatic solid tu-
mours because of its superior efficacy in terms of delaying the time to
SREs, the convenience of a subcutaneous injection and the lack of re-
quirement for renal monitoring [53,79]. These aspects are also im-
portant to patients in determining their preference for one treatment
over another. When 484 European patients were asked what aspects of
treatment were most important to them, delaying the time until first
SRE and worsening pain, and a low risk of renal complications, were
considered most important [100]. No significant difference in ONJ rates
between denosumab and ZA has been reported in randomised con-
trolled clinical trials [53,79]. However, in a registry study of ONJ in
327 adults with a diagnosis of any cancer and ONJ, 97% had previously
received either bisphosphonates (56%), denosumab (18%), or both
(21%) [106]. Whichever agent is prescribed, the risks of ONJ must be
discussed with patients before beginning denosumab or bisphosphonate
treatment. Dentists have a key role to play as part of the

multidisciplinary team in preventing and managing ONJ [107]. Main-
taining dental hygiene, avoiding bone trauma, and preventing and
treating dental infections before and during therapy are essential to
minimise the risk of ONJ [108]. Furthermore, any necessary dental
surgery should be completed before initiating therapy. If invasive
dental surgery is required while patients are receiving bisphosphonate
or denosumab therapy, it is recommended that treatment is withheld
for 2months after surgery, although there is little evidence in this area
[108].

The potential health economic benefits of treatment must also be
taken into account, as studies have shown that patients with solid tu-
mours who experience≥ 1 SRE incur additional healthcare-related
costs [109,110]. Treatments that reduce the incidence of SREs, there-
fore, have the potential to reduce the cost burden to healthcare services
and society. While the acquisition cost of the monoclonal antibody
denosumab is higher than that of generic bisphosphonates, cost-effec-
tiveness analysis has shown that incremental costs per quality-adjusted
life year (QALY) and per SRE avoided with denosumab are well below
willingness-to-pay thresholds, and thus denosumab can be considered
cost effective for prevention of SREs [111,112]. In an alternative cost-
effectiveness analysis conducted based on US data, denosumab and ZA
were associated with similar QALYs gained, and thus the authors con-
cluded that the lower cost of ZA made it the optimal treatment [113].
Other authors have, however, described significant methodological
flaws in the analysis, including failing to account for the superiority of
denosumab over ZA in terms of SRE reduction, underestimating the
prevalence of SREs and their cost burden, and limiting the time horizon
of the analysis to 2 years [114].

Bisphosphonates and denosumab for the prevention of CTIBL

In addition to their role in reducing the risk of SREs in patients with
bone metastases, benefits were also reported for several nitrogen-con-
taining bisphosphonates in preventing CTIBL in patients with breast
and prostate cancer. Observed benefits include improved bone mineral
density (BMD) with risedronate (lumbar spine, +2.2% vs –1.8% with
placebo; hip, +1.8% vs –1.1% with placebo; both P < .0001) [115]
and ibandronate (lumbar spine, +3.0% vs –3.2% with placebo; hip,
+0.6% vs –3.9% with placebo; both P < .001) [116] in women with
breast cancer receiving hormonal therapy. Furthermore, alendronate,
risedronate and pamidronate prevented BMD loss in men with locally
advanced prostate cancer [117]. Similarly, several ZA studies con-
firmed the benefits of treatment (4 mg every 6months) for reducing
aromatase inhibitor-related bone loss in women with breast cancer
[118–122]. Findings showed that adverse events with bisphosphonate
therapy were mild and could be either prevented with suitable mea-
sures or easily managed [68].

Compared with breast cancer, data relating to the use of ZA for the
prevention of CTIBL in patients with prostate cancer receiving an-
drogen-deprivation therapy are limited. The available data suggest that
ZA can improve BMD during androgen-deprivation therapy [123], al-
though it is not clear whether this translates to improved fracture rates,
and treatment is not associated with prolonged survival [124].

Denosumab has also been evaluated for the prevention of CTIBL in
patients with breast cancer [125,126], HSPC [127] and CRPC
[128,129]. For example, in the Austrian Breast & Colorectal Cancer
Study Group-18 study, 3420 postmenopausal patients with early hor-
mone receptor-positive breast cancer receiving treatment with ar-
omatase inhibitors were randomised to denosumab 60mg every
6months or placebo [126]. The results of the primary analysis showed a
significant reduction in the time to first fracture in women receiving
denosumab compared with placebo, independently of baseline BMD
(HR: 0.50; 95% CI: 0.39–0.65; P < .0001). Denosumab (as Prolia®,
Amgen, Thousand Oaks, CA, USA) was licensed in 2011 for treatment of
osteoporosis in postmenopausal women and for men at an increased
risk of fractures, including as a result of CTIBL, as well as for the

Table 2
Key results from an integrated analysis of three head-to-head studies
(n=5723) comparing denosumab and zoledronic acid [99].

Parameter Hazard ratio (95% CI)* P-value

Time to first SRE (primary endpoint) 0.83 (0.76–0.90) < 0.001
Time to multiple SREs 0.83 (0.76–0.90) < 0.001
Pain worsening 0.92 (0.86–0.99) 0.026
Overall survival 0.98 (0.91–1.06) 0.617
Disease progression 1.02 (0.96–1.09) 0.697

Abbreviations: CI= confidence interval; SRE= skeletal-related event.
* Values < 1 favour denosumab.
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treatment of bone loss associated with hormone ablation in patients
with breast or prostate cancer at increased risk of fractures [130]. It is
important to note that discontinuation of denosumab in post-
menopausal women with reduced BMD is associated with an increase in
multiple vertebral fractures to the level observed in untreated partici-
pants [131]. Therefore, patients with osteoporosis who discontinue
denosumab should transition to an alternative antiresorptive treatment.
This transition should be not carried out until 7–8months after the last
denosumab injection, to ensure maintenance of BMD gains [132].
Furthermore, in women with breast cancer receiving aromatase in-
hibitors, the increase in fracture risk after discontinuing denosumab
was negated in women who also discontinued their aromatase inhibitor
therapy before, or within 6months after, stopping denosumab [133].
These findings warrant further research to fully evaluate the risk of
fracture in patients with cancer who discontinue denosumab.

Treatment guidelines and real-world treatment patterns

In 2014, the European Society for Medical Oncology (ESMO) pub-
lished clinical practice guidelines on bone health in patients with
cancer [12] (key points are summarised in Fig. 2 [134,135]). Treatment
with ZA or denosumab was recommended in patients with bone me-
tastases from either breast cancer or prostate cancer, irrespective of the
presence or absence of symptoms. These agents were also re-
commended in patients with advanced lung cancer, renal cancer and
other solid tumours with bone metastases, particularly those at high
risk of SREs and a life expectancy of> 3months [12]. The ESMO
guidelines state that bisphosphonates or denosumab should be started
as soon as metastatic bone disease is diagnosed and continued
throughout the course of the disease [12], although this recommenda-
tion may not be followed in routine practice [136]. The ESMO guide-
lines are currently under revision and a new version is scheduled to be
published in 2019.

In 2017, the American Society for Clinical Oncology (ASCO) and
Cancer Care Ontario (CCO) published guidelines on bone modifying
agents in metastatic breast cancer [137]. Like ESMO, they recommend
treatment for all patients with evidence of metastases, although the
ASCO-CCO guidelines include pamidronate as a recommended agent in
addition to denosumab and ZA. They further note that patients with
bone pain should receive analgesia in addition to denosumab or a bi-
sphosphonate. Neither the ESMO nor ASCO-CCO guidelines address the

issue of whether bisphosphonate or denosumab treatment could be
safely withdrawn in patients with a very small number of asymptomatic
bone metastases, as life expectancy in these patients can be high [138]
and treatment can place them at risk of ONJ and pathological femur
fractures. Delaying treatment in these ‘low risk’ patients has not,
however, been evaluated in controlled trials, and there are currently no
predictive tools to assess the risk of such patients developing SREs.

In 2016, a consensus panel concluded that bisphosphonates for
prevention of CTIBL should be part of routine clinical practice in all
patients with either a bone density T-score of< –2.0 or two or more
clinical fracture risk factors [139]. The authors noted, however, that
bisphosphonates are not licensed for either indication.

The use of bisphosphonates and denosumab in clinical practice has
been evaluated in several real-world data sets. Data from a German
treatment registry showed that most patients (89%) with bone metas-
tases from breast cancer receive treatment in line with guidelines, with
bisphosphonates (primarily ZA) or denosumab started a median of
3 weeks after diagnosis of bone metastases [140]. Notably, data from
the Adelphi Prostate Cancer and Breast Cancer Disease Specific Pro-
grammes showed that patients with breast cancer are more likely to
receive bisphosphonate or denosumab treatment than those with
prostate cancer [141]. (Body JJ et al. manuscript submitted). Overall,
11% of patients with breast cancer and 26% of those with prostate
cancer did not receive any treatment with bisphosphonates or deno-
sumab. Furthermore, in an analysis of 47,052 patients with solid tu-
mours and bone metastases who had a minimum of 6months of con-
tinuous enrolment in a health plan in the USA, 28,135 patients (60%)
did not receive denosumab or an intravenous bisphosphonate within
6months of their diagnosis of bone metastasis [142]. Thus it is clear
that, while many patients in real-world clinical practice receive
guideline-recommended treatment, there may be substantial differ-
ences between countries.

The future

Despite the advances made in the management of bone health in
patients with cancer, there are still several off-label areas in which
further research is needed (Fig. 3). As noted earlier, the optimal dura-
tion of therapy remains unclear [12,79,143]. Extended dosing intervals
or intermittent therapy may be used in practice, and the published data
comparing different ZA dosing schedules are described above [74–76].
Studies investigating 4-weekly vs 12-weekly administration of deno-
sumab are also underway (ClinicalTrials.gov: NCT02721433;
NCT02051218 [103]). Additional areas in which research is needed
include strategies to optimise the risk–benefit ratio of treatment with
bisphosphonates and denosumab, and their use in patients with very
severe disease.

In recent years, developments in imaging and molecular analysis
have allowed greater characterisation of the microenvironment within
bone that allows metastases to develop (the ‘metastatic niche’) [144].
This microenvironment is actively modified by the primary tumour
before metastasis occurs [145]. When tumour cells first colonise bone,
they enter a dormant state before subsequently being reactivated by
mechanisms including osteoclast-mediated modelling of the endosteal
bone surface. This process represents a potential target for future
therapeutic intervention, as well as a means of improving risk stratifi-
cation [144,146]. The precise mechanisms that underly dormancy and
reactivation, however, remain to be discovered, and may vary between
cancer types [147].

There are limited data on efficacy and safety of bisphosphonates and
denosumab in patients with bone metastases arising from other solid
tumours such as melanoma, renal cell carcinoma and colon cancer. In
these patients, and in those with lung cancer, use of targeted therapy
and immunotherapy has led to an increase in life expectancy
[148–151]. Data so far suggest that denosumab may have the potential
to enhance the effects of immunotherapy without increasing adverse

Fig. 2. Key points from the 2014 European Society for Medical Oncology
clinical practice guidelines [12]. * While the use of markers in decision making
is controversial [133], there are biochemical studies supporting a therapy
switch when bone markers remain elevated [134].
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event burden, including in non-small-lung cancer [152–155]. More-
over, the combination of denosumab with immunotherapy is in clinical
use in patients with non-small-lung cancer and bone metastases (RvM,
personal communication), and is also being evaluated in ongoing trials
such as DENIVOS (ClinicalTrials.gov: NCT03669523). Denosumab may
also have additive actions with novel biologic agents such as: crizotinib
or other ALK inhibitors; erlotinib; gefitinib; afatinib; CTLA4, PD-1 and
PD-L1 inhibitors; and c-Met inhibitors [81,156,157]. Trials involving
PD-1 and PD-L1 inhibitors in combination with denosumab in patients
with solid tumours are underway, such as the DENIVOS study men-
tioned above, as well as the KEYPAD study in clear cell renal carcinoma
(ClinicalTrials.gov: NCT03280667) and the CHARLI study in melanoma
(ClinicalTrials.gov: NCT03161756).

Radium-223 is used for the management of bone metastases in men
with CRPC and no known visceral metastases (Supplementary Table 1),
and data show that it can delay SREs and improve overall survival
[158]. Notably, sub-analysis of the pivotal ALSYMPCA trial showed that
concomitant bisphosphonate use was a significant predictor for reduced
risk of SRE in men with CRPC receiving radium-223 [48]. Data from an
open-label, uncontrolled, early access programme suggested that sur-
vival benefits were significantly greater when radium-223 was com-
bined with enzalutamide and/or abiraterone, or with denosumab,
compared with radium-223 alone [159]. Recently presented data from
the ERA-223 study, however, suggest that combination of radium-223
with abiraterone plus prednisone/prednisolone did not improve either
symptomatic SRE-free survival or overall survival, and was associated
with an increased risk of fractures [160]. The fracture rate was, how-
ever, lower in men who were also receiving denosumab or a bispho-
sphonate. As a result, only those participants who were receiving de-
nosumab or a bisphosphonate, regardless of allocated treatment arm,
were allowed to continue the study (patients who started the study
without receiving denosumab or a bisphosphonate were not allowed to
start one after randomization). Although this bone-protective effect was
not prospectively evaluated, these data suggest that bisphosphonates
and denosumab are important therapeutic tools irrespective of the
specific anti-cancer treatment used.

Although there are many novel agents under development for

advanced cancer that may also have wider effects on bone, there are
few trials in progress evaluating new therapies that specifically target
the bone microenvironment. More research is also needed into the use
of bone-forming (anabolic) agents in patients with bone metastases, as
there are currently no drugs licensed for use in solid tumours that in-
crease bone formation. In most cancers, including breast cancer and
multiple myeloma, though not prostate cancer, bone formation is re-
duced and lytic bone metastases often predominate [161,162]. Given
that denosumab is a highly potent anti-resporptive agent, the need for
new anabolic agents is greater than that for novel anti-resorptives. Bone
anabolic agents with potential for treatment of patients with bone
metastases include everolimus, proteasome inhibitors, sotatercept, and
anti-WNT, DKK1, and sclerostin antibodies such as romosozumab
[163], although data on these new agents are currently lacking.

Summary and conclusions

Patients with solid tumours are at risk of bone metastases, which
have a severe impact on morbidity and mortality, and also lead to
substantial increases in healthcare resource utilisation and costs.
Nonetheless, many patients with solid tumours and bone metastases are
not currently protected from bone complications. Bisphosphonates and
denosumab have an important role in the management of bone health
in patients with solid tumours, in terms of reducing the frequency of
complications associated with existing bone metastases and, in the case
of denosumab, in the management of CTIBL. In patients with bone
metastases, ZA and denosumab have been shown to reduce the in-
cidence of SREs. Treatment also delays the onset of bone pain in pa-
tients for whom bone metastasis is the most common cause of pain, and
early initiation of treatment is important to maximise both efficacy and
pain control. Superiority of denosumab over ZA has been demonstrated
in an integrated analysis of solid tumour trials for prevention of SREs,
reduction in bone pain and improvement of quality of life, with asso-
ciated benefits for patients, healthcare systems and society. In patients
with breast cancer receiving hormonal therapy, ZA and denosumab can
prevent bone loss and maintain BMD, and denosumab can also prevent
CTIBL in breast and prostate cancer. Denosumab, but not ZA, is licensed
for these indications. Areas in which further research is necessary in-
clude length of therapy, management of side effects, particularly in the
long term, and the potential differences in risk of SREs over time in
different tumour types.
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