
RESEARCH Open Access

Whole-genome sequence analysis of a Pan
African set of samples reveals archaic gene
flow from an extinct basal population of
modern humans into sub-Saharan
populations
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Abstract

Background: Population demography and gene flow among African groups, as well as the putative archaic
introgression of ancient hominins, have been poorly explored at the genome level.

Results: Here, we examine 15 African populations covering all major continental linguistic groups, ecosystems, and
lifestyles within Africa through analysis of whole-genome sequence data of 21 individuals sequenced at deep
coverage. We observe a remarkable correlation among genetic diversity and geographic distance, with the hunter-
gatherer groups being more genetically differentiated and having larger effective population sizes throughout most
modern-human history. Admixture signals are found between neighbor populations from both hunter-gatherer and
agriculturalists groups, whereas North African individuals are closely related to Eurasian populations. Regarding
archaic gene flow, we test six complex demographic models that consider recent admixture as well as archaic
introgression. We identify the fingerprint of an archaic introgression event in the sub-Saharan populations included
in the models (~ 4.0% in Khoisan, ~ 4.3% in Mbuti Pygmies, and ~ 5.8% in Mandenka) from an early divergent and
currently extinct ghost modern human lineage.

Conclusion: The present study represents an in-depth genomic analysis of a Pan African set of individuals, which
emphasizes their complex relationships and demographic history at population level.
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Background
Paleontological and genetic evidence points towards a
recent African origin of anatomically modern humans
(AMHs) around 150–300 thousand years ago (kya) and
a posterior Out-of-Africa expansion 50–100 kya [1–4].
The specific regions where first modern humans inhabit

are still under debate, with northern, eastern, and south-
ern Africa having been proposed as possible locations
[4–9]. There is no disagreement, however, about
hunting-gathering being the subsistence strategy of all hu-
man societies prior to ~ 10 kya [10]. Currently, only a few
populations retaining hunter-gatherer lifestyles remain
isolated in Africa, including, for example, click-speaking
indigenous groups or rainforest hunter-gatherers in Cen-
tral Africa (aka African Pygmies). These AMH lineages
are the most genetically diverse contemporary human
populations. They present the most basal lineages of uni-
parental markers (Y chromosome and mitochondrial
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DNA) and the deepest branches of our species when con-
sidering autosomes [6, 11–15].
Khoisan languages, defined by their use of click conso-

nants as phonemes and by exclusion of the
Niger-Kordofanian linguistic family, are spoken by several
Khoisan populations who currently reside in the Kalahari
regions of Namibia and Botswana in southern Africa, as
well as by two other populations in Tanzania, the Hadza
and the Sandawe ethnic groups. The basal split of Khoisan
people from any other extant human populations has been
consistently inferred using uniparental markers [11, 16],
microsatellites [17], autosomal neutral regions [14, 15],
and whole genomes [18]. Moreover, the study of ancient
human demographic history reveals a larger effective
population size for the ancestors of Khoisan people com-
pared to the significant decline suffered by non-Khoisan
populations after their separation, possibly as a conse-
quence of a drier climate in Western and Central but not
in Southern Africa [18].
On the other hand, African Pygmies, broadly charac-

terized by their short statures, include a group of more
than 20 culturally heterogeneous populations [19, 20].
As a consequence of their close interactions with neigh-
boring farmers, most Pygmies speak Niger-Kordofanian
or Nilo-Saharan languages and had some practice of
fishing and agriculture [21]. They are broadly classified
in two main groups [22]: Western Pygmies (e.g., Biaka,
Baka, Bakola), who inhabit the rainforest west of the
Congo Basin, and Eastern Pygmies (e.g., Mbuti, Twa),
who live close to the Ituri rainforest and Lake Victoria.
Genetic evidence supports an independent origin for all
African Pygmies with a basal split from present day agri-
culturalist populations that is posterior to the Khoisan
separation [15, 22–25].
The “Bantu expansion”, which is the migration of

Bantu-speaking people from present day Cameroonian
Grassfields region close to Nigeria, began around 5–
3 kya ago and has been associated with the spread of
Late Iron Age culture over most of sub-equatorial Africa
[10, 21, 26]. As the migrant Bantu-speakers encountered
resident groups in the regions they spread into, varying
degrees of admixture ensued with concomitant gene
flow between them. In fact, different magnitudes of gene
flow with neighboring populations have been reported in
several extant Khoisan and Pygmy populations [8, 20,
25, 27, 28]. In addition to the impact these migrations
had in eastern and southern Africa, backflow into Africa
from Eurasians also influenced the diversity of the Afri-
can gene pool. For example, low levels of west Eurasian
ancestry have been detected in several Khoisan popula-
tions, particularly in the Nama but also even in the most
isolated groups such as the Ju|‘hoansi [28, 29]. The ad-
mixture was dated ~ 1500 kya, prior to the arrival of
European colonialist expansion into southern Africa

during the eighteenth century, and has been likely intro-
duced from an already admixed population from eastern
Africa [29].
Archaic hominins could have also left a footprint in the

gene pool of extant populations, which would represent
another confounding parameter when analyzing the gen-
etic diversity within the African continent. Initial studies
carried out on archaic genomes reported that Neanderthal
or Denisovan signatures were found in non-African
groups but not in the genomes of sub-Saharan popula-
tions [30, 31]. Recent analyses, though, revealed a more
complex panorama. Traces of Neanderthal introgression
have been observed not only in North African populations
[32], who are in fact historically and genetically different
from sub-Saharan peoples [33, 34], but also in other Afri-
can populations, for instance in Yoruba genomes, al-
though they were most likely introduced through recent
Eurasian admixture [28, 35, 36]. Furthermore, some evi-
dence of introgression from unknown now-extinct homi-
nins in African groups is accumulating [37–42]. More
precisely, archaic introgression has been estimated to be
around 5 to 7.9% in Yoruba [37, 42], 2% in Khoisan and
Biaka Pygmy [38], and 2% in Hadza, Sandawe, and West-
ern Pygmy populations [39]. Specific candidate intro-
gressed regions have also been identified, for instance, a
20 kbp block found exclusively in sub-Saharan popula-
tions that covers the entire MUC7 gene, a protein abun-
dantly expressed in saliva and associated with the
composition of oral microbiome [40], or 265 loci spanning
~ 20 Mbp spread across the genome that were detected in
two Western African Pygmy populations [41]. Moreover,
the first study with whole-genome sequences from prehis-
toric Africans suggests the existence of a basal modern
human lineage that separated before Khoisan ancestors
did and have left asymmetrical signatures on different
present day western African populations [43]. An alterna-
tive model that also fits their data would involve lasting
and long-range gene flow that resulted in eastern and
southern Africans being unequally connected to different
western African groups. With either model, this study has
unraveled that basal diversifications of modern humans
were complex. In fact, this complexity is in line with the
scenario described in previous studies of several events of
gene flow that occurred further back in time among ar-
chaic hominins, such as between a population that di-
verged early from AMHs in Africa and ancestors of the
Neanderthals [44, 45] or between unknown archaic homi-
nins and ancestors of Denisovans [36].
A feasible approach to model the complex demo-

graphic process that has produced the genetic variation
present in current human African populations (including
the role of putative archaic introgression from archaic
ghost populations) and estimating each of the demo-
graphic parameters would be to analyze the data within
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an Approximate Bayesian computation (ABC) frame-
work. ABC is a statistical framework for inferring the
posterior distribution of parameters when the likelihood
of the data given the parameters is unknown but there is
a way to generate simulated data [46, 47]. The simulator
generates new simulated datasets using parameter values
from prior distributions. From each simulated dataset, a
set of informative summary statistics (SS) for the param-
eter/model that we are studying is usually computed and
compared with the SS computed in the observed data.
Finally, the values of the parameters that were used to
generate the simulation are accepted or rejected as sam-
pled values from the posterior distribution given an
error threshold ε. One of the basic issues of ABC is the
definition of “informative SS”; ultimately, SS are
dependent on the problem that is being considered and
the criteria of the investigator [48]. Following Jiang et al.
[49], Mondal et al. [50] recently implemented an ABC
with Deep Learning (ABC-DL) framework that allows to
estimate the most informative SS for a given problem. A
DL can be trained with simulated data using a broad
mathematical representation of the genome (such as the
multidimensional unfolded join site frequency spectrum
(jSFS)) [51] to predict the value of the parameter/model
that generated the simulation. Then, the prediction of the
DL can be used as the most informative summary statistic
(SS-DL) for the parameter/model that is being studied. By
applying this new method, Mondal et al. [50] developed a
complex demographic model for Eurasian populations
and identified the signal of archaic introgression from a
ghost population within Asian populations.
Finally, it is worth mentioning that in the scenario de-

scribed above of admixed societies with complex rela-
tionships between themselves throughout their history,
pioneering whole-genome sequence studies in African
individuals have highlighted the need for a broader geo-
graphic sampling coverage across the continent to eluci-
date the evolutionary history of African populations [18,
28, 39, 43, 52, 53]. The present study adds to the know-
ledge base of early evolution in Africa through an
in-depth analysis of the genomic variation of a collection
of whole-genome samples from 15 different African pop-
ulations, in the process deciphering their elaborated re-
lationships and demographic history, and focusing on
the putative introgression from unknown archaic African
hominins via the implementation of an ABC-DL ap-
proach as in Mondal et al. [50].

Results
Dataset and genetic diversity
We collected 21 samples from the four major continen-
tal African linguistic groups that belong to 15 different
African populations which are either agriculturalists or
hunter-gatherers (Fig. 1a). In addition, we included four

Eurasian samples for this study. Whole-genome sequen-
cing of the 25 male individuals was conducted on Illumina
sequencing platforms. Nine samples were newly se-
quenced for this project while the whole-genome shotgun
read data was already published for the remaining 16 indi-
viduals. All samples were paired-end sequence at deep
coverage (21–47x) (Table 1, Additional file 1: Table S1.2).
We detected a total of 12.72 million SNPs in 2 Gbp of

callable genome (Additional file 1: Table S2.1). We vali-
dated the SNP calling of 21 samples by comparing their ge-
notypes with the ones determined from SNP arrays of these
individuals. Twelve HGDP samples were evaluated consid-
ering the genotypes generated on an Illumina 650Y array,
while the nine genuinely sequenced for this project were
genotyped in an Affymetrix’s Genome-Wide Human SNP
array 6.0. On average, we achieved a genotype sensitivity of
99.67% for the autosomes, 99.56% for the X chromosome,
and a heterozygous sensitivity of 99.37% for the HGDP
samples. For the other nine individuals, we achieved an
overall genotype sensitivity of 98.70% for the autosomes
and 99.22% for the X chromosome. The heterozygous sen-
sitivity for these samples is on average 97.25%.
Hunter-gatherers present the highest genetic diversity of

all populations, with Khoisan having greater amount of
genetic differences than Pygmies (Fig. 1b top, Add-
itional file 1: Figure S4.1). The four Khoisan samples show
similar measures of genetic differences to non-Khoisan
samples even belonging to three different groups. Pygmies
do not form a single cluster; instead, the Baka Pygmy, in
comparison with Mbuti Pygmies, displays less genetic dif-
ferences to other sub-Saharan and North African popula-
tions. Sub-Saharan agriculturalist individuals share highly
similar values of genetic diversity relative to all other sam-
ples, with lower levels than the ones observed in
hunter-gatherers but not as reduced as the non-African
samples. The only exception is the Toubou individual,
who also maintains similar genetic distance to other
sub-Saharan samples but is genetically closer to North Af-
rican and non-African samples. As expected, North Afri-
can samples are genetically closer to non-African samples
than to sub-Saharan individuals, showing a considerable
reduction of genetic diversity.
We determined long homozygous regions, or runs of

homozygosity (ROH), of at least 0.5, 1, and 1.5 Mbp of
callable genome in each sample (Fig. 1b bottom, Add-
itional file 1: Figure S4.2). Overall, the total length of
ROH within a genome depends largely on the geograph-
ical origin of the individual; this is, relatively similar
values are observed within continents while the amount
increase as the distance to Africa gets bigger [54]. How-
ever, long ROH over 1.5 Mbp do not follow this geo-
graphical tendency. Instead, those segments are more
frequent in populations in which isolation and consan-
guineous unions are more common. We observed that
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sub-Saharan agriculturalists present the lowest amounts
of ROH, whereas both Khoisan and Pygmies show
higher levels of ROH that are closer to the ones found
in North African or Eurasian populations (Fig. 1b bot-
tom). Moreover, there are three samples (Saharawi, Tou-
bou, and Yoruba_HGDP00927) as well as almost all
hunter-gatherers with long ROH, which might indicate
in-breeding at the population or individual level.

Genetic ancestries and gene flow in African individuals
We explored the correspondence between genetic
and geographic diversity in our African samples
(Additional file 1: Figure S5.1). We obtained a significant
correlation between the first two dimensions of a multidi-
mensional scaling analysis from a genetic distance matrix
and the coordinates of the sampled individuals in an Afri-
can map (R = 0.58; p value based on 1000 replications =
0.003. Removing Bantu individuals, R = 0.655; p value
based on 1000 replications = 0.001). This correlation sug-
gests that genetics tends to fit the geographic location of
the sampled individuals. In fact, we observed that genetic
differentiation tends to increase monotonically with geo-
graphic distance between individuals (Additional file 1:
Figure S5.2), a pattern that is consistent with a main gen-
etic gradient among African populations. Finally, by
means of a Bearing procedure [55], we found that the gen-
etic differentiation in the African continent is in the

north-west to the south-east axis (Additional file 1: Figure
S5.3). This direction is similar to the north to south angle
described by [56] using Fst-based distances and SNP
microarray data and is consistent with the Sahara desert
acting as a genetic barrier between populations at both
sides [56]. The fact that our pattern is somehow rotated
could be explained by the particular geographical sam-
pling scheme of our study, which tends to be on the
north-west/south-east spatial axis (correlation between
latitude and longitude of our sampled locations = − 0.536,
p value = 0.012).
To define the genetic variation and structure in our

dataset, we applied a principal component analysis
(PCA) and ran ADMIXTURE [57]. For ADMIXTURE,
in order to have more representative samples per popu-
lation, we downloaded the “Bushman” data library from
Galaxy [18, 58]. A total of 374,195 SNPs in 745 samples
(the 25 of this study and an additional set of 720 samples
from the array that belong to African, European, and
Asian populations) were analyzed. We found that seven
is the best-supported number of ancestral populations
for our data (Additional file 1: Figure S6.2). We named
each ancestry after the population/region with the high-
est proportion of each specific ancestry.
Overall, results from both analyses suggest that Afri-

can populations can be clustered in four major genetic
groups: Khoisan, Pygmy, sub-Saharan agriculturalist, and
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Fig. 1 Samples, genetic diversity, and runs of homozygosity. a Geographical, linguistic and life-style distribution of African individuals analyzed. b
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North Africa (Fig. 2). Consistent with the highest
amount of differences observed (Fig. 1b), we found the
maximum genetic variance was found between Khoisan
and Eurasian populations. With the exception of the
Baka individual, the other hunter-gatherer samples in
our dataset are mostly represented by a single ancestry;
however, it should be noted that the general picture for
hunter-gatherers is more complex, with mixed ancestries
for most populations (Additional file 1: Figure S6.3). On
the other hand, most sub-Saharan agriculturalist individ-
uals present some hunter-gatherer ancestry. The propor-
tion is mainly related to the geographic distance
between mixed populations. Dinkas, South African, and
West African Bantus present the highest proportions of
hunter-gatherer ancestries, and they are geographically
the closest populations to Mbuti, Khoisan, and Baka, re-
spectively. The East African Bantu, Laal, and Mandenka
individuals show lower proportions of hunter-gatherer
ancestries, with values following a dwindling gradient
that is concordant with the ascending distance to the
Mbuti Pygmy location. Finally, North African samples

are closer to Eurasian populations than to any
sub-Saharan populations, implying that the Sahara Des-
ert might have represented a major barrier within Afri-
can populations.
To formally test admixture, we applied the

D-statistics test [59] addressing two scenarios: the
admixture between hunter-gatherer populations and
their respective geographically surrounding agricul-
turalist populations (South African Bantu for Khoi-
sans; Laal, Toubou, Dinka, and Eastern Bantu for
Mbuti Pygmies; Yoruba and Western Bantu for Baka
Pygmies), and the putative gene flow from west Eur-
asian to African populations. Additionally, we evalu-
ated the latter scenario by calculating F4-ratio
estimates [59], which provide accurate proportions of
European ancestry into African populations. The ra-
tios we constructed were f4(Han, Yoruba; X,
Chimp)/f4(Han, Yoruba; French, Chimp), being X a
hunter-gatherer population, and f4(Sardinian, Han;
X, Yoruba)/f4(Sardinian, Han; French, Yoruba) when
X refers to other African groups.

Table 1 Samples and sequencing statistics

Individual identifier1 Mitochondrial haplogroup chrY haplogroup Coverage #SNPs #Heterozygous

JuhoansiSan_HGDP01029 L0d1b1 A1b1a1a1 46.63 3,169,565 1,968,088

JuhoansiSan_HGDP01036 L0d1c1a A1b1b2a 41.34 3,164,150 1,947,901

KhomaniSan_A403 * L0d2a1 A1b1b2a 23.77 3,142,132 1,877,045

TuuSan_KB1 L0d1b2 B2b1b 25.87 3,157,740 1,961,736

MbutiPygmy_HGDP00456 L0a2b E1b1a1a1c1a1c 31.25 3,081,528 1,897,510

MbutiPygmy_HGDP00982 L0a2b E2b1a1 40.13 3,089,676 1,930,933

BakaPygmy_A405 * L1c1a2b E1b1a1a1c1a1c 32.38 3,083,814 1,986,951

SouthAfricanBantu_A402 * L2a1f E1b1a1a1d1c 22.72 3,001,336 1,972,901

WestAfricanBantu_A404 * L3d3a1 E1b1a1a1c1a1c 32.53 2,982,337 1,957,325

Yoruba_HGDP00927 L1b1a E1b1a1a1c1a1 41.93 2,915,392 1,883,193

Yoruba_HGDP00936 L2a12b E1b1a1a1c1a1 42.78 2,941,205 1,920,680

Yoruba_NA18507 L1b1a3 E1b1a1a1c1a1 43.62 2,934,201 1,912,252

Mandenka_HGDP01284 L2c3a E1a1 33.39 2,934,343 1,914,085

Mandenka_HGDP01286 L1b1a E1b1b1a1a1 40.07 2,927,830 1,911,253

Laal_A409 * L3e1c B1 25.11 2,916,350 1,899,437

Dinka_DNK02 L2c1 E2a 36.81 2,880,056 1,856,506

Dinka_DNK07 L0a1a A1b1b2b 46.81 2,880,930 1,844,312

EastAfricanBantu_A401 * L2a1h E1b1a1a1c1a1c 21.01 2,893,697 1,917,226

Toubou_A408 * M1 T1a1 24.79 2,755,888 1,756,695

Saharawi_A406 * L3b1b1 E1b1b1b1a 24.27 2,525,396 1,545,877

Libyan_A407 * L2a1c E1b1b1b1a 25.02 2,540,250 1,609,582

French_HGDP00521 T1a I1a 35.14 2,398,449 1,434,940

Sardinian_HGDP00665 H3u I2a1a1 32.55 2,396,919 1,429,346

Han_HGDP00778 A5b1b O3a2c1a 35.65 2,418,780 1,361,654

Dai_HGDP01307 B4a1c4 O2 35.42 2,406,526 1,362,632
1Samples newly sequenced in this study are marked with an *
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We found clear evidence of admixture between Khoi-
san populations and the South African Bantu individual,
as well as between Dinka and Mbuti Pygmies, as this
was consistently observed in several comparisons made
using different African populations (Additional file 1: Ta-
bles S6.1–2). We also detected signatures of gene flow
between Mbuti Pygmies and both Chadian individuals
(Laal and Toubou), although with lower significance
(Additional file 1: Table S6.2). By contrast, East African
Bantu, West African Bantu, or Yoruba populations show
no evidence of gene flow with their neighbors, Mbuti
and Baka Pygmies (Additional file 1: Tables S6.2–3).
As expected, evidence for admixture between west

Eurasians (represented by the French sample) and North
African populations was formally identified with the
D-statistics test (Additional file 1: Table S6.4). We then
estimated an F4-ratio [29, 59] and obtained a significant
proportion of the Eurasian component present in North
African populations, with values as high as 84.9% for the
Saharawi individual and 76.0% for the Libyan sample
(Additional file 1: Table S6.5). Two other northeastern
sub-Saharan populations (Toubou and East African
Bantu) also stood out with highly significant D-statistics
values, although of lower magnitude. This is concordant
with an estimated west Eurasian ancestry proportion
found of 31.4% and 14.9%, respectively (Additional file 1:
Tables S6.4–5). Finally, the three Khoisan groups present
significant small proportions (3.83–4.11%) of Eurasian
ancestry. This signature, which was estimated with the
F4-ratio, was not detectable by the D-statistics test (Add-
itional file 1: Tables S6.4–5).

Effective population size over time
To unravel the ancient demographic history of the African
populations that are present in our data set, we used the
Pairwise Sequentially Markovian Coalescent (PSMC) model
that analyzes the dynamics of the effective population size
over time [60]. We included at least one representative of
each of the 15 African populations and two Eurasian sam-
ples in the analysis (Additional file 1: Figure S7.1) and con-
sidered both the classical mutation rate of 2.5 × 10−8 [61]
and the 1.2 × 10−8 mutations per bp per generation re-
ported in other analyses [62, 63]. The demographic trajec-
tories of the sub-Saharan agriculturalist populations are
very similar to each other; and only South African Bantu
and Toubou individuals differ partly from the rest of
sub-Saharan farmer samples; however, their considerable
levels of admixture with other North African or
hunter-gatherer populations (Fig. 2b) might explain this
trend. Therefore, in order to ease visualization, we
plotted a Yoruba individual (Yoruba_HGDP00936) and
two Ju|‘hoansi individuals as representatives of the
sub-Saharan agriculturalist and Khoisan populations,
respectively (Fig. 3 and Additional file 1: Figure S7.2
considering a mutation rate of 1.2 × 10−8).
Our PSMC analysis recapitulated major demographic

events that have previously been reported, including a
pan-population bottleneck starting around 100 kya [60].
Out-of-Africa populations started to diverge from Afri-
can populations around 100 to 110 kya and suffered the
highest-in-magnitude population reduction, until their
recent expansion. Khoisan individuals displayed larger
Ne, maintained through all time periods, as recently
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reported [18]. We observed that ancestors of Mbuti and
Baka Pygmies, like Khoisan, maintained a larger effective
population size after the split with non-Khoisan/Pygmy
populations. Both Khoisan and Pygmy individuals displayed
a moderate population decline compared to Eurasian or
North African individuals and also compared to Yoruba,
which showed intermediate gradual Ne reduction. Interest-
ingly, the Baka Pygmy sample showed a sharp increase in
Ne around 30 kya. In order to discard a possible spurious
increase occurring in one specific time period, we changed
time parameters of PSMC to obtain a finer scale. The new
estimates revealed a bit more gradual increase spanning
three different time intervals (Additional file 1: Figure S7.3).
Finally, we also tested to which degree a putative contribu-
tion of European ancestry into sub-Saharan African
genomes could affect any of the above observations. To
that effect, we masked, from the genome of each
sub-Saharan individual, all genomic regions of
European origin, which we previously inferred with
RFMix [64] by considering as reference 922 individ-
uals from African or European populations from the
1000 Genomes Project Phase III panel. We repeated
the PSMC on the masked genomes obtaining nearly
identical trajectories (Additional file 1: Figure S7.4).

Archaic introgression from known hominins
Archaic introgression from either known or unknown ex-
tinct hominins has been suggested in different African
populations [26, 30, 33–39]. In our data, we confirmed
previous findings [28–30], as the results of the D-statistics
of the form D(X = African population 1, Y = African
population 2; Neanderthal/Denisova; Chimpanzee)
showed that Eurasian samples as well as North African in-
dividuals exhibit a significant enrichment of Neanderthal
DNA (higher in East Asia than in West Eurasia or North

Africa) when compared to sub-Saharan African samples
(Additional file 1: Figure S8.1). Z-score values are gener-
ally lower for signatures of Denisovan introgression than
for Neanderthal, meaning that a lower proportion of gene
flow is observed when admixture has taken place. Asian
samples were enriched in archaic DNA from Denisovans,
and the European and North African samples too, but at
lower levels. This is probably due to the fact that Neander-
thal and Denisova are sister groups and consequently
share derived alleles that might confound their admixture
signals. We found no signals of Neanderthal or Denisovan
introgression in the sub-Saharan individuals, which was
additionally confirmed with an F4-ratio test for the Nean-
derthal introgression (Additional file 1: Table S8.1).

Demographic model
We aimed to explore the impact of recent population ad-
mixture on the genetic landscape of sub-Saharan popula-
tions in an integrative manner, as well as the presence and
nature of archaic introgression from hominin populations.
To this end, we conducted an Approximate Bayesian
Computation (ABC) analysis coupled to a Deep Learning
(DL) framework [50] (Additional file 1: Figure S9.1).
We implemented six demographic models (Fig. 4;

Additional file 1: Table S9.1) of increasing complexity
from a basic one (model A). Model A summarizes ac-
cepted features of human demography [65]: (i) presence
of archaic populations out of the African continent, rep-
resented by the Neanderthal and Denisovans lineages,
(ii) introgression from early anatomically modern
humans into Neanderthal [44, 45], (iii) introgression
from an extremely archaic population into Denisovans
[36], (iv) Khoisans at the root of mankind [11, 14–18],
(v) Out-of-Africa event of AMHs [3], (vi) archaic intro-
gression of a Neanderthal-like population after the

Fig. 3 PSMC analyses on eight populations. Ne and time have been scaled with a mutation rate of 2.5 × 10−8 and a generation time of 25 years
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Out-of-Africa event in Eurasian populations [30], and
(vii) archaic introgression from a Denisovan-like popula-
tion in East Asians [31]. Furthermore, we included re-
cent migrations between Europeans to West Africans,
Europeans to Mbutis, Europeans to Khoisans, West Afri-
cans to Mbutis, West Africans to Khoisans, Mbutis to
West Africans, Mbuti to Khoisans, and Khoisans to
Mbutis. These last parameters, as well as the introgres-
sion of the archaic population in Denisovans, can be
considered as nuisance parameters. Model B extends
model A by adding a “ghost” archaic population, XAf,
directly related to the lineage leading to AMHs. In this
model, XAf independently inbreeds with each of the
AMH African populations. Model C extends A by con-
sidering that the ghost archaic population is directly re-
lated to the Neanderthal lineage, Xn. Model D considers
that Xn appears in the archaic lineage out of Africa be-
fore the Neanderthal and Denisovan split. Model E is a
mixture of model B and C. It considers two ghost ar-
chaic populations, one that directly split from the
lineage that will produce the AMHs and another related
to the Neanderthal lineage, both admixing with AMH
populations within Africa. Finally, model F mixes the
ghost features of models B and D.

First, we estimated the power of the ABC-DL frame-
work to distinguish among the six considered models by
using simulated datasets from known models as ob-
served data and running the ABC-DL framework to esti-
mate the posterior probability of each model.
Additional file 1: Table S9.2 shows the confusion matrix
for the six models using 100 simulations for each model
as observed data. Our analysis suggests that the
ABC-DL framework cannot identify all the models with
the same accuracy; model F shows the lowest P (real
model = X | predicted model by ABC-DL = X) = 0.41,
whereas models A, B, C, and D show posterior probabil-
ities of correct assignment > 0.5. This is not surprising
given that models E and F are the most general ones.
Given these results, we applied the ABC-DL to our ob-
served data. Out of the six considered models, the one
showing the largest posterior probability is model B (P
(model = B|Data) = 0.85), namely the presence of a
ghost archaic population directly related with the lineage
that produced the anatomically modern humans. Not-
ably, this posterior probability of model B is 11 times
greater than the one from the second most supported
model (model D) (P (model = D|Data) = 0.078)), a sub-
stantial Bayes factor difference [66] that suggests that

A

C D

E F

B

Fig. 4 Tested demographic models. Left figures: topology of the demographic models for ABC-DL analyses considering East Asian (EAs),
European (Eu), western sub-Saharan (WAf), Mbuti Pygmy (Mbt), and Khoisan (Kho) anatomically modern humans, Altai Neanderthal (N),
Neanderthal-like population (NI) with introgressed DNA present in Eurasian populations, Denisova (D), Denisovan-like population (NI) with
introgressed DNA present in East Asian populations, an archaic ghost population (Xe) that has left their footprint into Denisovan genome, a
putative African extinct basal branch population (XAf), and a second putative archaic ghost population Neanderthal-like (Xn). In all models, recent
migrations described in the text are allowed, but not shown in the figure to ease visualization. The posterior probability obtained with our ABC-
DL approach is shown for each model; right figure: fitted B model
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the best model out of all the compared ones is model B.
Remarkably, basic model A, which does not include any
kind of archaic introgression in Africa, has a posterior
probability close to 0.
Next, we aimed to estimate the posterior probability of

each of the 52 parameters of model B by applying the
ABC-DL approach. As a preliminary step, we quantified
the performance of the ABC-DL framework in simulated
data. For each parameter, we ascertained 1000 simula-
tions at random and estimated the posterior distribution
using the ABC-DL. Next, we computed the factor 2 stat-
istic (Additional file 1: Table S9.3), which is the number
of times that the estimated mean is within the range
50% and 200% of the true value of the parameter (see
Excoffier et al. [67] for details). In 96% of the times, the
mean of the posterior distribution of the time of split of
XAf with the AMH lineage is within the factor 2, sug-
gesting high confidence in using the mean of this param-
eter as proxy of the real value. The factor 2 of the
amount of introgression of XAf to the different African
populations ranges between 77% (XAf to West African)
and 72% (XAf to Khoisan) and the times that XAf intro-
gression to the African populations is within the factor 2
range are also ~ 80%, much higher than the expected
under randomness. According to the factor 2 analysis,
the worse performance of using the mean as a proxy is
for migration parameters, which show percentages of
factor 2 of ~ 50%, similar to the ones that are observed if
the mean of the posterior is sampled at random from
the prior distribution. Overall, these analyses support
that the mean of the posterior distribution obtained by
the ABC-DL framework is a good proxy of the real value
used in the simulations for most of the parameters.
Finally, we estimated the posterior distributions of the pa-

rameters that describe the most supported demographic
model (Fig. 4, Table 2, and Additional file 1: Table S9.4).
The ABC-DL produced posterior distributions that strongly
deviated from the prior distributions that we considered
(see Additional file 1: Figure S9.3) for most of the parame-
ters, suggesting that the ABC-DL approach could properly
extract the information present in the observed data to up-
date the prior distributions of each parameter. Not surpris-
ingly, most of the parameters showing posterior
distributions similar to the prior distributions are the same
that showed low factor 2 values in our former analysis. Ac-
cording to our ABC-DL analyses (Table 2), the AMH
lineage and the one from the archaic Eurasian populations
diverged 603 kya (95% credible interval (CI) ranging from
495.85 to 796.86 kya). The ghost XAf archaic population
and the AMH lineage split 528 kya (95% CI of 230.16 to
700.06 kya), whereas the Denisovan and Neanderthal line-
ages split 426 kya (95% CI from 332.77 to 538.37 kya).
Archaic introgression estimates from XAf to African popu-
lations range from 3.8% (95% CI 1.7 to 4.8%) in Khoisan

and 3.9% (95% CI 1.3 to 4.9%) in Mbuti to 5.8% (95% CI
0.7 to 0.97%) in West Africa. Our analyses also identified
the archaic introgression from early AMHs into Neander-
thals (mean of the posterior distribution = 1.2%), yet the
95% CI included 0% (95% CI ranging from 0 to 4%).
The obtained estimates of Neanderthal introgression in

Eurasian populations in model B are larger (3.9%, 95% CI
from 0.017 to 0.048%) than usually reported. Since
sub-Saharan populations are traditionally used as outgroup
for detecting archaic introgression out of Africa, we won-
dered whether these estimated values of archaic introgres-
sion in Eurasia could be higher than previously by the fact
that we were considering in model B archaic introgression
within Africa. We conducted the ABC-DL analysis using
the model A, the basic model that does not consider XAf
(Additional file 1: Table S9.4). The mean of the posterior
distribution of the introgression of Neanderthal ancestry in
Eurasian populations was 1.1% (95% CI 0.35 to 3.6%), 3.3
times smaller than that obtained in model B and closer to
the range of previously reported values.

Discussion
The African continent is a melting pot of human cultures
and genotypic diversity and, according to current data, the
cradle of anatomically modern humans [1–4]. However,
despite its crucial importance for understanding recent hu-
man evolution, Africans remain underrepresented and
understudied in current human datasets [68]. In the present
study, we have analyzed the genetic diversity present in ge-
nomes sequenced at high coverage in a Pan African set of
samples, including a wide geographical, linguistic, and eth-
nic coverage of human groups in Africa (Fig. 1a).
In agreement with the origin of humans in the African

continent and further founder bottlenecks events out of
Africa, our PSMC estimates a larger effective population
size (Ne) of African samples compared to non-African
samples. All hunter-gatherers, not only Khoisan, present
higher Ne along modern-human history than any other

Table 2 Mean and 95% CI of main parameters of model B

Parameter Mean 2.50% 97.50%

tAMH-Archaics* 603.25 495.85 796.86

tAMH-XAf* 528.53 230.16 700.06

tN_D* 426.33 332.77 538.37

tAMH* 190.75 160.78 245.12

IntrogressionDI_Han 0.039 0.013 0.049

IntrogressionEarlyHumans_Neanderthal 0.012 0 0.04

IntrogressionNI_Eurasia 0.038 0.017 0.048

IntrogressionXf_Kho 0.041 0.002 0.095

IntrogressionXf_Mbuti 0.043 0.003 0.095

IntrogressionXf_WestAfrica 0.058 0.007 0.097

*kya assuming a generation time of 29 years
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population. It is noteworthy that we observed by PSMC a
sudden Ne increase in Baka Pygmy around 30 kya. A simi-
lar increase was observed in another study that analyzed
several Baka and Biaka samples [25]. In addition, this indi-
vidual presents the highest average genome-wide hetero-
zygosity compared to the rest of samples (Fig. 1b).
Nevertheless, such abrupt Ne increase can be attributed to
either a population expansion or episodes of separation
and admixture [60]. Further analyses at population level
are needed to distinguish between these two scenarios.
The African genetic landscape derived from our analyses

(genetic diversity, ROH, PCA, and ADMIXTURE) reveals
four major genetic human groups in Africa, associated to
geographic and cultural/linguistic groups and comprising
Khoisan, Pygmies, sub-Saharan non-hunter-gatherers, and
North African populations. While different hunter-gatherer
groups show more differentiation compared to the rest of
samples, agriculturalist sub-Saharan individuals are genetic-
ally more homogeneous, most likely due to the Bantu ex-
pansion. Northern African individuals are closely related to
non-African populations, in agreement with a recent split
of both groups and continuous gene flow, as clearly deter-
mined with D and F4-ratio statistics. Therefore, the Medi-
terranean Sea is pinpointed as an incomplete genetic
barrier between Africa and Eurasia, whereas the Sahara
Desert represents a major barrier within Africa. Neverthe-
less, we observed that genetic diversity among samples de-
cays mainly with geographical distance, underlying the
role of isolation by distance as a major force in shaping
genetic differentiation in Africa [56]. These four major
groups, along with African populations in general, are not
isolated. Indeed, we discerned migration permeability be-
tween specific African populations, mostly associated to
geographic proximity. Moreover, we found three samples
(Saharawi, Toubou, and Yoruba_HGDP00927) with signs
of inbreeding. Further analyses with more samples are
needed in order to estimate the extent of inbreeding in
these populations.
Compelling evidence accumulates in favor of inter-

breeding between early hominin species being common
instead of exceptional. Neanderthal and Denisovan
introgression in Asia, Europe, and North Africa has been
well established in previous studies [30–32] and con-
firmed in our data with a D-statistics analysis. Although
the poor DNA preservation in ancient samples hinders
direct analyses [69], indirect evidence increasingly sup-
ports the contribution of unknown now-extinct homi-
nins to the African genetic pool in sub-Saharan Africa
[28, 35–42], where the ancestors of modern humans
coexisted during the Pleistocene with different archaic
humans [41]. Our ABC-DL analysis is a new incorpor-
ation to this bulk of indicia. Indeed, it corroborates that
a model in which there is no archaic introgression is ex-
tremely unlikely, as was previously observed in [38].

Applying this novel strategy that includes a trained ma-
chine learning algorithm as first step, the output of
which we used in the ABC analysis, we have been able
to inquire complex models circumventing the demand-
ing computational requirements for modeling such com-
plex scenarios.
Our results suggest interbreeding of AMHs with an ar-

chaic ghost population that diverged from the AMH
lineage at a temporal scale similar to the one between
the Neanderthals and Denisovans. This observation
would indicate the presence of a deep archaic population
substructure also in the African continent and contrasts
with previous studies that suggested that a basal lineage
had a major impact only on particular western African
populations [43]. Furthermore, our analyses showed that
the estimated proportion of Neanderthal ancestry in
Eurasian populations is highly sensitive to the presence
of XAf population, increasing by a threefold the amount
of archaic introgression. This result suggests that the
amount of Neanderthal ancestry out of Africa that so far
has been estimated could be an underestimation by not
having considered events of archaic introgression in
Africa in the tested models.

Conclusions
We have comprehensively analyzed the genetic relation-
ships among a Pan African set of human genomes se-
quenced at high coverage. By implementing novel
methodologies when necessary, we have assessed demo-
graphic population changes and recent admixture be-
tween their populations, as well as, archaic interbreeding
with other hominins. Our data point to a complex
demographic scenario within Africa related to the com-
plex history of AMHs.

Materials and methods
Samples and genotyping
We sequenced nine blood samples from African origin
(Table 1) on an Illumina HiSeq2000 sequencing plat-
form. All subjects gave written informed consent and all
experimental methods performed comply with the
Helsinki Declaration. We downloaded whole-genome se-
quence data of another 16 individuals from the Sequence
Read Archive (SRA, http://www.ncbi.nlm.nih.gov/sra)
(accession numbers are SRX015734, SRX016231, and
SRX103808) and from cdna.eva.mpg.de/neandertal/altai/
ModernHumans/bam. All sequences were sequenced at
deep coverage (21–47x) (see Additional file 1: section S1
for extended information).
Single-nucleotide polymorphism (SNP) genotyping

calling of each sequenced sample in autosomal and sex-
ual chromosomes was performed by means of a strin-
gent procedure. Briefly, we mapped the paired-end reads
of each sample against the human assembly GRCh37
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using the BWA aligner [70]; removed PCR duplicates
using MarkDuplicates from Picard tools (http://broadin-
stitute.github.io/picard); realigned regions around indels,
recalibrated base qualities, called genotypes, and filtered
variants by quality using GATK [71] and VQSR [71].
Furthermore, we determined the callable genome, por-
tion of the genome with confident genotypes, as follows:
each callable locus should have at least five reads
high-quality mapped in all samples; and repetitive, dupli-
cated, and indel regions were discarded. We detected
12.72 million SNPs in 2 Gbp of callable genome (see
Additional file 1: section S2 for extended information).
We reconstructed the complete mitochondrial se-

quences of all individuals using a procedure that was
previously published [72]. Remarkably, a comparison of
the sequences obtained via both the traditional Sanger
sequencing and this method resulted in a 100% of iden-
tity. In short, for each sample, we retrieved the mito-
chondrial reads from the whole set of shotgun
paired-end reads by mapping with BWA [70] against the
human mitochondrial reference genome [73], retaining
only high-quality paired-end reads. We used Hapsembler
[74] to reconstruct the complete sequence after reducing
the number of reads per sample to around 350X of
mitochondrial coverage (except for the TuuSan KB1
sample for which the resampling was done at 300X). We
repeated the reconstruction 20 times to compensate the
previous randomization and, thus, to avoid possible as-
semblage of numts. On the other hand, to improve the
sequence reconstruction at the extremes of the reference
assembly, we repeated the same procedure but mapping
against a reference genome with a modified origin
(8 kbp from the reference origin). Consensus mitochon-
drial sequence for each individual was constructed from
the de novo assembled 40 mitochondrial assemblies.
Mitochondrial haplogroups were then determined by lo-
cating sample variants in the updated mitochondrial
phylogenetic tree available in www.phylotree.org (see
Additional file 1: section S3 for extended information).
In the Y chromosome, we analyzed nine high-quality re-

gions described by Wei et al. [75], which span 8.97 Mbp
and are the result of excluding the pseudoautosomal, het-
erochromatic, X-transposed, and ampliconic segments
from the male specific region of the Y chromosome [75,
76]. By intersecting with our callable genome, we got a
final set of 3259 SNPs in 3.44 Mbp of genomic sequence,
which we used to identify the Y chromosome haplogroup
for each sample with the AMY-tree software v2.0 [77] (see
Additional file 1: section S3 for extended information).

Quality assessment
We analyzed the level of concordance between the call-
able inferred genotypes and microarray-based genotypes
called on same samples. Genotypes generated on

Illumina 650Y arrays of the 12 HGDP samples were
downloaded from http://hagsc.org/hgdp/files.html. After
stringent SNP matching and cleaning procedures,
558,832 SNPs out of the 644,258 autosomal SNPs and
8948 SNPs in the X chromosome (54.32% of the initial
SNPs) were considered for comparison. Genotypes gener-
ated on Affymetrix’s Genome-Wide Human SNP array 6.0
were compared with our calls for additional nine samples.
After stringent data management, we retained a shared set
of 734,734 SNPs for validation, of which 19,472 SNPs be-
long to the X chromosome (53.71% of the initial set) and
110 SNPs to the Y chromosome (39.86% of the initial set).
Genotype sensitivity was assessed as the proportion of al-
leles having the same genotype in both sets over the total
set of alleles under evaluation (see Additional file 1: sec-
tion S2 for extended information).

Statistical data analyses
Genetic diversity was estimated by computing the propor-
tion of different genotypes per kbp between every two in-
dividuals. To do that, one of the two alleles was randomly
chosen in each locus. If two individuals belong to the
same population, this is a measure of heterozygosity
within the population. Similarly, heterozygosity for each
individual was computed by comparing both alleles in
each locus. Runs of homozygosity (ROH) were computed
by counting the number of heterozygous genotypes
present in 1 kbp of callable genome and identifying con-
tinuous windows with less than 10% of the expected het-
erozygosity and spanning more than 0.5, 1, and 1.5 Mbp.
We assumed an average heterozygosity of 1 per kbp to
calculate the expected heterozygosity in a region and im-
posed that at least 67% of the total length of the ROH had
to belong to the callable genome (see Additional file 1:
section S4 for extended information).
Spatial dependence of the genetic ancestry of the sam-

pled populations was estimated by means of a Procrustes
analysis [78] between the geographic coordinates and
the first two coordinates from a classical multidimen-
sional scaling (MDS) computed with an identical by state
(IBS) distance matrix between pair of individuals. We
assessed the genetic differentiation relative to geographic
distances via a Mantel correlogram implemented in
PASSAGE 2.0 [79]. Finally, the maximum angle of gen-
etic differentiation between populations was computed
by means of a Bearing procedure [55], also implemented
in PASSAGE 2.0 [79] (see Additional file 1: section S5
for extended information).
We performed a principal component analysis (PCA)

using prcomp function in R and considering all auto-
somal SNPs that were not fixed for the alternative allele.
To run ADMIXTURE [57], we increased our dataset by
including the “Bushman” dataset available in Galaxy [18,
58]. A total of 376,195 SNPs included in the callable

Lorente-Galdos et al. Genome Biology           (2019) 20:77 Page 11 of 15

http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
http://www.phylotree.org/
http://hagsc.org/hgdp/files.html


genome in 745 individuals from targeted populations
was analyzed. Gene flow between hunter-gatherers and
their surrounding populations, as well as between west
Eurasians and African populations, was formally tested
using the D-statistics implemented in ADMIXTOOLS 4.1
software [59]. The proportion of admixture from Eurasian
to African populations was furthermore estimated apply-
ing a modified F4-ratio test, also using ADMIXTOOLS 4.1
software [29, 59]. Statistical significance was estimated by
means of a weighted block jackknife [80] (see Add-
itional file 1: section S6 for extended information).
We estimated the effective population size through time

of each population by applying the Pairwise Sequentially
Markovian Coalescent (PSMC; [49]) model to our genomes
(one representative sample per population), considering
only callable positions with not extreme read depth. Muta-
tion rates used are 2.5 × 10−8 and 1.2 × 10−8 per generation,
scaling time using 25 years as generation time (see Add-
itional file 1: section S7 for extended information).
We tested for Neanderthal and Denisovan introgres-

sion into our whole set of African populations by means
of D-statistics, using the ADMIXTOOLS 4.1 software
[48]. Additionally, an F4-ratio statistics was calculated as
f4(Denisova, Chimp; X = African population, Yoruba)/
f4(Denisova, Chimp; Neanderthal, Yoruba) to estimate
the proportion of Neanderthal ancestry present in the X
sample. The computation was also performed through
the ADMIXTOOLS 4.1 software [48] (see Add-
itional file 1: section S8 for extended information).
In order to compare complex demographic models in-

volving the presence of introgression in the AMH lineage
of archaic ghost populations and to estimate the posterior
distributions of the parameters of a given model, we used
Approximate Bayesian Computation with a Deep Learning
step for identifying the most informative summary statistics
(SS-DL; see Additional file 1: Figure S9.1). The method is
explained in detail in Mondal et al. [50]. Briefly, in the
current implementation of the ABC-DL for demographic
inference, we consider the genomic joint multidimensional
site frequency spectrum among populations (jSFS). This
statistic contains the information required to run most of
the commonly frequency-based statistics used in popula-
tion which are informative for detecting most of the demo-
graphic parameters considered in the models (see [50]).
Next, we train a DL to predict from the jSFS for each par-
ameter or set of models, and we define this prediction as
the most informative summary statistic (SS-DL) of the con-
sidered parameter or set of models. A potential caveat of
this approach is the fact that the DL is trained with data
generated from simple models compared to the real model
that generated the observed data. To avoid biases in the DL
prediction of the parameters/models phase, we assume that
the model that generated the data is a generalization of one
of the considered demographic models. This assumption is

included in the DL by means of injecting jSFS noise in each
simulation from the real data (see [50]). Finally, we perform
the classical ABC approach using the SS-DL in a new set of
simulated datasets.
We tested six different demographic models, inquiring

introgression from archaic ghost populations and recent
admixture from Eurasian populations into African popula-
tions as well as migration within African populations. Data
was generated with fastsimcoal2 [81] on 11,642 fragments
comprising 393.5 Mbp of callable genomic regions after
excluding genes and CpG islands. For model comparison,
we developed 10 DL networks with four hidden layers
each one. Each network was trained with 15,000 simula-
tions per model (comprising a total of 90,000 simulations),
setting as output for each simulation the assignation of
one of the six models. Each simulation was injected with
noise from the observed jSFS from Altai Neanderthal,
Denisovan, HGDP00778, HGDP00521, HGDP01284,
HGDP00456, and HGDP01029. Next, we generated an
additional set of 150,000 simulations per model, injected
noise from the same individuals, and predicted for each
simulation in each of the 10 DL the probability of assigna-
tion to each model. A combined model prediction was ob-
tained by averaging over the 10 predictions. This
combined prediction was used as the SS-DL for the ABC
analysis. As observed data for the ABC analysis, we con-
sidered Altai, Denisovan, HGDP00778, HGDP00521,
HGDP01286, HGDP00982, and HGDP01036. For each in-
dependent parameter, we trained 10 independent DL net-
work using 20,000 simulations, and we ran ABC on an
additional set of 150,000 simulations. Next, we computed
a Spearman correlation between the parameter prediction
of each of the 10 DL and the parameter used in the add-
itional simulations, and ascertained the DL for each par-
ameter showing the highest correlation. This DL was used
for generating the SS-DL for parameter estimation (see
Additional file 1: section S9 for extended information).
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