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Abstract |  

Genomic imprinting, the monoallelic and parent-of-origin-dependent expression of a 

subset of genes, is required for normal development. Its disruption leads to human 

disease involving isolated or multi-locus epigenetic changes that can be traced back 

to alterations of cis-acting sequences or trans-acting factors controlling the 

establishment, maintenance and erasure of germline epigenetic imprints or may 

have no evident genetic cause. Recent insights into the dynamics of the epigenome 

including the effect of environmental factors suggest that the developmental 

outcomes and heritability of imprinting disorders are influenced by interactions 

between the genome, the epigenome and the environment in germ cells and early 

embryos. In this Review, we discuss the latest advances in the study of genomic 

imprinting, focusing on the imprinting life-cycle and its possible errors leading to 

human diseases. We discuss the modes of inheritance of imprinting defects and 
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evidences from humans and animal models that environmental factors may influence 

genomic imprinting. Finally, we highlight areas requiring additional research that 

could complete our understanding of imprinting disorders, as well as new 

technological advances that might correct imprinting errors. 

  

 

 

Introduction 

In therian mammals, a subset of autosomal genes is preferentially expressed from 

only one of the two parental chromosomes, some from the maternally inherited 

allele, others from the paternal allele1. This parental origin-dependent expression 

results from differential epigenetic marking, primarily from methylated cytosine at 

CpG dinucleotides of genes during gametogenesis in the male and female germline. 

These genomic imprints endure for one generation, from their establishment in 

mature germ cells of an individual to their erasure in the gamete precursors of their 

progeny. Genomic imprinting thus represents a type of intergenerational epigenetic 

inheritance. Of note, parent-of-origin-dependent methylation differs from sequence-

dependent allelic methylation, in which stochastic fluctuation between epialleles [G] 

is influenced by genetic variants2.  

In humans, approximately 100 imprinted genes have been identified 3-5. Many 

imprinted genes have important roles during human development, and alteration of 

their expression and function can lead to imprinting disorders (Table 1), congenital 

conditions with a lifelong impact on health and in some cases increased cancer risk6.  

Molecular changes underlying imprinting disorders comprise genetic changes, such 

as copy number variants (CNVs), uniparental disomy [G] (UPD), and pathogenic 

gene sequence variants, or epigenetic changes that affect the regulation of imprinted 

loci (epimutations [G]). The frequency of the four types of molecular alterations 

varies markedly between different imprinting disorders, with the highest frequency of 

epimutations in the chromosome 11p15-associated disorders Beckwith–Wiedemann 

syndrome (BWS) and Silver–Russell syndrome (SRS)7. Epimutations that occur 

without detectable DNA sequence changes are referred to as primary epimutations 

and may represent random or environment-driven errors in the establishment or 

maintenance of an epigenetic programme. By contrast, secondary epimutations arise 

downstream from genetic changes that affect cis-acting elements or trans-acting 
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factors8. As normal imprinting marks once set persist throughout the life course of an 

organism, similarly, imprinting errors originating in the germline as primary or 

secondary epimutations are permanently maintained in somatic tissues, resulting in 

disease phenotypes later in development. Primary or secondary epimutations (as well 

as UPDs) that occur after fertilization can result in somatic mosaicism (Box 1). 

Although genetic alterations and epimutations differ in their nature and aetiology, 

they all disturb the fine-tuned balance of imprinted gene expression. In some cases, 

loss of methylation (LOM) and gain of methylation (GOM) of the same imprinting 

centre result in ‘mirror’ disorders that are broadly characterized by opposite clinical 

features and gene expression patterns, for example, in the case of BWS and SRS 

(Table 1 and Fig. 1)7. 

Advances in whole-genome sequencing and single-cell genome-wide analysis are 

driving the study of imprinting disorders arising from pathogenic variants that disrupt 

key epigenetic reprogramming processes in early embryogenesis, shedding new 

light on the dynamics of the epigenome as it passes from parents, through gametes, 

to offspring. Furthermore, recent studies on the interaction between environment and 

the epigenomes of gametes and early embryos suggest mechanistic explanations for 

the sporadic occurrence of imprinting errors.  

This Review focuses on imprints that effect essentially permanent and ubiquitous 

(rather than tissue-specific or transient (Box 2)) changes on gene expression 

potential at affected loci. We begin with a brief overview of the genomic basis of 

imprinting and its control, before reviewing the lifecycle of genomic imprinting and 

how disruption of the individual factors involved in the establishment, maintenance 

and erasure of imprints can result in disease. Finally, we discuss the heritability of 

imprinting defects and the role of environmental insults in imprinting disorders. For 

details on the evolutionary significance of genomic imprinting1,9, the methods for 

imprinting analysis10, the physiological role of imprinted genes6 or the chromatin 

mechanisms in imprinting11, the reader is referred to previous authoritative reviews. 

 

[H1] The genomic basis of imprinting 

The majority of imprinted genes are found in clusters, called imprinted domains, 

which enables coordination via shared regulatory elements such as long non-coding 

RNAs (lncRNAs) and differentially methylated regions (DMRs), where DNA 

methylation differs between the maternally derived and paternally derived alleles. 



 4

Each imprinted domain is controlled by an independent ‘imprinting centre’, which is 

generally characterized by a germline differentially methylated region (gDMR), also 

known as primary DMR (Fig. 2). About 35 gDMRs associated with imprinted loci 

have been identified in the human genome (Table 2)12. gDMRs are also 

characterized by different chromatin configurations on parental chromosomes, with 

histone marks characteristic of closed chromatin (for example, histone 3 lysine 9 

dimethylation (H3K9me2), trimethylation (H3K9me3) and histone 4 lysine 20 

trimethylation (H4K20me3)) on the methylated allele, and histone marks 

characteristic of open chromatin (for example, H3K4me2 and H3K4me3) on the 

unmethylated allele (Fig. 2)4,11,13. The methylated and unmethylated gDMR alleles 

are recognized by different transcription factors whose function is to direct differential 

epigenetic modification and imprinted expression of the locus (Fig. 2)14. Whereas 

maternally methylated gDMRs are more numerous, intragenic and generally 

correspond to promoters, often of lncRNAs, gDMRs methylated on the paternal 

chromosomes are intergenic and may function as insulators or enhancers (Table 

2)1,15. Of note, in multigenic imprinted domains, the imprinting centre often directs the 

expression of genes from both the chromosome on which is methylated and the 

opposite parental chromosome; this situation arises from the regulatory interactions 

between imprinting centres and the gene products, both coding and noncoding, 

under their control (Fig. 2). 

 

[H2] Allele-specific expression in somatic cells  
Imprinted genes can display monoallelic expression in most or all cell types, but for 

some genes imprinted expression is restricted to specific tissues (for example, 

UBE3A16,17) or developmental windows (for example, KCNQ118), or monoallelic 

expression and/or methylation can differ between individuals19-21. To control the 

allele-specific expression of imprinted genes in somatic cells, gDMRs direct the 

establishment of further allele-specific epigenetic features within the imprinted 

domain during development. These include secondary DMRs (also known as 

somatic DMRs), which correspond mostly to gene promoters and transcription factor 

binding sites (Table 2)20, chromatin modifications and higher-order chromatin 

structures (possibly resulting from CTCF–cohesin interactions)22,23, and lncRNAs 

with silencing capacity for flanking imprinted genes in cis24 (Figs 1, 2a) (reviewed in 

REF. 1). In other cases, imprinted gDMRs direct alternative splicing, transcription 
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elongation or polyadenylation site usage, which results in allele-specific transcript 

isoforms20,25. A minority of genes with parent of origin-dependent expression in 

somatic tissues have no evident DMR in their vicinity20, and their allele-specific 

expression may possibly be controlled by epigenetic features other than DNA 

methylation26.  

Tandem repeats are a prominent feature of imprinting centres27. Some repeats 

function to concentrate a high density of binding sites for transcription factors that 

regulate imprinted gene expression; for example, the tandem repeats in the H19-

IGF2 IG-DMR concentrate methylation restricted binding of ZFP57 and CTCF that 

are critical for imprinting (Fig. 2)28,29. In this case, their recombination results in 

recurrent imprinting defects30. On the other hand, deletion of a large array of repeats 

of long-interspersed elements (LINE-1) in the Dlk1–Dio3 imprinting domain in mouse 

embryonic stem (ES) cells did not disrupt imprinting, or, apparently normal 

development of both maternal and paternal mutant mice31, which does not support a 

role for these repeats in imprinting.  

Imprinted gene products intensify their exquisite regulation by co-operation in a 

network (Imprinted gene network, IGN)32,33. For example, the transcription factor 

PLAGL132 and the H19 lncRNA33 have been shown to regulate the mRNA level of 

several members of the IGN in a DNA methylation-independent manner, in mouse 

tissues. The human lncRNA IPW, which resides within the Prader–Willi syndrome 

(PWS) locus on chromosome 15, is able to regulate the expression of MEG3 on 

chromosome 14 by targeting the EHMT2 H3K9 histone methyltransferase (also 

known as G9a) to its imprinting centre34. Furthermore, many imprinted gene clusters 

encode microRNAs (miRNAs) and small nucleolar RNAs (snoRNAs), which may be 

involved in the post-transcriptional control of imprinted genes35. These interactions 

may explain some of the overlaps observed in the phenotypes of imprinting disorders 

(Table 1). 

 

[H2] Multilocus imprinting disturbances  
A subset of patients with imprinting defects exhibits multilocus imprinting 

disturbances (MLID), that is, imprinting disruption at multiple loci across the genome. 

MLID is confined to epimutation subgroups of imprinting disorders (Table 1) and 

involves loci associated with known imprinting disorders as well as those not 

currently linked with specific phenotypes36,37. To date, most patients with MLID have 
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shown clinical features characteristic of one imprinting disorder, notably BWS, SRS 

or transient neonatal diabetes mellitus (TNDM), which is probably due to the high 

frequency of epimutations in these imprinting disorders. However, epigenotype–

phenotype correlations are not always obvious, possibly because of the spectrum of 

epimutations involved or their mosaic nature (Box 1)37-39.  

 

 

[H1] The imprinting life-cycle and disease  

Throughout their generational lifespan (Fig. 3), genomic imprints must be maintained 

and preserved from epigenetic reprogramming in somatic cells. Many factors 

involved in these complex processes and their DNA binding sites can be targets of 

mutations that cause human imprinting disorders (Table 3). 

 

[H2] Imprinting centre methylation dynamics in germ cells 

Of the ubiquitous gDMRs present in somatic tissues, all but two originate from the 

oocyte (Table 2)5,12. This disparity reflects fundamental differences in the 

mechanisms of methylation acquisition in the female and male germlines, and in the 

treatment of parent-of-origin-derived methylation in the zygote (Fig. 3)21. In primordial 

germ cells (PGCs), the precursors of sperm and oocytes, germline specification 

requires remodelling of the epigenome as a pre-requisite for gametogenesis. Our 

knowledge of these processes comes chiefly from studies in mice40,41, and the 

characterization of human PGCs has revealed subtle interspecies differences, but 

overall the global erasure of methylation is comparable42-44.  

A hallmark of PGC remodelling is imprint erasure. Genome-wide de-methylation of 5-

methylcytosine (5mC) is a passive process during PGC expansion that results from 

diminished protein levels of the de novo DNA methyltransferase DNMT3A and 

UHRF1, the recruitment factor of the maintenance DNA methyltransferase DNMT1. 

Reprogramming of imprinted methylation follows slower kinetics. In mice, it is 

associated with oxidation of 5mC to 5-hydroxymethylcytosine (5hmC) by the ten-

eleven translocation 5mC dioxygenase 1 (TET1) and TET2; this modification is not 

recognized by the maintenance methylation machinery and therefore promotes 

passive demethylation40,41,44,45.  

Errors in the erasure process have been observed in patients with rare, sporadic 

imprinting disorders. In the case of GOM of the PWS/AS imprinting centre (also 
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known as SNURF:TSS-DMR), grandmaternal methylation is not erased in paternal 

PGCs, and as a result the paternal allele retains this maternal imprint (Fig. 4a)46. 

Similarly, the hypermethylation of imprinting centres in sperm from subfertile 

individuals is consistent with incomplete erasure of imprints47.  

Re-methylation and imprint acquisition occur asynchronously between the sexes, 

with de novo methylation in the male germline occurring before birth and maintained 

through many cycles of mitotic division before entry into meiosis, whilst female germ 

cells remain hypomethylated until maturation (Fig. 3). De novo methylation and 

imprint acquisition initiate in meiotically arrested (at prophase I) mouse oocytes 

following birth, and are largely completed by the germinal vesicle stage of 

development and resumption of meiosis42,48-51. Such dynamics have not been 

extensively studied in human oocytes52; however, in humans, meiosis II oocytes and 

the first and second polar bodies have comparable methylation, including at 

imprinted maternally methylated gDMRs49 (D. M., unpublished observations), which 

suggests the timings are similar to mouse. 

On the basis of data derived from mouse models, the majority of methylation is 

deposited in oocytes by DNMT3A and its obligate, catalytically inert, cofactor 

DNMT3L51,53,54, whereas both DNMT3A and DNMT3B contribute in male germ 

cells55. DNMT1 has an auxiliary role ensuring symmetric methylation of CpG sites in 

oocytes56. Transcription and underlying chromatin signature are important factors 

determining methylation acquisition50. Transcription in oocytes is required for 

methylation at numerous gDMRs57, an act that may render the chromatin more 

accessible to the de novo methylation machinery and/or be associated with specific 

chromatin changes. The co-transcriptional histone H3K36me3 mark is deposited at 

intragenic CpG islands and subsequently recognized by DNMT3A and DNMT3B58,59. 

Successive removal of dimethylation and trimethylation of histone H3K4 by KDM1A 

or KDM1B (known previously as AOF1 and LSD1, respectively) allows for direct 

interaction with DNMT3L60-62. Despite being a generic methylase in mouse oocytes, 

DNMT3L is not detectable by expression profiling in human oocytes between 

germinal vesicle phase and meiosis II63, suggesting that it is not required for de novo 

methylation in the human female germline. In mouse male germ cells, transcriptional 

read-through is involved in acquisition of imprinting centre methylation, whereas 

histone H3K4 methylation and promoter activity are present at maternal imprinting 

centres that are protected from de novo methylation64.  
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Failure to establish imprints during gametogenesis can result in imprinting disorders. 

Establishment of gDMRs involves several enzymatic steps, any of which may be 

prone to stochastic errors. In oocytes, deficient transcription through CpG islands 

destined to be gDMRs can result in failure to establish maternal imprints57; in such 

cases, there would be no mosaicism (Fig. 4b)65. Genetic mutations affecting 

transcription through the gDMR have been identified in rare patients with BWS with 

complete and isolated lack of methylation at the imprinting centre 2 (IC2), the 

imprinting centre of the centromeric domain of the BWS/SRS locus (also known as 

KCNQ1OT1:TSS-DMR) (REF66 and A. R., unpublished observations), and disruption 

of germline transcription is probably also present in Angelman Syndrome (AS) cases 

with non-mosaic LOM of the SNURF:TSS-DMR and deletions of the AS smallest 

region of deletion overlap (AS-SRO)67.  

 

[H2] Imprinting centre methylation dynamics in the early embryo 

The divergent DNA methylation patterns of oocyte and sperm are harmonized by the 

time the embryo reaches the blastocyst stage51,68, as part of the extensive epigenetic 

reprogramming that underpins zygotic genome activation [G] (ZGA; Box 3 and 

reviewed in REF69) and is required first to acquire totipotency and subsequently to 

initiate differentiation. The murine paternal genome is demethylated early in the first 

cell cycle, in part by TET3-induced oxidation of 5mC5,49,68,70, whereas maternal 

demethylation is predominantly passive, by replicative dilution during cleavage-stage 

divisions, possibly through the restricted activity or localization of DNMT1 and its 

accessory factors (Fig. 3)71,72. Studies in human systems are currently limited but 

indicate differences in abundance and roles of DNMTs in the oocyte and embryo63. 

However, in both humans and mice, whereas most gDMRs lose DNA methylation in 

pre-implantation stages49,51, imprinting centres evade the embryonic wave of 

epigenetic reprogramming, and studies in both mouse models and human patients 

with rare imprinting disorders suggest they do so through interaction with critical 

factors expressed in the oocyte and early embryo.  

 

[H2] Oocyte factors 

DPPA3 (also known as Stella or PGC7) is required for the maintenance of DNA 

methylation in the early mouse embryo and protects 5mC from conversion to 5hmC 
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in the maternal pronucleus, by associating with chromatin marked by H3K9me273. 

DPPA3 is a maternal-effect gene: concepti of maternal null mice rarely progress 

beyond the two-cell stage, and their genomes are severely demethylated74. 

Maternal-effect variants in NLRP proteins and associated factors have been 

implicated in pregnancy outcomes including hydatidiform mole [G] and infertility, as 

well as monozygotic twinning, pregnancy loss and MLID (Fig. 4c-d)37,39,75,76. Women 

with biallelic inactivating NLRP7 mutations are affected by familial hydatidiform mole 

(FHM)77, where nonviable products of conception have normal biparental genomic 

constitution but complete loss of maternal imprinting marks. The high penetrance [G] 

of FHM suggests that NLRP7 is involved in oocyte-specific imprint establishment 

(Fig. 4c)78, but hypomorphic maternal NLRP7 variants have been associated with 

MLID79.  

In mouse models, NLRP5 and its associated proteins are referred to as the 

subcortical maternal complex (SCMC)80. They are highly expressed in the oocyte, 

but their mRNA and protein abundance decline to undetectable levels by 

blastulation81. In mouse models, maternal ablation of SCMC gene function 

compromises embryo development, with frequent demise between the 2-cell and 

blastula stage, and disruption of processes including maintenance of genome 

integrity, euploidy, mitochondrial function, and gene transcription and translation82-84. 

A mouse model of maternal Nlrp2 deficiency shows severe reproductive compromise 

with embryo demise at all developmental stages and mosaic loss and gain of 

methylation at imprinted loci, indicating that abnormal subcellular localization of 

DNMT1 and or SCMC members may cause early embryonic loss and imprinting 

defects85.  

The effects of maternal SCMC variants suggest a link between DNA methylation, 

genome integrity and developmental competence in the early embryo. If the 

embryo’s competence is severely compromised, both ploidy and DNA methylation 

may be intolerably affected, leading to embryo demise. If errors in ploidy and/or 

methylation are tolerated, the embryo may survive blastulation and continue 

development, with ongoing differentiation overwriting early epigenetic errors — 

except for imprints, which are indelible in somatic cells. Evidence for this comes from 

reports of preimplantation genetic diagnosis of embryos with maternal-effect NLRP7 

mutations in which all cleavage-stage embryos arrested and had various maternal 

aneuploidies86. Arguably, if an embryo had presented with a normal chromosome 
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complement it would have likely developed into a molar pregnancy or severe MLID 

due to disturbed maternal imprints. Hence, MLID may be no more or less than 

evidence of embryonic crises during the critical window encompassing epigenetic 

reprogramming and ZGA, with an ascertainment bias for live birth and normal ploidy.  

Mothers with maternal-effect variants have children with variable disturbance of both 

paternally- and maternally-methylated imprinting centres (Fig. 4d), and a spectrum of 

reproductive outcomes including apparent infertility, fetal loss, hydatidiform mole, 

liveborn children with MLID who exhibit clinical symptoms, and liveborn children with 

MLID and no clinical phenotypes37,39. The only consistent feature of offspring is MLID 

itself.  

 

[H2] Zygotic factors 

The KRAB zinc-finger protein (KRAB ZFP) ZFP57 acts as the focus for a multi-

protein complex that protects imprinting centres from both passive and active 

demethylation87-89. ZFP57 recognizes a hexameric motif enriched in all maternally 

and paternally methylated imprinting centres in mouse90,91. KRAB ZFPs are a large, 

expanding family; their rapid evolution seems to keep pace with the endogenous 

retroviruses (ERVs) whose expression they suppress through DNA 

hypermethylation92. Besides repressing retroviral transcription, ZFP57 protects DNA 

methylation of imprinted loci in early development. In mice, Zfp57 is a maternal-

zygotic-effect gene the ablation of which is incompatible with full offspring survival87. 

Human ZFP57 acts zygotically, with recessive mutations associated with the 

imprinting disorders TNDM and a specific pattern of MLID93, although this may 

represent ascertainment bias of mutation patterns that are compatible with life (Fig. 

4e). It is probable that additional KRAB ZFPs expressed in the oocyte, acting via 

maternal-effect, are involved in earlier imprinting centre maintenance in humans with 

a degree of redundancy between ZFPs in recruiting the KRAB repressor complex to 

specific gDMRs.  

Human mutations have rarely been identified in other zygotic factors implicated in 

methylation maintenance, presumably because complete ablation would be 

incompatible with life, as seen in mouse models (for example, Trim2894, Uhrf195 and 

Dnmt171). Nonetheless, haploinsufficiency of TRIM28/KAP1 has been associated 

with polyphenism, obesity and reduced expression of imprinted genes in mice and 

humans96, and haploinsufficiencies of DNMT1 and UHRF1 have been described in 
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association with BWS and MLID, respectively39,97. Cis-acting genetic variants have 

been identified in imprinting centre sequences, and study of these variants can help 

identify the zygotic factors that act on them to perpetuate the imprinted status (Fig. 

4f-g). Inherited microdeletions in IC1 (which controls the imprinted expression of 

IGF2 and H19 at chromosome 11p15.5) mostly derived from recombination between 

repeats have been described in individuals with BWS30 and SRS98, but interestingly 

their effects are seen only in maternal and paternal inheritance, respectively, and the 

methylation defects are generally mosaic, once again suggesting that imprinted 

states acquired in the early embryo are faithfully perpetuated in subsequent 

development. In patients with SRS, no maternal transmissions have yet been 

reported, but it is suggested that loss of ZFP57 binding sites may result in 

postzygotic attrition of methylation (Fig. 4f)29; in patients with BWS, erroneous GOM 

of the maternal allele is thought to result from loss of SOX2 and POU5F1 binding or 

weakening of CTCF binding28,99 (Fig. 4g). Murine models demonstrate that CTCF 

and ZFP57-binding sequences are involved in embryonic maintenance of IC1 

imprinting90,100, although some differences may exist between human and mouse 

species101.  

In summary, it seems that imprinting centre sequences have characteristics that 

support allele-specific gene expression, chromatin organization and DNA 

methylation in the early embryo, enabling these patterns to evade early-embryonic 

reprogramming and subsequently persist in somatic tissues. 

 

[H2] Intergenerational inheritance of imprinting defects 

Most imprinting disorders caused by epimutations occur in individuals with no 

relevant family history (primary epimutation). In such cases the underlying molecular 

cause may be associated with an environmental insult or stochastic error, and the 

risk of further cases in the family is minimal. Consistent with the hypothesis of non-

heritability of primary epimutations, a methylation defect shown to have originated in 

an individual with SRS was subsequently abolished in his germline (Fig. 5a)102. 

However, a subset of isolated cases may have an underlying genetic cause even in 

the absence of a family history (secondary epimutation). Multiple genetic causes of 

secondary epimutations have been identified, providing important information on the 

cis-acting elements and trans-acting factors involved in imprinting control. Often, 

these cases are autosomal dominantly inherited, with parent-of-origin effects on 
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penetrance, such that the epimutation and clinical phenotype only appear on 

maternal or paternal transmission (for example, familial PWS with paternally-

inherited imprinting centre mutations (Fig. 5b)46, and familial BWS associated with 

maternally-inherited IC1 microdeletions (Fig. 5c)30 and POU5F1-binding sites 

variants99). However, autosomal recessively inherited TNDM is caused by 

pathogenic variants in ZFP57 (Fig. 5d)93, and maternal pathogenic variants in 

maternal-effect genes (NLRP2, NLRP5, NLRP7, PADI6 and OOEP) (Fig. 5e)39 are 

associated with MLID in offspring. In the case of maternal-effect variants, the 

recurrence risk after an affected pregnancy can be up to 100% (recurrence may be 

avoided by oocyte donation), although even in the most severe forms penetrance 

may be incomplete (for example, NLRP7 familial hydatidiform moles) and there may 

be variable phenotypic expression37,39. 

Genetic variants associated with imprinting centre epimutations can demonstrate 

variable clinical presentation and incomplete penetrance28 or apparent anticipation 

[G] with increased clinical severity over multiple generations103. These findings 

suggest that whereas highly-penetrant variants, such as those disrupting 

transcription factor binding, exhibit patent and penetrant phenotypes, genomic 

variants with lower penetrance may need to be identified by comprehensive 

sequencing efforts. Consistent with this hypothesis, a recent study demonstrated that 

frequent sequence variants have subtle effects on imprinted methylation, expression 

and phenotype20, suggesting that imprinting is a more quantitative than categorical 

phenomenon. 

 

[H1] Environmental influences on imprinting 

In addition to genetic causes of imprinting centre epimutations, environmental factors 

may also influence the imprinting process. In humans, evidence for this phenomenon 

derives from assisted reproductive technologies (ART)104. Other environmental 

influences on imprinting centres may include nutritional status or exposure to 

chemical pollutants in utero105. In many cases, changes in methylation represent 

increased variability on the methylated allele, likely relating to a failure of 

maintenance, or an adaptive response to the external stimuli. 

 

[H2] Assisted reproductive technologies 
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ART is usually performed for male and/or female infertility and includes procedures 

such as ovarian hyperstimulation to obtain multiple oocytes for retrieval, in-vitro 

fertilization (IVF), intracytoplasmic sperm injection (ICSI) and embryo culture and 

transfer, all of which coincide with critical events in epigenome reprogramming. 

Reports of ART-conceived children with rare imprinting disorders (for example, AS 

and BWS) first suggested a potential link with the occurrence of epimutations at 

imprinting centres (Fig. 6)106-108. Epidemiological studies have provided further 

evidence for an increased risk of having children with BWS, AS or SRS when using 

ART104,109, although the absolute risk is very small (for example, for BWS up to 10-

fold increased risk compared to no ART, and <0.1% of all children conceived with 

ART help)109. ART has also been associated with an increased frequency of MLID, 

but this has not been a universal finding110,111. MLID and Large Offspring syndrome 

(a condition with similarities with BWS) have been observed in bovine fetuses 

conceived by IVF112. In pigs, global genomic DNA methylation and/or gene 

expression, including imprinted loci and genes involved in epigenetic 

reprogramming, were altered in blastocysts produced by IVF and partially restored 

with addition of natural reproductive fluids113. Furthermore, superovulation and 

embryo transfer induced developmental defects and imprinting centre epimutations 

in the placenta of mouse models114. 

In addition to ART-related procedures, infertility per se has been linked to the 

pathogenesis of imprinting disorders (Fig. 6). The frequency of AS with epimutations 

was shown to be increased in subfertile couples, independent of IVF, ICSI or embryo 

culture115. More recently, impaired methylation of imprinting centres was reported in 

sperm of subfertile men47. Furthermore, unrecognized ART-associated epigenetic 

alterations may play a role in the increased risk of low birthweight and congenital 

anomalies that have been reported in ART-conceived children116 and animal 

models117. Maternal age and delayed ovulation or fertilization are associated with 

depletion of oocyte proteins and RNA stores and altered developmental fitness of 

embryos118-120, suggesting that maternal effect genes may be critically vulnerable to 

these or other challenges that occur during ART (Fig. 6).  

Disentangling the effects of infertility and ART in the aetiology of ART-associated 

imprinting disorders in humans is difficult and not all studies have shown an 

association between ART and altered methylation, with some reports suggesting that 

there is no increase in mosaicism or methylation aberrations at imprinted 
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gDMRs121,122. Other groups have reported perturbed imprinting in pre-implantation 

embryos suitable for transfer123, suggesting that — similar to aneuploidy — 

epigenetic mosaicism in early embryos may be a normal occurrence. The rarity of 

ART-associated imprinting disorders suggests that they may result from a 

combination of multiple interacting factors, including specific aspects of ART 

protocols, infertility, genetic susceptibility and stochastic effects (Fig. 6). Moreover, 

epidemiological surveys often have ascertainment bias for liveborn offspring with 

clinically blatant phenotypes associated with imprinting disorders, while the 

frequency of clinical pregnancy, though well-known to be limited in ART, is not 

considered. Potentially, individuals with imprinting disorders represent the subset of 

IVF outcomes with the least pervasive disturbance and the most recognizable clinical 

features, and a more definitive study will require consideration of nonviable products 

of conception at all stages, including both epigenome and genome integrity. 

 

[H2] Nutrition and metabolic disorders 
Certain developmental windows are especially vulnerable to abnormal nutritional 

states124, including pre- and early post-implantation development and lineage 

segregation when epigenetic modifications are re-established. Recent studies have 

indicated that maternal metabolic disorders can have lasting effects on offspring 

through many pathways, which are beginning to be characterized (Fig. 6). Maternal 

dietary and genetic obesity have been shown to reduce Dppa3 expression in mouse 

oocytes; the resultant significant increase in 5hmC and concomitant reduction in 

5mC in maternal pronuclei produces subsequent hypomethylation at several 

imprinted gDMRs125.  

Nutritional status may also affect epigenetic profiles at imprinted loci in a variety of 

ways. It is possible that the availability of free methyl donors, such as S-

adenosylmethionine, a substrate for DNA and protein methylation, is limited, with 

evidence that methyl-deficient diets, folate levels and genetic variants in proteins 

involved in one-carbon metabolism all affect imprinted methylation patterns, at the 

11p15.5 imprinted gene cluster97,126,127. In these studies, the presence of missense 

amino acid substitutions in genes regulating the S-adenosyl methionine (SAM) or the 

inhibitory S-adenosylhomocyteine (SAH) abundance correlate with aberrant 

imprinted methylation126,127, which also revealed a link between low vitamin 

B12 levels and H19 methylation maintenance126 Functional genetic variants of 
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DNMT1 in BWS patients were also observed in combination with SNV of folate 

metabolism pathway genes, suggesting that decreased DNMT1 enzymatic activity 

could be exaggerated by extreme SAM/SAH ratios97. Furthermore, the ZFP57 locus 

is a folate-sensitive region, and its genomic binding regions are metastable epialleles 

responsive to periconceptional conditions128,129. In mouse, withdrawal of maternal 

dietary protein permanently altered imprinted expression of Cdkn1c in offspring, 

which was maintained into adulthood and occurred through a folate-dependent 

mechanism of DNA methylation loss130. However, not all studies on isocaloric protein 

restriction during pregnancy have resulted in altered imprinted methylation in the 

newborn131, suggesting that any deregulation is likely a consequence of a general 

effect on global methylation. Recent evidence suggests that cells have important 

energy status sensors that protect the cells against metabolic stress by directly 

regulating epigenetic processes. The nicotinamide adenine dinucleotide (NAD)-

dependent deacetylase, SIRT1 has been shown to protect methylation at imprinted 

loci by directly regulating acetylation of DNMT3L, at both the promoter and protein 

level in mouse embryonic stem cells132.  

 

Endocrine disruptors  
In addition to micronutrient availability, prenatal exposure to estrogenic endocrine-

disrupting compounds (EDC), such as bisphenol A (BPA), results in deregulation of 

genomic methylation and hydroxymethylation133,134, with imprinting and methylation 

anomalies being reported in both mouse placenta135 and developing gametes136,137. 

Endorsing the vulnerability of imprinted loci to EDCs, prenatal BPA exposure in 

humans has been associated with changes in methylation at the MEST locus and is 

linked with early childhood obesity138. Dnmt1 expression was found to be decreased 

in BPA-treated mouse spermatogonia137, and BPA exposure during oocyte 

maturation altered other epigenetic marks, specifically the abundance of histone 

modifications, which was linked to induced oxidative stress139. Exposure-induced 

oxidative stress was shown to alter both TET enzyme expression and function, 

leading to altered 5-hmC levels at numerous imprinted loci134, which indicates that 

environmental toxicants also alter long-term imprinted gene regulation (Fig. 6). 

Indirect effects of the toxic compounds on DNA methylation could also be exerted as 

consequence of developmental and metabolic alterations140.  
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In summary, combined genetic and environmental predispositions may erode the 

gametic and zygotic competence to reprogramme the epigenome, with 

consequences on imprint maintenance, and insights into these effects in humans 

may be gained by delineating the aetiology of apparently sporadic primary 

epimutations in individuals with imprinting disorders. 

 

[H1] Conclusions and perspectives  

The maintenance of differential DNA methylation of imprinting centres is fundamental 

for the survival of imprinting marks in the early embryo. Some of the key factors and 

genomic sequences involved in this process have been identified, but the causation 

and timing of their interactions require further clarification. This is particularly true for 

the SCMC proteins and possibly further oocyte-specific factors that affect DNA 

methylation maintenance in the early embryo, whose mechanisms of action and 

relationship with ZGA are still ill-defined. Importantly, further human-based studies 

are required, firstly to resolve key differences from mouse in the timing and 

mechanisms of epigenetic remodelling, and secondly to learn from rare cases of 

imprinting disorders by identifying genetic variants that predispose to imprinting 

centre epimutations. 

It has also become evident that environmental changes can affect the epigenetic 

reprogramming of germ cells and early embryo, altering their developmental 

competence and causing imprinting disorders. The availability or activity of factors 

needed for imprint establishment or maintenance may be affected by exposure to 

chemical pollutants, under- or over-nourishment, or other emergent factors. Omic 

and functional analyses of early embryos and nonviable reproductive outcomes will 

clarify the relationship between epigenomic and genomic integrity, uncover the key 

processes involved, and enable the creation of model systems in which primary 

imprinting centre epimutations can be created and explored. 

Cellular-physiological approaches are beginning to uncover key interactions of 

imprinted gene products, their effects on growth and metabolism, and their 

disturbance in imprinting disorders32-34,101. Such approaches, and their extension into 

human pathophysiology, will shed further light on molecular mechanisms of disease, 

(epi)genotype–phenotype correlations, phenotypic modification by mosaicism and 

MLID, and potential therapies for some of the resultant endocrine and growth 

disturbances. 
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More fundamentally, there are possibilities for therapeutic correction of imprinting 

disorders based on the reversal of gene imprinting status. Three therapeutic 

approaches for the neurological disorders AS and PWS have been proposed141-143. 

The AS/PWS locus contains a maternally methylated imprinting centre that directs 

the paternal expression of several genes, including a snoRNA cluster with a critical 

role in PWS and an antisense regulator (UBE3A-ATS) of the maternally-expressed 

E3 ubiquitin ligase UBE3A, the expression of which is lost in AS (Table 1). It was 

demonstrated that a topoisomerase inhibitor143 as well as antisense 

oligonucleotides141 are able to downregulate UBE3A-ATS and reactivate the paternal 

UBE3A in mouse models of AS, whereas G9a inhibitors can unsilence the maternal 

snoRNAs in a PWS model142. Another exciting approach is the direct modification of 

epigenetic marks at imprinted genes using catalytically inactivated Cas9 (dCas9) 

fusion proteins. Although still in their infancy, dCas9–DNA methyltransferase fusions 

have been able to target methylation to IC1 in mouse cells144, a promising 

technology if such alterations can be performed in an allelic fashion. Future 

experiments will demonstrate whether these approaches with small molecules may 

revert other epimutations in imprinting disorders and possibly be applied in other 

epigenetic-based human diseases. 
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Box 1 | Epigenetic mosaicism in imprinting disorders. 

Numerous patients with imprinting disorders, with or without MLID, have somatic 

mosaicism, in which tissues contains cells with imprinting aberrations as well as 

those with appropriate allelic methylation. Mosaicism is observed with all types of 

primary and secondary epimutations, with the exception of erasure and 

establishment errors (Fig. 4), indicating a more common post-zygotic aetiology36. In 

principle, the developmental period immediately prior to implantation, when the 

embryonic epigenome is reprogrammed, is particularly vulnerable. During this time, 

failure to selectively protect imprints may result in hypomethylation in individual cells 

and their progeny. If the event occurs late in pre-implantation development, after 

lineage commitment, tissue-specific epimutations may result. Conversely, failure to 

preserve imprints from the substantial remethylation that occurs post-implantation 

may give rise to mosaic hypermethylation; this may account for the IC1 

hypermethylation seen in BWS28,145, and imprinted gene-DMR hypermethylation in 

Kagami-Ogata syndrome146.  

Patients with SRS or BWS often present with body asymmetry, a feature accredited 

to mosaicism, with recent mouse models for these two imprinting disorders 

identifying mosaicism in bilateral organs with asymmetric growth100. Mosaic H19 

hypomethylation is common in SRS, for which severity differs markedly between 

patients147. Detailed studies in another imprinting disorder, Angelman Sydrome, 

explored the timing of such an event. In a female patient with mosaic SNURF 

hypomethylation, X-chromosome analysis showed that cells with the imprinting 

defect had either the paternally-derived or maternally-derived X chromosome 

inactivated, suggesting that the insult occurred before X-inactivation and 

implantation148. In principle, somatic imprinting errors may occur at any time in 

dividing cells. Immediately following replication, the methylation pattern on the 

template strand is recognized by the UHRF1-DNMT1 maintenance 

methyltransferase complex and copied onto the daughter strand. A failure to 

recognize or copy this pattern will result in a sustained hemimethylated profile that 

will segregate in subsequent cell divisions in a tissue-restricted manner.  

A phenomenon related to epigenetic mosaicism is represented by discordant 

monozygotic twins. Discordant monozygotic twins, whereby one twin has the 

disorder (nearly always female and often with MLID) and the other is healthy, are 

over-represented in patients with BWS36,37,39,149 and SRS150. suggesting that 
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monozygotic twinning is connected with epigenetic disturbances in early 

development. The occasional presence of mild clinical features of BWS and 

intermediate methylation disturbance in an unaffected twin151 supports the 

hypothesis that imprinting centre epimutations precede and possibly trigger the 

twinning process in the early embryo. 

 

 

Box 2 | Transient imprinting 

 A transient form of imprinting has been described in both mouse and human pre-

implantation embryos5,51,152 where DNA methylation is either lost on the maternal 

alleles or acquired by the paternal alleles post implantation. At the Gpr1/Zdbf2 locus, 

transient monoallelic expression of Gpr1-as1 mediates the accumulation of 

methylation at the Zdbf2 DMR, whose stable maintenance in adult somatic tissues 

regulates Zdbf2 allelic expression152. More recently, widespread transient imprinting 

derived from oocyte-specific methylation has been demonstrated in human 

placenta21. Epigenetic marks other than DNA methylation may also mediate transient 

imprinting, although this has not been reported in humans26. In mouse morula, some 

loci that display maternal allele-specific histone 3 lysine 27 trimethylation 

(H3K27me3) marks are expressed from their paternal alleles. This form of imprinted 

expression is largely lost later in development in the embryonic cell lineage but is 

retained at a few loci in extra-embryonic tissues. Further studies are needed to 

determine if this form of DNA methylation imprinting is conserved in other species 

and what its impact is on gene expression and phenotypes at later developmental 

stages. It is possible that transient and DNA methylation-independent monoallelic 

expression control the establishment of secondary gDMRs and consequently lead to 

a more stable imprinted expression in somatic tissues. 

 

Box 3 | Zygotic genome activation 

Epigenetic reprogramming and zygotic genome activation (ZGA) are intimately linked 

in the early embryo (see the figure; maternal (red line), early zygotic (blue line) and 

embryonic (black line) transcripts are shown). Approximate timing (days) of human 

cleavage-stage divisions and blastulation are shown. Upon maturation, the oocyte 

ceases transcription and translation, which do not resume in human embryo until 

around the 8-cell stage; therefore, the early embryo relies substantially on maternally 
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provided oocyte protein and RNA. From the time of fertilization, maternal RNA is 

progressively degraded. The paternal genome supports an early wave of 

transcription (see the figure; blue line) that is essential for major ZGA153.  

In the 1-cell embryo, the maternally-derived histones that replace sperm protamines 

do not at first establish the patterns of euchromatin and heterochromatin normally 

seen in somatic cells, and as a result, chromatin on the paternal genome remains 

atypically accessible. The paternal genome supports low-level transcription of 

sequences normally repressed within heterochromatin, such as retroviral repeats, 

and pioneer factors like DUX4154. Pioneer factors support transcription of cleavage-

stage transcription factors that trigger major ZGA. Upon ZGA the genome attains a 

more somatic organisation, blocking the return to the permissive, early pattern of 

transcription. 

 

Fig. 1 | The imprinted 11p15.5 region as an example of epigenetic error in 

imprinting disorders. a | Model of the 11p15.5 region represented as alternative 

chromatin loops on the maternal and paternal chromosomes. The model is based on 

the results of chromatin conformation capture studies in human cells22,23. Loops 

anchors occur at CTCF-cohesin binding sites. On the maternal chromosome (red 

line), a loop is formed between a distal region (HIDAD) located at 1.72 Mb and the 

unmethylated IC1. On the paternal chromosome (blue line), the formation of this loop 

is prevented by IC1 methylation and an alternative one is formed between HIDAD 

and the IGF2 promoter. Alternative loops may facilitate differential activation of H19 

and IGF2 by common enhancers on the maternal and paternal chromosomes, 

respectively155. b | Chromosome interactions and gene expression changes 

predicted by the looping model as consequence of IC1 LOM in SRS155. H19 is 

activated and IGF2 silenced on both parental chromosomes. c | Chromosome 

interactions and gene expression changes predicted by the looping model as 

consequence of IC1 GOM in BWS155. H19 is silenced and IGF2 activated on both 

parental chromosomes. Chromosome distances are not in scale. 

 

Fig. 2 | Chromosome 11p15.5 — an example of an imprinted gene cluster. 

Within the telomeric domain, enhancers (green ovals) direct transcription of the long 

non-coding RNA (lncRNA) H19 and the intragenic microRNA (miRNA) miR-675 on 

the maternal chromosome (red line) and that of the growth factor gene IGF2 and the 
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intragenic miR-483 on the paternal chromosome (blue line). The imprinting centre 

(IC) of the telomeric domain (IC1; inset panel), also known as H19/IGF2 intergenic  

differentially methylated region (DMR), contains tandem repeats (light red and blue 

rectangles) and is bound by the transcription factors (TFs) CTCF, POU5F1 and 

SOX2, which maintain the unmethylated status of the maternal allele, whereas 

ZFP57 maintains the methylated status of the paternal allele. IC1 and IC2 are also 

characterized by different chromatin configurations on parental chromosomes, with 

repressive histone marks, such as H3K9me2, H3K9me3 and H4K20me3 on the 

methylated allele, and permissive histone marks, such as H3K4me2 and H3K4me3, 

on the unmethylated allele. Secondary DMRs (H19 promoter (prom), IGF2 DMR0 

and IGF2 DMR2) are paternally methylated. The imprinting centre of the centromeric 

domain (IC2), also known as KCNQ1OT1:TSS–DMR, is maternally methylated and 

directs maternal-specific expression of KCNQ1 and the cell cycle regulator CDKN1C. 

On the paternal allele, a lncRNA intragenic to KCNQ1 (KCNQ1OT1) is transcribed 

(wavy blue lines), suppressing in cis the expression of coding genes in the region. 

IC2 methylation and silencing of the KCNQ1OT1 promoter are maintained through 

interaction with ZFP57 on the maternal chromosome, while as yet uncharacterized 

TFs sustain KCNQ1OT1 transcription on the paternal allele. Active alleles are 

represented with red (maternal) and blue (paternal) oblongs, inactive alleles with 

grey oblongs. 

 

 

Fig. 3 | The life cycle of imprints. DNA methylation reprogramming during human 

development. Methylation of imprinting centres (dashed black line) is erased more 

slowly than that of the rest of the genome (black line) in PGCs and re-established 

with different kinetics in male (paternal imprinting centres, dashed blue line; whole 

genome, blue line) and female (maternal imprinting centres, dashed red line; whole 

genome, red line) germ cells. After fertilization, the maternally and paternally derived 

genomes are widely demethylated, while differential methylation between maternal 

and paternal imprinting centre alleles (50% level) is maintained pre- and post-

implantation. Factors and events involved in each stage, 5mC level and approximate 

timing of imprint erasure, establishment and pre/post-implantation maintenance are 

indicated. GVs, germinal vesicles. 
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Fig. 4 | Mechanisms of imprinting errors in human diseases. In each panel, 

normal mechanisms are on the left, defective mechanisms on the right. a | Defective 

IC methylation erasure in PGCs. b | Defective transcription (dashed red arrow) 

across imprinting centre and imprint establishment in oocyte. c | Defective oocyte 

factor (striked pink triangle) impacting imprint establishment in oocyte. d | Defective 

oocyte factor (striked pink diamond) impacting developmental competence and 

imprint maintenance in pre-implantation embryo. e | Defective zygotic factor (white 

asterisk) and imprint maintenance in pre-implantation embryo. f | Defective target 

site (indicated with x) for transcription factor protecting methylated imprinting centre 

and imprint maintenance in pre-implantation embryo. g | Defective target site for 

transcription factor recognizing unmethylated imprinting centre and imprint 

maintenance in post-implantation embryo. Methylated and unmethylated imprinting 

centres: black / white lollipops. Mosaic methylation is indicated by grey lollipops. 

MLID is indicated by LOM at multiple imprinting centres. Maternally methylated 

imprinting centres are in red, paternally methylated imprinting centres in blue. Trans-

acting factors are as in Fig. 1. 

 

Fig. 5 | Modes of inheritance of phenotypes associated with imprinting errors.  

a | Pedigree of sporadic SRS case in which IC1 epimutation is corrected in the 

germline of the proband. Black lollipop shows normal full methylation of paternal IC1 

in blood of I:1 and in the sperm of II:1; grey lollipop, mosaic hypomethylation of 

paternal IC1 in blood of II:1; b-c | Pedigrees showing autosomal dominant 

inheritance with parent-of-origin-dependent penetrance (paternal, associated with 

PWS/AS imprinting centre mutation in b; maternal, associated with BWS/SRS IC1 

mutation in c; d | Autosomal recessive (ZFP57 mutation); e | Maternal effect (NLRP5 

mutations). Colored symbols indicate: SRS cases, purple; PWS cases, brown; BWS 

cases, blue; TNDM cases, green.  

 

Fig. 6 | Interaction between environmental and genetic factors and its impact 

on genomic imprinting. The diagram summarizes the evidences obtained in 

humans and animal models of interaction of environmental factors and physio-

pathological conditions (depicted in light blue) with gametic and zygotic factors 

(yellow) involved in de novo and maintenance methylation and impacting imprinting 
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establishment and maintenance (pink). Continuous lines indicate functional 

contribution; dashed lines, functional interference. 

 

Table 1. Imprinting disorders and their main molecular defects and clinical 

features. 

Imprinting disorder 

OMIM 

Prevalence Chromoso

me(s) 

Molecular defect (frequency) Main clinical features  

Transient neonatal 

diabetes mellitus 

(TNDM)93,156-158  

601410 

1/300.000 Chr 6q24  

 

- upd(6)pat (41%).  

- Paternal duplications (29%).  

- PLAGL1:alt-TSS-DMR LOM 

(30%) (MLID: 30% caused by 

pathogenic ZFP57 variants 
159) 

IUGR, transient 

diabetes mellitus, 

hyperglycaemia without 

ketoacidosis, 

macroglossia, 

abdominal wall defects 

Silver-Russell 

syndrome (SRS)160  

180860 

1/75.000-

1/100.000 

Chr 7  

Chr 11p15 

Chr 12q14 

Chr 8q12 

 

 

 

- upd(7)mat (5–10% (MLID: 

rare161))  

- upd(11p15)mat (rare) 

- 11p15 CNVs (<1%) 

- H19/IGF2:IG:DMR LOM (30-

60% (MLID: 7–10% 37,39,147)) 

- CDKN1C, IGF2, 

HMGA2, PLAG1 point 

mutations (rare) 

IUGR, PNGR, relative 

macrocephaly at birth, 

body asymmetry, 

prominent forehead, 

feeding difficulties 

Birk–Barel 

syndrome162 

612292 

unknown Chr 8q24.3  - KCNK9 point mutations 

(100%) 

Intellectual disability, 

hypotonia, 

dysmorphism 

Beckwith–

Wiedemann 

syndrome 

(BWS)163  

130650 

1/15.000 Chr 11p15  

 

- upd(11p15)pat (20%) 

- 11p15 CNVs (2–4%) 

- H19/IGF2:IG:DMR GOMa 

(5%) 

- KCNQ1OT1:TSS-DMR LOM 

(50% (MLID: 25%37,39)) 

- CDKN1C point mutations (5% 

sporadic; 40–50% in families) 

Macroglossia, 

exomphalos, lateralized 

overgrowth, Wilms 

tumour or 

nephroblastomatosis, 

hyperinsulinism, 

adrenal cortex 

cytomegaly, placental 

mesenchymal 

dysplasia, pancreatic 

adenomatosis  

Kagami–Ogata 

syndrome (KOS14) 
164,165  

608149 

unknown Chr 14q32 - upd(14)pat (65%) 

- 14q32 maternal deletion 

(20%) 

- MEG3/DLK1:IG-DMR GOM 

(15%) 

IUGR, polyhydramnion, 

abdominal wall defects, 

bell-shaped thorax, 

coat-hanger ribs 

Temple syndrome  unknown Chr 14q32 - upd(14)mat (29%) IUGR, PNGR, 
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(TS14)166-168  

616222 

- 14q32 paternal deletion (10%) 

- MEG3/DLK1:IG-DMR LOM 

(61%) 

neonatal hypotonia, 

feeding difficulties in 

infancy, truncal obesity, 

scoliosis, precocious 

puberty, small feet and 

hands 

Prader–Willi 

syndrome 

(PWS)169-171  

176270 

1/25.000 

-1/10.000 

Chr 15q11–

q13 

- 15q11–q13 paternal deletion 

(75-80%) 

- Upd(15)mat (20-25%) 

- SNURF:TSS-DMR GOMa 

(~1% (MLID: rare172)) 

PNGR, Intellectual 

disability, neonatal 

hypotonia, 

hypogenitalism, 

hypopigmentation, 

obesity, hyperphagia 

Angelman syndrome 

(AS)173,174  

105830 

1/20.000 

-1/12.000 

Chr 15q11–

q13  

- Maternal deletion (70-75%) 

- Upd(15)pat (3-7%) 

- SNURF:TSS-DMR LOMa (2-

3% (MLID: rare172)) 

- UBE3A point mutations (10%) 

Severe intellectual 

disability, microcephaly, 

no speech, unmotivated 

laughing, ataxia, 

seizures, scoliosis 

Central precocious 

puberty 2 (CPPB2) 
175  

615356 

Unknown Chr 15q11.2  - MKRN3 point mutations 

(100%) 

Early activation of the 

hypothalamic–pituitary–

-gonadal axis resulting 

in gonadotropin-

dependent precocious 

puberty 

Schaaf–Yang 

syndrome (SYS)176  

615547 

Unknown Chr 15q11.2  - MAGEL2 point mutations 

(100%) 

Delayed psychomotor 

development, 

intellectual disability, 

hypotonia 

Pseudohypo-

parathyroidism 1A 

(PHP1A) including 

PHP1C177 

103580 

612462 

Unknown Chr 20q13:  - GNAS inactivating variants of 

the maternal allele (100%) 

Resistance to PTH and 

other hormones, 

Albright hereditary 

osteodystrophy, 

moderately reduced 

birth weight, 

obesity, 

cognitive impairment 

(70% of patients) 

Pseudohypo-

parathyroidism 1B 

(PHP1B)177  

603233 

 

 

 

 

Unknown Chr 20q13  - 20q13 maternal deletion 

(8.5%) 

- GNAS DMRs LOM (42.5%; 

MLID: 12.5%178,179) 

- upd(20)pat (2.5%) 

- 20q13 point mutations (46.5%) 

Resistance to PTH and 

other hormones 

Albright hereditary 

osteodystrophy, 

subcutaneous 

ossifications, 

feeding behaviour 

anomalies, 
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 abnormal growth 

patterns 

Pseudopseudohypo-

parathyroidism  

(PPHP)177  

612463 

Unknown Chr 20q13 - GNAS inactivating variants of 

the paternal allele (100%) 

Mild resistance to PTH 

and other hormones, 

subcutaneous 

ossifications, birth 

weight and length 

restrictions 

 

Progressive 

osseous 

heteroplasia (POH) 
177  

166350 

Unknown Chr 20q13 - GNAS inactivating variants of 

the paternal allele (100%) 

Ectopic ossifications 

Mulchandani–Bhoj–

Conlin syndrome 

(MBCS)180,181 

617352 

Unknown Chr 20 - upd(20)mat (100%) IUGR, PNGR, feeding 

difficulties 

a Imprinting defects can either be due to primary imprinting epimutations without DNA sequence alterations, or 

due to deletions in the imprinting center (IC) critical regions. GOM, gain of methylation; IUGR, intrauterine growth 

restriction; LOM, loss of methylation; PNGR, postnatal growth restriction; PTH, parathyroid hormone; UPD, 

uniparental disomy. 

 

Table 2. Human germline and somatic DMRs with regulated imprinted genes.  

HGVS approved 

DMR name12 

Previous 

names 

Location 

(hg19/GRCh37) 

Methylated 

allele 

Germline 

or 

somatic 

Known 

TF 

binding 

sitesc 

Cis-regulated 

genes 

PPIEL:Ex1-DMR  1:40024626-

40025540 

M Oocyte 

gDMR 

 PPIEL 

DIRAS3:TSS-

DMR 

NOEY2, 

ARH1 

1: 68513430-

68517450 

M Oocyte 

gDMR 

 DIRAS3, 

GNG12-AS1 

DIRAS3:Ex2-

DMR 

 1:68512505-

68513486 

M Oocyte 

gDMR 

ZFP57  

GPR1-AS:TSS-

DMR 

 2:207114583-

207136544 

M Oocyte 

gDMR 

 GPR1-AS, 

ZDBF2, 

ADAM23 

ZDBF2/GPR1-

AS:IG-DMR 

 2:207114583-

207136544 

P Sperm 

gDMR-

secondary 

DMR 

CTCF, 

RAD21 

 

JAKMIP1:Int2-

DMR 

 chr4:6106594-

6108185 

M Oocyte 

gDMR 
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NAP1L5:TSS-

DMR 

 4:89618184-

89619237 

M Oocyte 

gDMR 

ZFP57 NAP1L5 

aVTRNA2-1:DMR Nc886 5:135414802-

135416645 

M Oocyte 

gDMR 

CTCF, 

RAD21 

 

aFAM50B:TSS-

DMR 

 6:3849082-

3850359 

M Oocyte 

gDMR 

CTCF, 

RAD21 

FAM50B, 

PXDC1 

PLAGL1:alt-TSS-

DMR 

LOT1, ZAC1 6:144328078-

144329888 

M Oocyte 

gDMR 

ZFP57 Multiple 

PLAGL1 

transcripts, 

HYMAI 

IGF2R:Int2-DMR  6:160426558-

160427561 

M Oocyte 

gDMR 

  

aWDR27:Int13-

DMR 

 6:170054504-

170055618 

M Oocyte 

gDMR 

CTCF WDR27 

RPS2P32:TSS-

DMR 

 chr7:23530017-

23530976 

M unclear  RPS2P32 

GRB10:alt-TSS-

DMR 

 7:50848726-

50851312 

M Oocyte 

gDMR 

CTCF, 

RAD21, 

ZFP57 

GRB10, DDC 

PEG10:TSS-

DMR 

 7:94285537-

94287960 

M Oocyte 

gDMR 

 PEG10, SGCE, 

PPP1R9A, 

TFPI2, 

CALCR, DLX5 

MEST:alt-TSS-

DMR 

PEG1 7:130130122-

130134388 

M Oocyte 

gDMR 

CTCF, 

RAD21, 

ZFP57 

MEST, 

MESTIT1, 

COPG2IT1, 

CPA4, KLF14 
aSVOPL:alt-TSS-

DMR 

 7:138348118-

138349069 

M Oocyte 

gDMR 

 SVOPL 

HTR5A:TSS-

DMR 

 7:154862719-

154863382 

M Oocyte 

gDMR 

 HTR5A 

aERLIN2:Int6-

DMR 

 8:37604992-

37606088 

M Oocyte 

gDMR 

 ERLIN2 

PEG13:TSS-

DMR 

TRAPPC9 

intronic DMR 

8:141108147-

141111081 

M Oocyte 

gDMR 

CTCF, 

RAD21, 

ZFP57 

PEG13, 

TRAPPC9, 

KCNK9 
aFANCC:In61-

DMR 

 9:98075400-

98075744 

M Oocyte 

gDMR 

  

PTCHD3:TSS-

DMR 

 chr10:27702514-

27703363 

M Oocyte 

gDMR 

 PTCHD3 

INPP5F:Int2-

DMR 

INPP5FV2 10:121578046-

121578727 

M Oocyte 

gDMR 

 INPP5FV2 

H19/IGF2:IG-

DMR 

IC1, ICR1, 

H19 DMD 

11:2018812-

2024740 

P Sperm 

gDMR 

CTCF, 

RAD21, 

Multiple IGF2 

transcripts, 
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ZFP57, 

POU5F1 

IGF2-AS, INS-

IGF2, miR483, 

H19, HOTS, 

91H, miR675 

IGF2:Ex9-DMR IGF2-DMR2 11:2153991-

2155112 

P Secondary 

DMR 

  

IGF2:alt-TSS-

DMR 

IGF2-DMR0 11:2168333-

2169768 

P Sperm 

gDMR 

  

KCNQ1OT1:TSS-

DMR 

IC2, ICR2, 

KvDMR1, 

KvLQT1, LIT1 

11:2719948-

2722529 

M Oocyte 

gDMR 

ZFP57 KCNQ1OT1, 

CDKN1C, 

PHLDA2, 

SLC22A18, 

KCNQ1 

RB1:Int-DMR  13:48892341-

48895763 

M Oocyte 

gDMR 

ZFP57 LPAR6 

LPAR6:TSS-

DMR 

 13:48984639-

48987689 

M Secondary 

DMR 

  

DLK1:Int2-DMR  14: 101193446-

101195447 

M Secondary 

DMR 

  

MEG3/DLK1:IG-

DMR 

IG-DMR, 

GLT2-DLK1 

14:101275427-

101278058 

P Sperm 

gDMR 

 MEG3, DLK1, 

MEG8, DIO3, 

RTL1, RTL-AS, 

MEG9, 

SNORD113, 

SNORD114 

and miRNA 

cluster 

MEG3:TSS-DMR GTL2 14:101290524-

101293978 

P Secondary 

DMR 

CTCF, 

ZFP57 

 

MEG8:Int2-DMR  14:101370410-

101371410 

M Secondary 

DMR 

CTCF, 

RAD21 

 

MKRN3:TSS-

DMR 

 15:23807086-

23812495 

M Oocyte 

gDMR-

secondary 

DMR 

  

MAGEL2:TSS-

DMR 

 15:23892425-

23894029 

M Secondary 

DMR 

  

NDN:TSS-DMR  15:23931451-

23932759 

M Secondary 

DMR 

  

bSNRPN:alt-TSS-

DMR 

 15:25068564-

25069481 

M Secondary 

DMR 

  

bSNRPN:Int1-

DMR1 

 15:25093008-

25193829 

M Secondary 

DMR 

POU5F1  

bSNRPN:Int1-  15:25123027- M Secondary   
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DMR2 25123905 DMR 

SNURF:TSS-

DMR 

 15:25200004-

25201976 

M Oocyte 

gDMR 

YY1 MKRN3, 

MAGEL2, 

NDN, PWRN1, 

SNRPN, IPW, 

SNHG14, 

SNORD116, 

SNORD115, 

UBE3A 

SNORD116:DMR SNHG14, 

UBE3A-AS 

15: 25156289-

25405834 

P Secondary 

DMR 

  

IGF1R:Int2-DMR IRIAN  15:99408496-

99409650 

M Oocyte 

gDMR 

 IRIAN  

ZNF597: 3’-DMR  16:3481801-

3482388 

M Oocyte 

gDMR 

 ZNF597, 

NAA60 

ZNF597:TSS-

DMR 

NAT15  16:3492828-

3494463 

P Secondary 

DMR 

   

ZNF331:alt-TSS-

DMR1 

 19:54040510-

54042212 

M Oocyte 

gDMR 

CTCF  

ZNF331:alt-TSS-

DMR2 

 19:54057086-

54058425 

M Oocyte 

gDMR 

  

PEG3:TSS-DMR ZIM2, ZNF904  19:57348493-

57353271 

M Oocyte 

gDMR 

ZFP57 PEG3, ZIM2, 

MIMT1  

MCTS2P:TSS-

DMR 

psMCT1, 

MCST2 

20:30134663-

30135933 

M Oocyte 

gDMR 

YY1 MCST2, HM13 

NNAT:TSS-DMR PEG5 20:36148604-

36156528 

M Oocyte 

gDMR 

ZFP57 NNAT, BLACP 

L3MBTL1:alt-

TSS-DMR 

ZC2HC3, 

KIAA0681 

20:42142365-

42144040 

M Oocyte 

gDMR 

CTCF, 

RAD21 

L3MBTL1, 

SGK2 

GNAS-

NESP:TSS-DMR 

NESP55 20:57414039-

57418612 

P Secondary 

DMR 

CTCF, 

RAD21 

Multiple GNAS 

transcripts, 

miR296, 

miR298 

GNAS-AS1:TSS-

DMR 

NESP-AS 20:57425649-

57428033 

M Oocyte 

gDMR 

CTCF, 

RAD21,  

 

GNAS-XL:TSS-

DMR 

Secretogramin 

VI 

20:57428905-

57431463 

M Oocyte 

gDMR 

ZFP57  

GNAS A/B:TSS-

DMR 

Secretogramin 

VI 

20:57463265-

57465201 

M Oocyte 

gDMR 

  

WRB:alt-TSS-

DMR 

 21:40757510-

40758276 

M Oocyte 

gDMR 

  

aSNU13:alt-TSS-

DMR 

NHP2L1 22:42077774-

42078873 

M Oocyte 

gDMR 
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aThese imprinted DMRs show evidence for mosaicism in the general population with low frequency 

hypomethylation reported. bThe entire ~1MB interval between the NDN and SNURF DMRs (chr15:24112253-

25108042) is preferentially methylated on the maternal allele. cTranscription factor binding sites taken from: YY1 

ChIP-seq ENCODE datasets (March 2012); CTCF ChIP-seq ENCODE datasets (March 2012); ZFP57 ChIP-seq 

dataset Imbeault et al., 2017. Nature 543:550-554; POU5F1 ChIP-seq ENCODE datasets (March 2012). HGVS, 

Human Genome Variation Society; M, maternal; P, paternal. 

 

Table 3. Factors with potential roles in imprinting control. 

Factor Function Mouse knockout phenotype Associated imprinting 

disorders 

AID and 

APOBEC1 

 

Possible role in active 

demethylation in 

PGCs 

Modest global hypermethylation 

in deficient PGCs182 

not reported  

TET1 and TET2 Implicated in 

demethylation as they 

have specific activity 

for converting 5mC to 

5hmC 

DKO mice have reduced 5hmC 

and increased 5mC levels at 

some imprinted loci (Mest, Peg3, 

Igf2r, H19)45 

not reported 

DNMT3A/B De novo DNA 

methyltransferase 

No methylation at gDMRs183 not reported 

DNMT3L Associate factor for 

DNMT3 

No methylation at gDMRs53 No pathogenic variants 

identified in SRS184 

KDM1B Oocyte-specific H3K4 

demethylase 

LOM at multiple gDMRs (Mest, 

Grb10, Zac1, Impact, U2af1-rs1, 

Peg10, Nnat, KvDMR1, Igf2r, 

Gnas)60,62 

not reported 

KDM1A H3K4 demethylase LOM at transient Cdh15 gDMRs 
62 

not reported 

NLRP7 NACHT, LRR and 

PYD domains-

containing protein 7 

potentially a SCMC 

interacting proteins 

No mouse orthologue Biparental hydatidiform moles 

with complete lack of maternal 

imprints77,78; MLID in rare 

hypomorphs79,185,186 

DNMT1 (both 

oocyte and 

somatic 

isoforms) 

Maintenance DNA 

methyltransferase 

Widespread LOM during 

embryonic cleavage stages187,188 

BWS with IC2 LOM97 

 

DNMT3A/B De novo DNA 

methyltransferase 

No methylation at gDMRs54,183 not reported 

ZFP57 KAP1 recruiting zinc-

finger protein 

Widespread LOM during 

embryonic cleavage stages87 

TNDM patients with MLID93 

TRIM28/KAP1 KRAB1-associated 

protein repressor 

Partial LOM during embryonic 

cleavage stages (H19, Snrpn)94 

No pathogenic variants 

identified in MLID36 



 39

complex  

UHRF1 Guides DNMT1 to 

hemimethylated DNA 

during replication 

Partial LOM during embryonic 

cleavage stages (H19, KvDMR1, 

Ig-DMR)95 

Single case of MLID39 

Histone H1 Linker histones Triple KOs result in Partial LOM 

(H19, Ig-DMR) 

not reported 

MBD3 Methyl-CpG binding 

protein 

Partial LOM at H19189 No pathogenic variants 

identified in SRS184 

MTA2 Metastasis tumour 

antigen 2, member of 

NuRD complex 

Partial LOM at H19 and Peg3190 not reported 

RBBP1/Arid4a 

RBBP1L1/Arid4b 

Retinoblastoma-

binding proteins 

LOM at Snrpn in double KOs191 not reported 

DPPA3/STELLA Binds to methylated 

and H3K9 decorated 

gDMRs 

Partial LOM at several gDMRs 

(Snrpn, Mest, Peg3, Nnat, 

Peg10, H19, Rasgrf1)74 

No pathogenic variants 

identified in MLID147 

 

NLRP2 NACHT, LRR and 

PYD domains-

containing protein 2 

potentially a SCMC 

member 

Aberrant gDMRs (GOM and 

LOM) in embryos that survive to 

mid-gestation85  

MLID75 

KHDC3L/ 

C6orf221/FILIA 

KH Domain 

Containing 3 Like, 

Subcortical Maternal 

Complex Member 

 

Imprinting not assessed84 Biparental hydatidiform moles. 

LOM at several DMRs 

(KvDMR1, SNRPN, MEST, 

PEG3, GNAS XL, GNAS 

A/B)76,192 

No pathogenic variants 

identified in MLID36,186 

NLRP5/MATER Member of SCMC Imprinting not assessed82 MLID37 

OOEP Member of SCMC Imprinting not assessed193 Single case of MLID39 

PADI6 Member of SCMC Imprinting not assessed83 MLID39 

ZAR1 Oocyte-specific zinc 

finger protein  

Imprinting not assessed194 Single case of MLID39 

VEZF1 Zinc finger 

transcription factor 

DB1 

Partial LOM at H19 and Igf2r 

gDMRs195 

No pathogenic identified in 

MLID147 

 

SMCHD1 Structural 

Maintenance of 

Chromosome Flexible 

Hinger Domain-

Containing protein 

LOM of secondary DMRs in 

mouse 7qB5 domain196 

not reported 

YY1 Transcriptional 

repressor protein 

Aberrant gDMRs (GOM and 

LOM)197 

not reported 

ZBTB33 Zinc finger an BTB Imprinting not assessed198 shRNA-targeting resulting in 
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Domain Containing 

transcription factor 

partial LOM at H19199 

CTCF Zinc finger protein 

involved in chromatin 

organisation 

GOM at H19200 Microdeletions of CTCF binding 

sites result in IC1 GOM in 

BWS28,201,202 

ZFP42/REX1 Zinc finger protein GOM at Peg3 and GNAS203 not reported 

POU5F1 Pioneer pluripotency 

transcription factor 

Imprinting not assessed204  Binding site pathogenic variants 

leads to IC1 GOM in 

BWS99,205,206 

SOX2 Pioneer pluripotency 

transcription factor 

Imprinting not assessed207  Binding site pathogenic variants 

leads to IC1 GOM in 

BWS99,103,205,206 

PGCs, primordial germ cells. 
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Glossary 

Genomic imprinting  

The epigenetic marking of a gene on the basis of parental origin, which results in 

monoallelic expression.  

 

Anticipation 

A phenomenon whereby the symptoms of a genetic disorder become apparent at an 

earlier age or with greater severity in succeeding generations. 

 

Assisted reproductive technologies 

(ART). Techniques used to achieve pregnancy during the treatment of infertility. ART 

covers a wide spectrum of treatments including the use of fertility drugs, intrauterine 

insemination and in vitro fertilization/intracytoplasmic sperm injection. 

 

Blastocyst  

Developmental stage of mammalian embryo just before implantation consisting of an 

inner cell mass which will form the embryo, and a cavity with an outer layer called 

trophoblast, which will give rise to the placenta. 

 

cis-acting element  

DNA sequence regulating the expression of a gene that is present on the same 

chromosome. 

 

Copy number variation 

(CNV). Type of structural variation of a chromosome consisting in duplication or 

deletion of DNA sequence. 

 

Endogenous retrovirus 

Repetitive genetic element present in the genome that, similarly to retroviruses, uses 

the activity of reverse transcriptase to move from one locus to another (also known 

as retrotransposons). 

 

Epiallele 
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Epigenetic profile which is maintained in somatic tissues resulting in interindividual 

variation.  

 

Epigenome 

Chromatin modifications influencing genome function and not involving the 

underlying DNA sequence that can be propagated through cell division. 

 

Epigenetic reprogramming  

The erasure of pre-existing epigenetic marks that allow for subsequent remodelling 

of chromatin. 

 

Epimutation 

When referred to imprinting disorders, epigenetic change that affects the regulation 

of imprinted loci. The epimutation is primary if there is no detectable genetic cause, 

secondary if it is associated with a genetic cause. 

 

Imprinting disorders  

Diseases associated with disruption of imprinted gene expression that can be 

caused by genetic or epigenetic defects. 

 

Incomplete penetrance 

A situation in which not all individuals carrying a dominant deleterious genetic variant 

express the associated clinical phenotype. 

 

Gain of methylation 

(GOM). When referred to imprinting disorders, gain of methylation on the 

unmethylated allele of imprinting centre. It is detected in patients and causes 

deregulation of the imprinted genes in the domain controlled by the imprinting centre. 

  

Genome activation  

The initiation of gene expression in the developing embryo. The initial burst of 

expression is termed zygotic genome activation (ZGA) and is regulated by pioneer 

transcription factors during the oocyte-to-embryo transition. Initiation of expression in 

cleavage embryos is referred to as embryonic genome activation. 
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Germline differentially methylated region 

(gDMR): Regions of differential DNA methylation between parental alleles in somatic 

cells that originate from the gametes. gDMRs that survive embryonic reprogramming 

are generally associated with imprinted genes. 

 

Haploinsufficiency 

A situation in which half of the normal level of a gene product, usually consequence 

of a loss-of-function mutation, is not sufficient for the normal function. 

 

Hydatidiform mole 

Benign gestational trophoblastic disease developing during pregnancy and resulting 

from an abnormal fertilization. It is characterized by trophoblastic proliferation and 

little or no embryonic tissue. It is commonly sporadic and contains only sperm DNA. 

Occasionally, it can be biparental, recurrent and familial following an autosomal 

recessive mode of inheritance. 

 

Imprinting centre 

A function definition for gDMRs that have been shown to regulate imprinted genes 

expression through either genetic targeting in mouse or through mutations in 

patients. Also known as imprinting control region (ICR). Not all gDMRs have been 

shown to be imprinting centre regions. 

 

Loss of methylation 

(LOM). When referred to imprinting disorders, loss of differential imprinting centre 

methylation detected in patients and causing deregulation of the imprinted genes in 

the domain controlled by the imprinting centre. 

  

Multi-locus imprinting disturbance 

(MLID). Methylation anomalies at imprinted DMRs in patients with imprinting 

disorders in addition to those that are normally associated with the disease. 

 

Maternal effect gene 
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A gene coding for an oocyte-derived transcript or protein that is required for the early 

development of the embryo. 

 

Penetrance 

Proportion of individuals in a population with a specific genotype who show an 

associated phenotypic trait. 

 
Primordial germ cells 

(PGCs). Stem cell-like cells found in the gonadal ridge of developing embryos that 

develop into gametes following sex-specific epigenetic reprogramming and meiosis. 

 

Pronucleus 

The haploid nucleus from a male or female gamete before the genetic material fuse 

at syngamy. 

 

Protamines 

Basic proteins that largely replace histones in the nucleus of mature sperm for more 

condensed DNA packaging. 

 

Secondary differentially methylated region 

A region of differential DNA methylation between parental alleles that does not 

originate from the germline. They are often referred to as somatic DMRs and are 

regulated in a hierarchical fashion by a nearby imprinting centre region. 

 

Subcortical maternal complex 

(SCMC). A large multi-protein complex comprising of NLRP5, OOEP, TLE6, PADI6 

and KHDC3L that localises to the outermost regions of the cytoplasm in oocytes and 

excluded from regions of cell-to-cell contact in cleavage embryos. 

 

trans-acting factor  

Protein regulating the expression of a gene. 

 

Uniparental disomy 
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(UPD). Genetic defect characterized by the presence of two copies of a chromosome 

or part of it derived from only one parent. 

 

Zygote  

A fertilized ovum before the first cell division which represents the earliest stage of 

embryonic development. The zygote's genome is a combination of the DNA in each 

gamete. 

 


