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Abstract 15 

Cancer genome sequencing has revealed that somatic mutation rates vary substantially across 16 

the human genome and at scales from megabase-sized domains to individual nucleotides.  17 

Here we review recent work that has both revealed the major mutation biases that operate 18 

across the genome and the molecular mechanisms that cause them. The default mutation rate 19 

landscape in mammalian genomes results in active genes having low mutation rates because of 20 

a combination of factors that increase DNA repair: early DNA replication, transcription, active 21 

chromatin modifications and accessible chromatin. Therefore, either an increase in the global 22 

mutation rate or a redistribution of mutations from inactive to active DNA can increase the rate 23 

at which consequential mutations are acquired in active genes. Several environmental 24 

carcinogens and intrinsic mechanisms operating in tumor cells likely cause cancer by this 25 

second mechanism: by specifically increasing the mutation rate in active regions of the genome. 26 

 27 
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Introduction  38 

 39 

The large-scale sequencing of tumors and healthy somatic cells presents a unique opportunity 40 

to learn about somatic mutation processes and how mutation rates vary across the human 41 

genome. The primary motivation for tumor genome sequencing was to identify the ‘driver’ 42 

mutations that cause cancer.  Driver mutations are selected for because they promote the 43 

expansion or survival of tumor clones.  However, most somatic mutations in cancer genomes 44 

are inconsequential ‘passenger’ mutations that are under very weak or no selection and 45 

statistical analyses of these passenger mutations have provided many fundamental insights into 46 

the mutation processes that operate in human cells and how these processes vary across the 47 

genome, cell types and individuals. 48 

 49 

Absolute mutation rates are difficult to determine for tumor cells, primarily because the number 50 

of cell divisions that a tumor cell has undergone is hard to establish. However, it has long been 51 

appreciated that many tumors have have an elevated mutation rate, for example because of 52 

inactivated DNA repair pathways [1–3]. In this review, we will not focus on the general 53 

acceleration in mutation rates in a cancer cell. Instead, this text focuses on relative mutation 54 

rates, which are more straightforward to quantify from regional densities of mutations in the 55 

genome. We provide an overview of the patterns of mutations that are observed across regions 56 

of the human genome and our current understanding about their mechanistic underpinnings 57 

when this is known (although often a detailed mechanistic understanding is still lacking). We 58 

place an emphasis on the insight and the novel hypotheses that cancer genomes have yielded 59 

about the organization of mutation processes in human cells.  Our primary focus is on single 60 

nucleotide substitutions and short insertions and deletions. The reasons for this are pragmatic: 61 

structural variation is much more challenging to precisely infer using short-read sequencing and 62 

although progress is being made in both identifying and understanding structural variation, the 63 

influences on its regional rates in the soma are far less well understood [4].  64 

 65 

Variability in mutation rates across the genome may result from two broad causes: differential 66 

accrual of DNA damage and also base mispairing during DNA replication (variation in mutation 67 

supply) or differential repair of damage and mispairs (variation in DNA repair). These influences 68 

are, of course, not mutually exclusive. Recent work has suggested, however, that the latter – 69 

differential DNA repair – appears to play a quantitatively more important role in shaping the 70 

mutation landscape in the human soma. This is consistent with the expectation that mutation 71 
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rates are more sensitive to changes in repair rates than to changes in damage rates because 72 

the vast majority of instances of damage are repaired [5].  73 

 74 

Somatic mutation rates vary at multiple resolutions 75 

 76 

As we discuss below, mutation rates in the human genome vary at multiple different scales from 77 

single nucleotides to megabase-sized domains. Importantly, the mechanisms underlying 78 

variation at these different genomic resolutions may be quite different and this often confounds 79 

statistical analyses performed at a certain resolution. For instance, at the resolution of a single-80 

nucleotide, mutation rates are highly dependant on the 5’ and 3’ neighboring nucleotides.  For 81 

example, in the human genome, the spontaneous deamination of methylated cytosine to 82 

thymine results in a substantially increased mutation rate at CG dinucleotides, the majority of 83 

which are methylated in the genome [6,7]. At the other extreme, when examining roughly 84 

megabase-sized chromosomal domains, a major determinant of mutation rates is DNA 85 

replication timing. In this specific case, this is not due to differential damage accumulation, but 86 

due to differential activity of DNA repair, which is preferentially active in early-replicating, gene-87 

rich domains [8]. We will discuss these and other known determinants of regional mutation rates 88 

at length below. 89 

 90 

Genome-wide statistical analyses of the patterns in mutation rate heterogeneity have revealed 91 

mechanisms that marshall DNA repair preferentially towards particular regions of the genome. 92 

Given that the cell’s ability to repair DNA is a limited resource, it is not unexpected that different 93 

repair capacities would be prioritized to different regions, for example those containing genes 94 

essential for cell viability. This differential DNA repair controls the mutation supply to oncogenes 95 

and tumor suppressor genes and may therefore modulate the risk of cancer. Potentially, the 96 

mutation supply to important genes in somatic cells could more broadly affect aging-related 97 

diseases, such as neurodegeneration [9]. With respect to germline mutations, variation in 98 

mutation rates along the chromosomes determines the propensity for obtaining particular 99 

deleterious mutations, and also shapes the genetic diversity of populations. Learning about 100 

patterns of regional mutation rates also has important practical applications. One common use 101 

concerns statistical tests for selection in genomic sequences; such tests are highly dependant 102 

on establishing an accurate baseline for local mutational rates, and any deviations therefrom are 103 

then considered as evidence for either positive selection (in cancer, suggesting oncogenic 104 

mutations) or negative selection (suggesting genes essential to somatic cells). 105 
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 106 

In between the two extremes mentioned above – the trinucleotide scale and the megabase 107 

domain scale – there is a continuum of resolutions of mutation rate variability which have been 108 

less systematically explored. However there is knowledge that rates of certain mutational 109 

processes vary depending, for instance, on the binding of certain proteins (most prominently, 110 

the sites where the CTCF protein is co-bound with cohesin [10–12]) or on the presence of 111 

certain post-translational histone modifications on nucleosomes – a salient example is the 112 

H3K36me3 mark associated with transcription elongation that can recruit DNA repair proteins 113 

[13–15]. Interactions exist between the mutation patterns at different resolutions, which helps 114 

link mutation patterns to mechanisms. For example, the CTCF-bound motifs were found to be 115 

more mutable, in relative terms, in the same tumors which have a higher proportion of A>C 116 

changes, which allows these two processes to be tentatively linked to the same underlying 117 

mechanism, suggested to be oxidation of the free nucleotide pool [11,16]. Such associations 118 

may help narrow down a list of putative mechanisms and thus to prioritize experimental work. 119 

 120 

In summary, what is known is that regional mutation rates in somatic cells appear highly 121 

variable at different, overlapping scales. What is currently less well explored is how much 122 

systematic variability there exists at each resolution (while rigorously deconvoluting the 123 

variability that overlaps and being able to distinguish it from random noise), how such variability 124 

at every resolution changes between cell types and between individuals, and how much of the 125 

variability is due to differential DNA repair and how much is due to differential damage. More 126 

fundamentally, the identity of the repair and/or damage mechanisms that cause the observed 127 

patterns are still often unknown. 128 

 129 

Features and mechanisms associated with mutation rate variation  130 

 131 

In the following sections we provide an overview of genomic and epigenomic variables known to 132 

be statistically associated with mutation rates at various resolutions.  We also highlight 133 

examples where the underlying molecular mechanisms are known or suspected. 134 

 135 

Variability at the domain scale (105 bp - 106 bp).  The extent of variability in somatic mutation 136 

rates at the scale of roughly megabase-sized domains was appreciated early on, after the 137 

sequencing of the first cancer genomes [17–19].  High mutation rates are strongly correlated 138 

with a high density of repressive chromatin marks (such as the heterochromatin mark 139 
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H3K9me3), later replication timing, lower accessibility of DNA as estimated via the density of 140 

DNAse hypersensitive sites (DHS) in the domain, and a lower density of active chromatin marks 141 

(e.g. H3K4me1/2/3). However, correlation does not imply causation and indeed for several of 142 

these variables there is mounting evidence they are likely not causal to mutation rates, or at 143 

least not to a major degree.  Based on statistical analyses that rigorously control for 144 

confounding variables, replication timing (RT) is a feature that is very robustly related with 145 

mutation rates  [15,19–21]. Consistently, changes in RT across cell types correlate well with 146 

changes in mutation rates [8]. The key test of the hypothesis would, however, be an experiment 147 

that changes RT in a controlled manner whilst measuring the impact on additional features such 148 

as chromatin modifications, and this has not yet been performed.  149 

 150 

The converse example of a mutation rate determinant, often cited as associated in the literature, 151 

is chromatin accessibility (usually measured by the density of the DHS), which is associated 152 

with locally lower mutation rates [22]. However, meticulous statistical analyses suggest that 153 

DNA accessibility is less likely to be causal for many types of mutational processes, or at least 154 

the processes commonly generating a high number of mutations [15]. An informal interpretation 155 

of these analyses is that the large, usually several-fold difference in mutation rates between 156 

chromosomal domains cannot be explained by the cumulative effect of smaller differences in 157 

mutation rates between accessible sites (DHS) and their local neighborhoods in DNA. In other 158 

words, the density of DHS sites at the megabase scale, strongly correlated with mutation rates, 159 

likely reflects a different mechanistic cause because at the local scale DHS have a more subtle 160 

effect on mutability. (In fact, the density of DHS site was found to be an accurate predictor of RT 161 

[23], thus explaining the confounding.)  Similar reasoning would hold for the strong correlation of 162 

the domain-scale density of the enhancer/promoter chromatin marks (H3K4 methylation) [24], 163 

which however at the local scale show little association with mutability. They are therefore 164 

unlikely to be causal of the domain-scale variation in mutation rates. 165 

 166 

There is mounting evidence for a mechanism underlying the striking domain-scale variability in 167 

mutation rates: differential activity of DNA mismatch repair (MMR), which preferentially prevents 168 

mutations in early-replicating, euchromatic regions. This was first discovered because MMR-169 

deficient tumors of various organs display a severe loss of domain-scale variability, exhibiting a 170 

‘flat’ landscape [8], a finding later confirmed by direct experiments [25,26]. Further evidence 171 

came from analysis of trinucleotide mutation spectra: those 5’ and 3’ contexts which become 172 

more mutable upon MMR failure are the same contexts that become less depleted in early-173 
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replicating DNA [8,27,28]. The importance of MMR for domain-scale mutation rate variability has 174 

also been confirmed by direct experiments where MMR activity was abolished in human cell 175 

lines [25,26] resulting in a ‘flat’ distribution of mutations across the genome.  Similar results 176 

have also been reported for MMR in yeast [5,29] and in Arabidopsis [30]. Additionally, 177 

nucleotide excision repair (NER) appears to be less active in late-replicating heterochromatin, 178 

because the mutation rate differential is diminished in skin cancers of germline NER-deficient 179 

patients [31]. Differential DNA repair therefore seems to be a major reason that mutability 180 

landscapes exist, both in the human genome and in the other eukaryotes.  181 

 182 

There are several open questions related to this domain-scale mutation rate variation. First, 183 

does MMR decrease in accuracy, or in efficiency, or both in late-replicating DNA and what is the 184 

mechanism causing this? Plausible mechanisms could be the preferential loading of MMR 185 

complexes onto early replicating euchromatin [13], depletion or modification of a repair factor 186 

late in S-phase, the reduced accessibility of heterochromatin to repair factors, or simply the 187 

reduced time available for the repair of late replicating DNA [32,33].  The second open question 188 

concerns the mechanism by which MMR reduces various mutation types. Mismatch errors in 189 

DNA replication are a natural substrate for MMR and likely to be one of the most abundant 190 

mutation types. However certain types of mutations that are associated, for examples, with 191 

bulky nucleotide adducts or UV-related DNA damage, also appear to have similar domain-scale 192 

distribution in mutation rates in tumor genomes and it is not clear how MMR contributes to their 193 

repair.  One possible explanation is that MMR proteins can serve as sensors for damage, 194 

binding to a lesion to promote recruitment of other repair pathways [34,35]. Further analyses 195 

and experimental work are needed to address these questions. 196 

 197 

 198 
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Figure 1. Variation in regional mutational rates in human somatic cells at multiple overlapping 199 

scales. 200 

 201 

 202 

Variability at the gene scale (103 bp - 105 bp). Cancer genomics has provided ample evidence 203 

that mutation rates differ between different genes in a manner independent of differences 204 

between chromosomal domains. Several types of statistical associations were reported, 205 

sometimes with suggestive evidence for mechanisms. The effect size of such between-gene 206 

differences in mutation rates is usually more modest than the striking, several-fold differences 207 

between chromosomal domains. Nonetheless such mutation rate gradients at the genes 208 

(meaning: between genes, and, in some instances, across the parts within the gene body) are 209 

of interest because they are informative about mechanisms of mutagenesis and DNA repair. An 210 

additional interest lies in the fact that mutagenesis within genes -- particularly coding regions, 211 

UTRs, and promoters -- is more likely to have downstream functional consequences for cancer, 212 

aging and other diseases. 213 

 214 

The most striking trend in mutation patterns observed at the gene-scale is transcription-related 215 

and affects the entire gene body: the asymmetry in mutation rates between the transcribed and 216 

the non-transcribed DNA strands. This is evident only for some mutational processes, falling 217 

into two groups: a strand bias resulting from DNA damage that can be seen by the transcription-218 

coupled nucleotide excision repair (NER) pathway where the strand bias results from differential 219 

NER [36–38] and a strand bias resulting from transcription-coupled damage, which is 220 

mechanistically currently mysterious and was reported in liver tumors [39] and in healthy 221 

neurons [40]. Most mutational processes (as defined by the trinucleotide mutation signatures) 222 

do not exhibit a transcriptional strand bias [36,39].  223 

 224 

In addition, higher transcription levels are generally associated with reduced mutation rates in 225 

both strands of genes [37,38], although it is not clear to which extent this is due to the 226 

correlation of expression levels with other genomic features, such as the abundance of higher-227 

expressed genes in early replication time regions. Some very specific cases of mutational 228 

processes may also have elevated rates in highly transcribed regions but without clear evidence 229 

of a mutational strand bias, for instance transcription-associated mutagenesis due to oxidative 230 

damage was reported in a human cell line [34] and highly expressed lineage-specific genes in 231 

several tumor types harbored many indel mutations [41]. 232 
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 233 

One widespread mechanism by which highly expressed genes have a reduced mutation rate is 234 

revealed by the association between a particular histone modification – H3K36me3 – and 235 

increased DNA repair efficiency.  H3K36me3 is a mark associated with transcription elongation, 236 

deposited by a histone methyltransferase recruited by the elongating form of the RNA 237 

polymerase II. H3K36me3 can recruit the MSH6 protein of the MMR pathway [13] and in a 238 

large-scale analysis of cancer genomes the high levels of the H3K36me3 mark were found to 239 

have a strong association with up to two-fold lower mutation rates, after rigorously controlling for 240 

other confounding variables such as DNA accessibility and replication time, thus suggesting a 241 

causal role of H3K36me3 [15]. This association disappears in MMR-deficient cancers, providing 242 

evidence that MMR recruitment causes lower mutation rates at H3K36me3-marked regions [15], 243 

which predominantly occur in bodies of highly transcribed genes and increase from the 5’ 244 

towards the 3’ gene end [42,43]. Experimental work in a cell line model provides strong support 245 

for the causal role of H3K36me3 in protection from mutations via marshalling MMR activity 246 

towards expressed genes [34]. Of note, the H3K36me3 mark has also been proposed to recruit 247 

another type of DNA repair – homologous recombination [14]. 248 

 249 

Within some genes, exons may accumulate slightly higher levels of H3K36me3 than introns, 250 

which is consistent with modestly reduced mutation rates in exons observed in cancer 251 

[22,34,44], which might thus result from differential repair. However this observation is 252 

confounded by technical issues: the repeat content and G+C content differences between 253 

exons and introns may affect DNA sequencing, short read alignment and mutation calling; upon 254 

stringent filtering of mutations and control for confounding mutational processes, there were no 255 

observable differences in mutability between exons and introns [45]. Additionally, negative 256 

selection against exonic splicing elements has been suggested to reduce exonic mutation 257 

density [46]. A further observation involves an apparent depletion of oxidative DNA damage in 258 

exons compared to introns [47]. These associations and proposed mechanisms are not 259 

necessarily mutually exclusive and need to be resolved. The modest effect size complicates 260 

statistical analyses to deconvolute these factors. 261 

 262 

In addition to the mechanisms above, which for the most part invoke differential DNA repair to 263 

explain lower mutation rates in active chromatin, there is experimental evidence that differential 264 

DNA damage might, at least in part, underlie lower mutation rates in active regions. For 265 

instance, genome-wide maps of UV damage suggest that this type of insult affects inactive, 266 
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heterochromatic regions more strongly [48], potentially because of the peripheral placement of 267 

heterochromatin in the nucleus. In a similar vein, genic regions were reported to have a lower 268 

rate of oxidative damage compared to intergenic regions [47]. Broadly, this distribution of 269 

damage does indeed mirror the distribution of mutations observed in somatic cells undergoing 270 

UV or oxidative-stress related mutagenesis [47,48]. Further experimental work that combines 271 

both differential damage mapping and mutation rate heterogeneity data in a rigorous joint 272 

analysis is warranted to quantitate the contributions of differential damage versus differential 273 

repair to individual mutational processes. 274 

 275 

Variability at the sub-gene scale (101 bp-103 bp). Various genomic regions considerably smaller 276 

than the size of genes have also been associated with certain types of mutational processes in 277 

certain cell types: mutational processes operating at this scale tend to have higher tissue- and 278 

mutagen-specificity than processes at larger scales. This is perhaps unsurprising, given that 279 

such processes (at least the ones described thus far) often result from binding of a particular 280 

protein to a certain site in DNA, rather than a global property of the genome maintenance 281 

machinery.  282 

 283 

A salient example of such phenomena is the high mutation rate at the binding sites of the CTCF 284 

protein, a regulator of transcription and of chromatin architecture. CTCF sites were found to be 285 

highly mutable in colon cancer, stomach cancer, liver cancer and melanoma  [10–12,49], where 286 

hypermutation is conditional on the concomitant binding of cohesin, a partner protein, to the site. 287 

There is suggestive data that this may be due to exclusion of DNA repair processes from the 288 

CTCF sites, including both MMR and NER [11,12]. The exact sites in (or adjacent to) the CTCF 289 

motif that are hypermutable, intriguingly, differ between the mutagenic exposures: UV 290 

mutagenesis is associated with G>A/C>T changes at one set of sites in the motif [12], while 291 

mutagenesis due to ‘Signature 17’ (putatively, oxidative damage to the guanine in the free 292 

nucleotide pool [16]) is associated with A>C/T>G mutations at a different set of sites [11]. 293 

Overall, therefore, both differential DNA damage and differential repair are likely to play a role in 294 

CTCF site hypermutability. An open question is certainly whether such mutations, which likely 295 

disrupt CTCF binding, have functional consequences that might be expected given important 296 

roles of CTCF as an architectural protein and ‘insulator’ for chromatin states. 297 

 298 

In addition to CTCF sites, the binding sites for the ETS family of transcription factors (TFs) also 299 

register very high mutation rates. However, unlike CTCF sites, this effect is observed in skin 300 
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cancers but not in other cancer types [50,51]. Also in contrast to CTCF sites, differential DNA 301 

repair does not appear to play a role in the increased mutation rates at ETS sites. Instead, it 302 

was proposed that the binding of ETS TFs increases the propensity of DNA to be damaged by 303 

UV radiation [50,51]. Beyond the strong effect of bound CTCF and the ETS-family TFs, there is 304 

also a more modest but general effect of TF binding (not particular to any specific TF) that 305 

increases mutation rates by a different mechanism -- by interfering with NER activity [52,53]. 306 

This is observable in skin cancer and in other cancers exposed to mutagens that can be 307 

countered by NER, such as lung cancers, but is absent in other common cancers such as colon 308 

or breast. One intriguing observation is that mutation rates tend to be more strongly increased at 309 

TF sites in promoters than at the same TF sites in enhancers [52]. This might hint at different 310 

manner of TF binding between promoter and enhancers, or, alternatively, may suggest that TF 311 

binding is statistically associated with mutability but not itself causal, with another factor at 312 

promoters being the cause of the local deficiency in NER. Caution must be exercised in 313 

interpreting the effects of individual TFs on mutation rates because various TFs often bind in 314 

clusters and the clusters are also often marked by CTCF/cohesin binding [54]. Deconvoluting 315 

the effect of a particular TF from the neighboring binding of CTCF and other factors is critical for 316 

measuring the effect size of individual contributors. 317 

 318 

In addition to the binding of CTCF and certain transcription factors, nucleosome occupancy has 319 

long been associated with altered patterns of genetic variation in populations and across 320 

species [55–59]. Consistent with this, nucleosome occupancy was shown to associate with 321 

subtle local changes in somatic mutation rates, evident in a periodic pattern corresponding to 322 

the internucleosomal distance of approximately 200 nt and additionally an approximately 10nt 323 

periodicity corresponding to the rotational constraints of DNA wrapped around nucleosomes  324 

[60–63]. Several lines of evidence suggest that this is due to differential DNA repair (there is 325 

evidence for MMR, NER and possibly BER playing a role): the pattern appears dependant upon 326 

functional repair pathways and it is evident in mutational signatures associated with repair 327 

deficiencies. Additionally, there is evidence that some types of DNA damage, in particular 328 

cytosine deamination and UV-catalyzed pyrimidine dimer formation, is modulated by 329 

nucleosome binding [55,60].  330 

 331 

 332 
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 333 

Figure 2. Associations of regional mutation rates with genomic and epigenomic variables, 334 

sorted by approximate size of affected region (x axis) and magnitude of enrichment/depletion (y 335 

axis). 336 

 337 

Variability at the motif scale (1 - 101 bp). At the smallest scale, mutation rate at individual 338 

nucleotides can depend strongly on their immediate 5’ and 3’ neighbors, with these 339 

dependencies suggesting the mutational process that generated the mutation. For example, a 340 

C>T change in a TCW context (where W=A or T) commonly results from the activity of an 341 

enzyme from the APOBEC family of cytosine deaminases [64,65]. However the same C>T 342 

change but in an NCG context is commonly due to spontaneous cytosine deamination at 343 

methylated cytosines [6,7], while cytosines bearing the 5-hydroxymethyl modification were 344 

associated with more C>G changes but less C>T changes [7,66]. The relative abundance of 345 

mutations in different contexts informs about which mutagenic processes are ongoing in that 346 

individual. Conversely, analyzing how the mutability of trinucleotides changes across individuals 347 

identifies ‘mutational signatures’, mathematical constructs that aim to represent individual 348 

mutagenic mechanisms.  More than 50 such signatures were found thus far, where mechanisms 349 

are known or proposed for some, and are quite varied, involving failures in DNA repair, 350 

exposure to mutagenic agents (exogenous or endogenous), and to spontaneous DNA damage 351 
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[36,61,67]. The mechanisms are, however, still unknown for many of these signatures or are 352 

speculative at best. It is also in many cases unclear that there is a one-to-one mapping of any 353 

particular signature to a mutagenic process, given that slightly different computational methods 354 

result in quite different sets of signatures. These issues are expected to lessen as the statistical 355 

methodologies mature. 356 

 357 

Several extensions of the above mutational signatures framework are promising, in terms of 358 

better deconvoluting mutational processes from genomic data, and also in terms of helping 359 

interpret the processes and assigning them to a possible mechanism. Longer motifs including 360 

pentanucleotides and heptanucleotides have been examined for differential mutability in the 361 

soma and germline, establishing that these extended oligonucleotide contexts indeed matter for 362 

mutability in human for certain types of mutational processes [68–70].  However, for analysis of 363 

motifs longer than trinucleotides, the amount of data becomes limiting; methods have been 364 

proposed to ameliorate this [71]. Additionally, repetitive DNA motifs with propensity to form 365 

certain DNA structures were found to be associated with certain types of mutations [72,73], 366 

suggesting that DNA structure might be causal to mutagenesis. The difficulty of calling 367 

mutations at repetitive DNA from short-read sequencing are a challenge for such analyses.  In 368 

addition to the most common mutation type -- single nucleotide substitutions -- mutational 369 

signatures were recently proposed for short insertions and deletions [74], for structural variants 370 

[75,76] and for clustered mutations [15]. Certain mutagenic mechanisms may be predominant in 371 

one type of mutational signature, for instance mutagenic activity due to use of error-prone DNA 372 

polymerase eta appears widespread and detectable via patterns of clustered mutations [15,77]. 373 

In other instances, the same process is evident across different types of mutational signatures. 374 

For instance, MMR deficiencies result in a mutation spectrum rich in e.g. GCN>GTN changes 375 

(among others) and additionally they result in an increased burden of indels, typically with a bias 376 

towards short deletions. Similarly, deficiency in the homologous recombination pathway results 377 

in both single-nucleotide changes of a certain spectrum [36,78], in short deletions with 378 

microhomology at borders, and in a pattern of copy-number changes [75,79] .  379 

 380 

The redistribution of mutations in cancer 381 

It is well expected that exposures to DNA damaging agents and failing DNA repair increase 382 

overall mutation rates. However genome sequencing of cancers has also provided evidence of 383 

another, less appreciated, but similarly widespread phenomenon: that exposure to mutagens 384 

and DNA repair failures also cause changes in the relative mutation rates of chromosomal 385 

https://doi.org/10.1016/j.dnarep.2019.102647


Supek & Lehner (2019) DNA Repair, 81:102647. https://doi.org/10.1016/j.dnarep.2019.102647 
 

14 
 

regions. Such ‘redistribution’ of mutations across the genome due to mutagenic exposures is 386 

likely to have important functional consequences when it occurs, in particular it may often 387 

increase the burden of mutations specifically in the regions where mutations have higher 388 

impact. This is because the default mutation rate landscape in mammalian genomes implies 389 

that active genes are protected via a combination of factors that preferentially recruit DNA 390 

repair: early DNA replication, transcription, chromatin accessibility, and the H3K36me3 391 

chromatin mark. This protection of active chromatin by focused DNA repair is known to be lost 392 

in some mutator phenotypes and upon exposure to carcinogens, as we outline below. 393 

 394 

Very prominently, human and other eukaryotic cells that lose MMR activity also lose the 395 

protection of early-replicating domains against mutation [8]. Not only does MMR loss imply an 396 

overall increase in mutation rates, but the increase is proportionally much larger at early-397 

replicating, euchromatic, gene-rich domains. This is in contrast to another type of mutator 398 

phenotype due to mutations in the proofreading domain of DNA polymerase epsilon: these 399 

cancers usually have an even higher mutation burden than MMR-deficient cancers however 400 

they retain protection of early-replicating domains [8].  401 

 402 

In addition to global MMR failure, other types of DNA repair alterations were linked with 403 

mutation redistribution. For instance, bladder cancers with mutations in the ERCC2 gene, 404 

encoding a helicase that participates in the NER pathway, show an altered mutation 405 

trinucleotide spectrum [80,81] but also show a loss of mutation protection in active chromatin.  406 

 407 

Another, more widespread instance of mutation redistribution in many cancer types was recently 408 

proposed to occur via activity of error-prone, non-canonical MMR pathway [15]. This pathway is 409 

known to use the TLS DNA polymerase eta (a product of the POLH gene, also called XPV) 410 

during MMR [82,83], and the mutational pattern of clustered mutations at A:T nucleotide pairs 411 

observed in many tumors is consistent with activity of POLH [77]. Of note, while clustered 412 

mutations are rather rare, it is likely that POLH also creates a large number of (unclustered) 413 

single-nucleotide changes, which are directed towards H3K36me3-marked active genes, 414 

including cancer driver genes [15]. In multiple cancer types, this clustered mutational pattern is 415 

associated with exposure to various carcinogens, such as UV light, tobacco smoke and 416 

oxidative damage [15]; this is again consistent with the experimental observation that various 417 

mutagenic insults can recruit POLH to chromatin [82,83]. Interestingly, the mutational patterns 418 

of POLH were associated with alcohol consumption in multiple cancer types, providing a 419 
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possible mechanism by which alcohol is carcinogenic: rather than increasing the global mutation 420 

rate, alcohol or its metabolites increase the local mutation rate in active genes by triggering 421 

error-prone DNA synthesis [15]. Consistent with this, multiple other studies have reported an 422 

enrichment of mutations at A:T nucleotide pairs in esophageal and liver cancers of alcohol 423 

consumers [84,85] . 424 

 425 

However, redistribution of mutations also happens not only due to inactivity (or non-canonical 426 

activity) of DNA repair pathways, but also because of exposure to certain DNA damaging 427 

agents. A salient examples of this is an endogenous mutagen -- the APOBEC family of cytosine 428 

deaminases, where the APOBEC3A and APOBEC3B paralogs are thought to cause mutations 429 

in cancer [64,86,87]. In contrast to most other mutation types, mutations due to APOBEC 430 

activity are enriched in early-replicating, gene-rich regions [88,89] and, consistently, have a high 431 

potential for generating impactful mutations in cancer driver genes [90,91].  432 

 433 

Additional examples of mutations that are directed towards active genes have a less clear 434 

mechanistic basis but nonetheless may have a substantial mutagenic footprint (in all cases, 435 

shown for a rather restricted range of cell types): transcription-associated mutagenesis, with a 436 

strong DNA strand bias, reported in liver cancers [39], a modest increase in mutation burden at 437 

transcribed genes in healthy neurons [40], and a high burden of small indels in very highly 438 

expressed lineage-specific genes in lung, liver, thyroid and stomach tumors [41]. Finally, one 439 

mutagen that is known to target active, highly expressed regions (mostly gene promoters and 440 

downstream regions) is AID [92], a cytosine deaminase which acts in B-lymphocytes in a 441 

physiological (not pathological) process that serves to diversify antibody genes. It has been 442 

reported that AID can be ectopically expressed and cause mutations in non-lymphoid tissues 443 

[93–95]; indeed, many cancers of various types exhibit a clustered mutational signature 444 

apparently consistent with AID, which is also broadly targeted to active regions [15]. AID 445 

mutagenesis is a known cause of lymphoid cancers, and the current data, while only 446 

suggestive, merits further research to investigate a potential role in mutagenizing diverse non-447 

blood tissues by AID or an AID-like activity, with potential for causing cancer therein. 448 

 449 

 450 
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 451 

 452 

Figure 3. Redistribution of relative mutation rates towards active chromatin by failures of DNA 453 

repair and by exposure to mutagens. TAM, transcription-associated mutagenesis. MMR, DNA 454 

mismatch repair. 455 

 456 

 457 

Outlook: challenges in genomic studies of mutation patterns.   458 

 459 

Statistical analyses of mutation distributions across the genomes of somatic cells – including not 460 

only tumors but also healthy cells [96,97] and cell lines [26,98,99] – have provided valuable 461 

insights into the mechanisms that underlie mutation rate variation. The approaches that have 462 

been used can, however, likely still be improved to provide deeper insights into mechanisms of 463 

DNA repair and mutagenesis.   464 

 465 

First, of course, there is a need for more data.  A larger number of whole genome sequences 466 

will afford more statistical power to examine mutation rate variability at finer resolutions.  467 

 468 

Second, there is a need to further develop and refine specialized statistical methods for 469 

discovering associations between mutation distributions and various genomic features, while 470 

controlling for both the strong confounding correlations that exist between many (epi)genomic 471 

features (such as chromatin accessibility, replication timing and transcription) and the 472 

heterogeneity of mutational processes across tumors (e.g. early replicating regions are G+C 473 

rich thus a process that mutates only C:G pairs creates an artefactual enrichment in early 474 
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replicating DNA). We have applied one statistical methodology to this problem [15,20] but it is 475 

likely that further developments and additional approaches will be required to fully address 476 

these issues. Adjusting for the known confounders increases the confidence that the discovered 477 

associations may be causal and thus inform about the mechanism behind the generation of (or 478 

protection from) mutations in certain regions.  479 

 480 

However, in observational studies, no matter how carefully conducted, causality cannot be 481 

inferred with full certainty. Therefore, a third direction for research which is complementary to 482 

the analysis of cancer genomes is to perform controlled experiments, generating mutations by 483 

perturbing DNA repair pathways or chromatin modification pathways or by exposure to specific 484 

mutagens, and then observing the genome-wide patterns that emerge. This type of work has 485 

been recently initiated in multiple model systems including mice [20,100,101], mammalian and 486 

chicken cell lines [26,98,99,102], C. elegans [103,104], and yeast [5].  The genome-wide 487 

patterns observed in animal/cell-line models can then be matched to those observed in human 488 

samples, thus assigning a mechanistic basis for the mutational biases. This was performed 489 

mainly for trinucleotide mutation spectra but other kinds of patterns can, in principle, be 490 

examined in the same way.  491 

 492 

The challenges in interpreting genome-wide studies of mutation rates highlighted above mean 493 

that it is often necessary to be cautious when interpreting the results of correlation-based 494 

studies.  In particular, when a known (or unknown) confounding influence is not correctly 495 

controlled for, spurious associations can be reported.  Moreover, while studies often focus 496 

attention on the statistical significance of the associations that they detect, attention should be 497 

paid to effect sizes. Here, in a broad sense, effect size could be understood to imply: the 498 

magnitude of the increase or decrease in mutation rates, or the target size (the number of 499 

nucleotides in the genome affected), or the number of mutational processes for which this 500 

pattern is relevant. Patterns which are subtle in magnitude (e.g. reduced mutation rates at 501 

accessible chromatin), which affect narrow regions of the genome (e.g. CTCF/cohesin bound 502 

sites), or which occur only under rarely occurring mutational regimes (e.g. hypermutation due to 503 

UV damage at TF binding sites) can be important because they provide insight into DNA repair 504 

and other molecular mechanisms. However, the impact of these biases on cells can be 505 

relatively small compared to other mechanisms.  In contrast, the domain-scale mutation rate 506 

variability associated with replication time affects the entire genome, has large differences in 507 

rates between peaks and valleys, and is evident for many individual mutational processes.  508 
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 509 

A final note of caution concerns making analogies between mutation rate variation in somatic 510 

cells and the germline – the latter are, of course, also of high interest because they shape the 511 

genetic variability of populations, drive evolution, and impact the occurrence of genetic 512 

diseases. Mutation patterns have been examined in the human germline by analysis of 513 

population diversity [68,69,105], de novo mutations gleaned from sequencing parent-offspring 514 

trios [106,107] and also the evolutionary divergence between primates [17,18,59,108]. While 515 

indeed certain trends are, at first instance, similar to those observed in somatic cells, there are 516 

also substantial differences in mutation rate variability between the human germline and soma, 517 

including an overall reduced association of mutations with replication timing at the megabase 518 

scale [18,21,109]. These differences and the mechanisms underlying them are an important 519 

direction for future work. 520 
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