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Abstract: In the past two decades, multiple studies have been undertaken to elucidate the genetic
cause of the predisposition to mismatch repair (MMR)-proficient nonpolyposis colorectal cancer (CRC).
Here, we present the proposed candidate genes according to their involvement in specific pathways
considered relevant in hereditary CRC and/or colorectal carcinogenesis. To date, only pathogenic
variants in RPS20 may be convincedly linked to hereditary CRC. Nevertheless, accumulated evidence
supports the involvement in the CRC predisposition of other genes, including MRE11, BARD1, POT1,
BUB1B, POLE2, BRF1, IL12RB1, PTPN12, or the epigenetic alteration of PTPRJ. The contribution
of the identified candidate genes to familial/early onset MMR-proficient nonpolyposis CRC, if any,
is extremely small, suggesting that other factors, such as the accumulation of low risk CRC alleles,
shared environmental exposures, and/or gene–environmental interactions, may explain the missing
heritability in CRC.

Keywords: hereditary cancer; colorectal cancer; mismatch repair proficiency; familial colorectal
cancer type X; gene identification; cancer predisposition; cancer susceptibility; cancer genetics;
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1. Introduction

While estimates indicate that approximately 14% of all colorectal cancer (CRC) patients have at
least one first-degree relative affected with the same tumor type [1,2], 4–8% of all CRC patients carry
germline pathogenic variants in one of the known high penetrance genes for this tumor [3–6], with a
relevant proportion of the familial aggregation of CRC remaining unexplained. The identification of
a germline pathogenic variant in a colorectal cancer-predisposing gene has important consequences
for the patients and their relatives, as they can be counseled and managed based on gene-specific
guidelines. This is the main reason why large efforts have been and are still being made to identify the
genetic cause of the increased CRC risk observed in some families. Figure 1 shows the known causal
genes for nonpolyposis and polyposis CRC predisposition and the molecular pathways in which they
are involved.

J. Clin. Med. 2020, 9, 1954; doi:10.3390/jcm9061954 www.mdpi.com/journal/jcm

http://www.mdpi.com/journal/jcm
http://www.mdpi.com
https://orcid.org/0000-0003-0371-0844
http://dx.doi.org/10.3390/jcm9061954
http://www.mdpi.com/journal/jcm
https://www.mdpi.com/2077-0383/9/6/1954?type=check_update&version=2


J. Clin. Med. 2020, 9, 1954 2 of 19
J. Clin. Med. 2020, 9, x FOR PEER REVIEW 2 of 19 

 

 

Figure 1. Schematic representation of colorectal cancer predisposing syndromes, causal genes, and 
affected molecular pathways. Genes shaded in grey correspond to the most promising proposed 
candidate genes. Abbreviations: BER, base excision repair; DSB, double strand breaks; meth, promoter 
hypermethylation; MMR, DNA mismatch repair; SAC, spindle assembly checkpoint. 

Classically, hereditary cancer studies were mainly based on genome-wide linkage analysis of 
large individual or multiple pedigrees followed by positional cloning and the study of somatic 
studies. This strategy led to the identification of the most prominent hereditary cancer genes, 
including the main genes involved in nonpolyposis colorectal cancer predisposition, i.e., the DNA 
mismatch repair (MMR) genes MLH1, MSH2, MSH6, and PMS2; however, it seemed unable to 
identify additional causal genes for hereditary nonpolyposis CRC (HNPCC). In fact, while genome-
wide linkage studies in families with CRC allowed the identification of several dominant 
predisposition loci mapped to different chromosomal regions, no evident causal genes have been 
identified within these loci [7]. The poor performance of these techniques for the identification of 
additional high-penetrant genes responsible for familial CRC cases could have been caused by the 
heterogeneity of the clinical group, the existence of oligo- or polygenic modes of inheritance, or the 
presence of unconventional mechanisms of gene inactivation, among other possibilities. 

Thanks to the rapid development of massively parallel sequencing-based approaches and 
genome-wide copy number techniques, genome sequencing, exome sequencing, or genome-wide 
scanning of copy number alterations, alone or in combination with linkage analysis, and applied to 
isolated high-risk families or to multiple families or probands with common phenotypes, are being 
used for the identification of causal pathogenic variants. This type of study, performed in the last 
decade, has resulted in the identification of numerous candidate causal genes for the nonpolyposis 
CRC predisposition. In parallel to these a priori agnostic analyses, candidate gene studies have been 
performed along the years to assess the involvement of specific genes selected based on their function 
or involvement in molecular pathways deemed relevant in colorectal carcinogenesis. 

Here, we aimed to provide an overview of the proposed candidate causal genes for hereditary 
colorectal cancer based on different molecular entities and focused on relevant molecular pathways. 

2. RPS20 Mutations as a Rare Cause of Hereditary Nonpolyposis Colorectal Cancer 

So far, the only new candidate gene that has shown consistent association with hereditary 
nonpolyposis CRC is RPS20, which encodes a component (S20) of the small ribosome subunit. By 
combining genetic linkage analysis and exome sequencing, Nieminen et al. (2014) identified a novel 
truncating RPS20 variant, c.147dupA (p.Val50Serfs*23), in a Finnish four-generation CRC-affected 
family. The variant was present in seven CRC-affected members but neither in four cancer-free 
members nor in one relative diagnosed with breast cancer at age 55. All studied tumors were MMR 
proficient and despite not showing loss of the RPS20 wildtype allele, patients carrying the RPS20 
c.147dupA variant showed a marked increase of 21S pre-rRNAs, supporting a late pre-rRNA 
processing defect consistent with haploinsufficiency. No additional RPS20 (likely) pathogenic 
variants were identified in 25 Finnish MMR-proficient Amsterdam-positive families and in 61 
primary CRCs and cancer cell lines [8]. 

Figure 1. Schematic representation of colorectal cancer predisposing syndromes, causal genes, and
affected molecular pathways. Genes shaded in grey correspond to the most promising proposed
candidate genes. Abbreviations: BER, base excision repair; DSB, double strand breaks; meth, promoter
hypermethylation; MMR, DNA mismatch repair; SAC, spindle assembly checkpoint.

Classically, hereditary cancer studies were mainly based on genome-wide linkage analysis of
large individual or multiple pedigrees followed by positional cloning and the study of somatic studies.
This strategy led to the identification of the most prominent hereditary cancer genes, including the main
genes involved in nonpolyposis colorectal cancer predisposition, i.e., the DNA mismatch repair (MMR)
genes MLH1, MSH2, MSH6, and PMS2; however, it seemed unable to identify additional causal genes
for hereditary nonpolyposis CRC (HNPCC). In fact, while genome-wide linkage studies in families
with CRC allowed the identification of several dominant predisposition loci mapped to different
chromosomal regions, no evident causal genes have been identified within these loci [7]. The poor
performance of these techniques for the identification of additional high-penetrant genes responsible
for familial CRC cases could have been caused by the heterogeneity of the clinical group, the existence
of oligo- or polygenic modes of inheritance, or the presence of unconventional mechanisms of gene
inactivation, among other possibilities.

Thanks to the rapid development of massively parallel sequencing-based approaches and
genome-wide copy number techniques, genome sequencing, exome sequencing, or genome-wide
scanning of copy number alterations, alone or in combination with linkage analysis, and applied to
isolated high-risk families or to multiple families or probands with common phenotypes, are being
used for the identification of causal pathogenic variants. This type of study, performed in the last
decade, has resulted in the identification of numerous candidate causal genes for the nonpolyposis
CRC predisposition. In parallel to these a priori agnostic analyses, candidate gene studies have been
performed along the years to assess the involvement of specific genes selected based on their function
or involvement in molecular pathways deemed relevant in colorectal carcinogenesis.

Here, we aimed to provide an overview of the proposed candidate causal genes for hereditary
colorectal cancer based on different molecular entities and focused on relevant molecular pathways.

2. RPS20 Mutations as a Rare Cause of Hereditary Nonpolyposis Colorectal Cancer

So far, the only new candidate gene that has shown consistent association with hereditary
nonpolyposis CRC is RPS20, which encodes a component (S20) of the small ribosome subunit.
By combining genetic linkage analysis and exome sequencing, Nieminen et al. (2014) identified a novel
truncating RPS20 variant, c.147dupA (p.Val50Serfs*23), in a Finnish four-generation CRC-affected
family. The variant was present in seven CRC-affected members but neither in four cancer-free members
nor in one relative diagnosed with breast cancer at age 55. All studied tumors were MMR proficient
and despite not showing loss of the RPS20 wildtype allele, patients carrying the RPS20 c.147dupA
variant showed a marked increase of 21S pre-rRNAs, supporting a late pre-rRNA processing defect
consistent with haploinsufficiency. No additional RPS20 (likely) pathogenic variants were identified
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in 25 Finnish MMR-proficient Amsterdam-positive families and in 61 primary CRCs and cancer cell
lines [8].

Broderick et al. (2017) analyzed by exome sequencing 863 early onset/familial CRC cases
and 1604 individuals without CRC and no germline mutations in known hereditary CRC genes.
The authors identified a truncating RPS20 variant, p.Leu61Glufs*11, in a 39-year-old individual with
metachronous CRC. They also identified a predicted pathogenic missense variant, p.Val54Leu, in a
CRC patient diagnosed with CRC at age 41, who fulfilled the Amsterdam criteria for hereditary CRC.
No rare missense or disruptive RPS20 variants were detected in the 1604 controls [9]. Very recently,
we performed a mutational screening of RPS20 in 473 familial/early onset CRC cases and did not
identify any predicted pathogenic variant. Taking the three studies together, we concluded that
disruptive (stop-gain, frameshift, and start-loss) variants are enriched in familial/early onset CRC cases
compared to controls [10]. Supporting this association with hereditary CRC, RPS20 c.177+1G>A has
recently been identified in another family with four CRC-affected members, all of them carriers or
obligate carriers of the RPS20 variant [11]. The limited available data suggests low prevalence (allele
frequency in familial/early onset CRC patients: 2/2,724; 0.07%) and high penetrance (13/16 (81%) >

35-year-old carriers of disruptive or canonical splice-site variants were affected with CRC) for RSP20
pathogenic variants, as well as the absence of extracolonic manifestations. Data from additional carriers
are required to estimate risks and recommend gene-specific surveillance measures.

3. Candidate Causal Genes for Mismatch Repair Proficient Hereditary Nonpolyposis
Colorectal Cancer

In this section, we introduce the candidate genes proposed these past years for CRC predisposition.
To date, the evidence gathered is not enough to include any of these genes in routine genetic testing.
Additional studies will provide additional insight about their causal association, and if confirmed, they
will provide information about the associated cancer risks. In the following subsections, the genes
are presented according to gene ontology (molecular pathway). We tried to include the most relevant
studies for each gene; however, we would like to apologize in advance to those whose work has not
been cited due to space constraints. Table S1 gathers information on the proposed candidate genes
together with the related literature.

3.1. DNA Damage Response

Defects in DNA repair mechanisms are directly associated with cancer development. Germline
pathogenic variants in genes coding for DNA mismatch repair (MMR) proteins cause Lynch syndrome,
the most prevalent form of hereditary nonpolyposis CRC. Germline alterations in other genes involved
in the DNA damage response (DDR) have been proposed as genes potentially involved in CRC
predisposition [5,12–14]. DDR is a complex defense system whose aim is to detect, signal, and promote
the repair of DNA lesions. DDR mechanisms include the regulation of the cell cycle, transcription
programs and chromatin accessibility, and, when DNA damage is massive, the activation of cell fate
pathways, such as apoptosis or senescence [15–18]. In the next subsections, we will introduce the genes
involved in DDR that have been proposed as candidate causal genes for CRC predisposition.

3.1.1. DNA Repair

Base Excision Repair

The base excision repair (BER) mechanism corrects oxidative DNA damage, one of the hallmarks
of cancer [19]. Several genes involved in BER, such as MUTYH and NTHL1, when mutated in the
germline in a dominant recessive manner, cause CRC and adenomatous polyposis predisposition [20,21].
Based on this, other BER genes have been considered good candidates for CRC predisposition.

For years, several groups undertook the study of OGG1 and NUDT1 (= MTH1) variants as
potential causal factors of CRC predisposition. Several studies have been published, and what seemed
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to be promising mostly in the first years [22–26], reduced their degree of interest, at least as high- or
moderate-risk genes, when subsequent larger studies suggested no causal association [27–29].

Other BER genes, such as NEIL2, TDG, and UNG, among others, have also been studied as
potential genes for CRC predisposition; however, the evidence gathered suggest that their role is
negligible [28,30,31] (Table S2).

Nucleotide Excision Repair and MGMT

Nucleotide excision repair (NER) is mainly involved in the removal of bulky adducts that results
from UV DNA damage. While biallelic mutations in the main NER genes are linked to xeroderma
pigmentosum, heterozygous likely pathogenic missense variants in XPC, ERCC2, and ERCC6 have
been identified in CRC patients [12,32,33]. Additional studies will determine whether the identified
variants are or are not causally associated with an increased CRC risk.

MGMT (O6-methylguanine DNA methyltransferase) is a DNA repair enzyme in charge of
removing potentially mutagenic alkyl groups primarily from the O6-position of guanine molecules.
MGMT activity is essential for genome integrity given that it prevents mismatch, replication,
and transcription errors, which may lead to carcinogenic and apoptotic events. Based on MGMT’s
role in DNA repair and the fact that MGMT epigenetic silencing has been reported as an early
event in CRC [34,35], our group decided to test its involvement in CRC predisposition. While no
constitutional epimutations were identified, 4 rare heterozygous missense variants were identified in 6
of the 473 familial/early onset unrelated CRC patients studied. Two variants were clearly predicted
as benign and the other two, p.His116Tyr and p.Arg159Gln, were further studied. None of the two
caused a statistically significant reduction of MGMT repair activity and no evidence of somatic second
hits was found in the studied tumors. Case-control data showed over-representation of c.346C>T
(p.His116Tyr) in familial CRC compared to controls, but no overall association of MGMT mutations
with CRC predisposition [36].

Double-Strand Break Repair

Double-strand breaks (DSBs) are considered the most deleterious form of DNA damage. DSB are
the base of break-fusion-bridge cycles; i.e., the engine of chromosome instability, which is a form
of genomic instability that characterizes MMR-proficient CRC tumors [37–39]. Therefore, it is not
surprising that germline (likely) pathogenic variants in genes involved in DSB repair—in particular,
in homologous recombination (HR) and non-homologous end joining (NHEJ)—had been identified in
CRC patients.

MRE11 encodes an endonuclease member of the MRN complex (MRE11, Rad50, and NBS1)
in charge of sensing and promoting DSB end resection during HR. Chubb et al. (2016) identified
six carriers of rare or novel variants in MRE11, either disruptive or predicted pathogenic missense
variants, among 1006 familial/early onset CRC patients, compared to one predicted pathogenic variant
identified in 1609 controls [28]. Aldubayan et al. (2018) identified two additional carriers of MRE11
predicted pathogenic missense variants among 667 CRC patients [5], and Belhadj et al. (2020) 2 more
carriers in a 473-familial/early onset-CRC cohort. A meta-analysis of all reported series compared to a
control population indicated that MRE11-disruptive variants are significantly enriched in familial/early
onset CRC, supporting the role of MRE11 in CRC predisposition [10]. On the other hand, it has
been suggested that MRE11 and other MRN components may be used as biomarkers for predicting
disease progression and treatment response. In particular, low MRE11 expression has been associated
with improved oxaliplatin sensitivity and better progression-free survival in CRC patients [40,41],
which might be translated to the treatment and clinical impact of the tumors developed in the context
of a germline MRE11 pathogenic variant.

Díaz-Gay et al. (2019) recently carried out an integrated analysis of germline and tumor exome
sequencing data in 18 high-risk CRC families, with the aim of identifying new candidate genes for
hereditary colorectal cancer. The authors followed a prioritization strategy based on the selection
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of genes affected by two hits, one germline and one somatic, according to Knudson’s hypothesis,
i.e., genes susceptible to having a tumor suppression growth effect. In total, 7 out of the 16 identified
candidates belonged to DNA repair pathways, and 4 of them were involved in DSB repair: BRCA2,
RIF1, BLM, and RECQL. BRCA2 is a classical non-CRC cancer predisposition gene that predisposes
to hereditary breast and ovarian cancer and its implication in HNPCC will be discussed in Section 4.
RIF1 encodes a protein that localizes to aberrant telomeres and is recruited to DSBs to counteract
DNA resection, thus promoting repair by NHEJ. The authors identified a predicted pathogenic RIF1
missense variant and tumor LOH in the proband of one of the studied CRC families [33]. As no
additional evidence has been reported, we looked up RIF1 in the exome sequencing data reported by
Chubb et al. (2016). No disruptive and 19 predicted pathogenic missense variants were identified in
1006 familial/early onset CRC patients (1.9%) compared to 39 predicted pathogenic missense variants
identified in 1609 healthy controls (2.4%), suggesting no association with cancer predisposition [28].

BLM encodes a RecQ-like helicase that participates in the final stages of HR. While biallelic
pathogenic variants cause Bloom syndrome (Mendelian Inheritance in Man (MIM)# 210900), the question
of whether monoallelic pathogenic variants predispose to CRC has been debated for almost two
decades. Gruber et al. (2002) first noticed that heterozygous carriers of a recurrent BLM Ashkenazi
pathogenic variant (BLMAsh) were at increased risk of developing CRC [42]. Since then, numerous
studies have been published, some of them supporting the association of heterozygous BLM pathogenic
variants with various types of cancers, including CRC [43–50], and others where no association
with increased cancer risk was detected [5,51–54]. A recent meta-analysis combining our own BLM
mutational screening with previous studies and publicly available sequencing data from familial and/or
early onset CRC patients suggested a lack of association of BLM heterozygous disruptive and predicted
pathogenic variants with CRC predisposition after comparison with the frequencies in population
controls [10].

In addition to BLM, other RecQ helicases have been linked to CRC predisposition. Homozygous or
compound heterozygous mutations in WRN cause Werner syndrome (MIM# 277700), a rare segmental
progeroid syndrome characterized by chromosomal instability and cancer predisposition. Moreover,
somatic WRN mutations are identified in 4% of colorectal tumors and in other cancers [55]. Rare or
novel heterozygous germline variants were identified in MMR-proficient familial/early onset CRC
patients [12,55]; however, no enrichment of WRN disruptive and/or predicted pathogenic variants are
detected in cases (36/1006; 3.6%) compared to controls (82/1609; 5.1%) [28], suggesting no association
with the disease. On the other hand, monoallelic frameshift mutations in RECQL4, a gene that causes
the autosomal recessive Rothmund Thomson syndrome (MIM# 268400), have been found in 2 of
680 unselected CRC patients [5]. The exome/genome sequencing results from Chubb et al. showed that
no enrichment of disruptive RECQL4 variants is found in cases (3/1006) compared to controls (5/1609),
with similar results when including predicted pathogenic variants (Table S2) [28]. In summary, despite
the identification of rare or novel heterozygous variants among CRC patients, current evidence does
not support a causal role of RecQ helicases in CRC predisposition, at least not as high penetrance genes.

Variants in other genes involved in DSB repair have been identified in the germline in CRC
patients. Disruptive and canonical splice-site germline variants have been detected in BARD1, a gene
that encodes an HR-related protein [5,13]; however, its involvement as a high penetrance gene remains
controversial [56]. These types of variants in BARD1 occur more frequently in familial/early onset CRC
patients (5/1006; 0.5%) than in controls (2/1609; 0.12%) [28]; however, additional evidence is needed
to elucidate the role of BARD1 in hereditary CRC. Homozygous variants in MCM9, a DNA helicase
involved in HR, DNA replication and MMR, were described in two polyposis-affected siblings [57].
However, recent case-control data suggests a lack of association of homozygous or heterozygous
variants with polyposis or CRC predisposition [10,58]. A frameshift mutation in XRCC4, a member of
the DNA ligase 4 complex involved in the last step of NHEJ, was found in a CRC patient with familial
CRC history, which, together with the lack of XRCC4 variant carriers among population controls,
led the authors to propose XRCC4 as a candidate gene for CRC predisposition [13]. Nonetheless,
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sequencing data from cases and controls does not show over-representation of predicted pathogenic
variants in familial/early onset CRC patients (8/1006) compared to controls (11/1609) [28]. Predicted
pathogenic variants in POLQ, a DNA polymerase involved in the alternative DSB repair pathway
θ-mediated end joining (TMEJ), were found in familial CRC and polyposis patients [48,59], but studies
in additional cohorts and combined analysis of available data did not support this association [10,60].

Fanconi Anemia Pathway

Due to their involvement in DNA repair, several groups have studied or focused their genome-wide
results on variants affecting genes involved in the Fanconi anemia pathway, such as BRCA2/FANCD1,
BRIP1/FANCJ, FANCC, FANCE, and REV3L/POLZ [9,60,61]. Functional and co-segregation studies
identified FAN1 as a promising CRC predisposing gene; however, more recent case-control studies have
found no enrichment of disruptive, canonical-splicing, and predicted pathogenic missense variants in
CRC cases compared to controls [9,10]. Nevertheless, available evidence suggests that FAN1 c.149T>G
(p.Met50Arg) might increase the risk to CRC and possibly to other tumor types [10].

3.1.2. Telomere Maintenance

Maintenance of telomeres is essential to chromosome stability. Unprotected telomeres are
recognized by the DNA repair machinery as DSBs, and illegitimate repair between chromosome
ends or with an unrepaired DSB results in chromosome reorganizations. POT1 codes for one of the
components of the telomere shelterin complex, having a critical function in genome stability. In fact,
this gene shows a significant intolerance to loss-of-function variants (GnomAD v.2.1.1: LOEUF = 0.362).
In the past years, multiple reports associated POT1 germline variants with a predisposition to various
types of tumors, including CRC [10,28,62–66]. Chubb et al. identified two carriers of disruptive
predicted pathogenic POT1 variants in 1006 CRC patients, while no disruptive variants were identified
in 1609 controls [28]. We identified, among 473 familial/early onset CRC patients [10], a predicted
pathogenic missense variant that had been previously associated with an increased risk of chronic
lymphocytic leukemia [67]. Taking all available studies into account, we may now preliminary conclude
that CRC is part of the tumor spectrum of the POT1 cancer-predisposing syndrome.

3.1.3. Cell Cycle—Checkpoint and Chromosome-Associated Proteins

Cell cycle dysregulation may drive tumorigenesis; therefore, it is not surprising that germline
variants in genes coding for cell cycle checkpoint proteins, including factors involved in the proper
formation and segregation of chromosomes, have been identified in CRC patients.

Gene variants in several components of the spindle assembly checkpoint (SAC), which ensures
proper chromosome segregation during mitosis, have been associated with CRC predisposition,
including BUB1B, BUB1, BUB3, and CDC27 [68–71]. Biallelic mutations in the SAC component BUB1B
had been classically linked to mosaic variegated aneuploidy (MVA). In 2010, Rio Frio et al. reported a
patient with MVA who had developed an ampulla of Vater at 34 years of age and two decades later,
adenomatous polyps at the gastrointestinal tract and multiple primary invasive adenocarcinomas of
the colon and the stomach. He carried a homozygous intronic mutation, c.2386-11A>G, that creates a
de novo splice site resulting in low levels of BUBR1 protein (encoded by BUB1B) [70]. However, no
biallelic BUB1B rare variants were subsequently identified among 192 individuals with early onset CRC,
indicating that the biallelic BUB1B pathogenic hardly ever occurs in the germline of individuals with
CRC [72]. Moreover, sequencing data from Chubb et al. identified only one carrier of a heterozygous
disruptive BUB1B variant (and no predicted pathogenic missense variants) among 1006 familial/early
onset CRC patients and none among controls [28], further supporting the rarity of these alterations.

Using genome-wide copy number profiling and exome sequencing in early onset and familial
CRC, De Voer et al. identified six germline alterations in BUB1 and BUB3 affecting six independent
CRC families. Carriers had variegated aneuploidies in multiple tissues and variable dysmorphic
features [68]. Broderick et al. found no increased frequency of BUB1 and BUB3 mutations in cases
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compared to controls [9]. Recently, Mur et al. identified three BUB1 and one BUB3 rare germline
variants among 456 MMR-proficient familial/early onset CRC and 88 polyposis patients. Neither
variegated aneuploidy nor dysmorphic traits were observed in carriers; however, one of the variants
showed evident in vitro functional effects [69].

DeRycke et al. [71] performed exome sequencing in 16 families affected with CRC, identifying
several predicted pathogenic variants in genes coding for mitotic factors, such as CDC27, DDX12,
HAUS6/FAM29A, HIST1H2BE, TACC2, and ZC3HC1, and paying special attention to KIF23 and CENPE,
located within previously reported CRC linkage regions [73]. Tanskanen et al. performed exome
sequencing in 22 early onset CRC patients, using additional exome sequence data from 95 familial
CRC patients as a validation set. They identified two frameshift variants in SYNE1 and homozygous
variants in DONSON; both genes being related to the cell cycle [74]. Despite the interest of these genes,
no further studies have been performed to decipher their causal role in CRC predisposition. None
of the genes mentioned in this paragraph, except TACC2 (3/1006 disruptive variants in CRC patients
compared to 1/1609 in controls), showed an enrichment of germline disruptive and/or predicted
pathogenic variants in cases compared to controls (Table S2) [28].

3.2. DNA Replication, Transcription, and Translation

In 2015, Spier et al. described for the first time the presence of germline variants in POLE2,
a member of the DNA polymerase epsilon complex, as a potential cause of CRC predisposition.
Specifically, they found a predicted pathogenic missense variant in a polyposis patient and a stop-gain
variant in an individual with an unknown phenotype [75]. This stop-gain variant was also observed
by Chubb et al. in 5 of 1006 familial/early onset CRC and absent in 1609 controls, together with
two missense predicted pathogenic variants in three additional CRC patients [28]. In light of these
promising findings, we performed a mutational screening of POLE2 in 473 familial/early onset CRC
cases, finding 4 additional carriers of predicted pathogenic missense variants. In the same study, a
meta-analysis considering all available data showed that disruptive and canonical splice-site variants
in POLE2 are over-represented in familial/early onset CRC cases compared to controls [10]. It has
recently been reported that depletion of B-family DNA polymerases, which includes POLE2, together
with CHK1 pharmacological inhibition is a synthetically lethal combination in human colorectal cancer
cells, which opens a promising window of opportunity for the treatment of POLE2-derived tumors [76].

Our group identified a germline splicing variant (c.1459+2T>C) in BRF1, which encodes an RNA
polymerase III transcription initiator factor subunit, in three CRC-affected members of an Amsterdam I
family. Mutational screening of BRF1 in 503 CRC families identified a total of 11 novel or rare germline
variants; a significant larger proportion than in the control population. Seven of the identified variants
affected BRF1 mRNA splicing, protein stability, or expression and/or function [56]. Exome sequencing
data from Chubb et al. shows that, although statistically non-significant and infrequent, predicted
pathogenic variants are more frequent among familial/early onset CRC patients (2/1006; 0.2%) that in
controls (2/1609; 0.12%) [28].

Finally, rare germline variants in transcription- or translation-associated genes have also been
identified in CRC patients, including variants in CTBP2, IRF5, MED12, RNF111, SF1, TLE1, TLE4,
and TRIP4 [71] or ZNF490 and MRPL3 [77]. Exome sequencing data in 1006 early onset CRC patients
and 1609 controls indicates that no enrichment of disruptive or predicted pathogenic variants in any of
the mentioned genes is found in cases compared to controls (Table S2) [28].

3.3. Wnt and TGF-beta Pathways

Most of the known hereditary colorectal cancer genes that are not involved in DNA repair, causing
either polyposis or nonpolyposis phenotypes, affect three very specific signaling pathways: Wnt (APC,
RNF43, AXIN2), TGF-beta/BMP (SMAD4, BMPR1A, GREM1), or PI3K/AKT/mTOR (STK11, PTEN)
(reviewed in [78]). Therefore, other genes involved in those pathways have been considered good
candidates for CRC predisposition.
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LRP6 encodes a component of the Wnt-Fzd-LRP5-LRP6 complex that triggers β-catenin signaling.
The first evidence supporting the role of LRP6 in CRC predisposition was published by de Voer et al.
(2016) [55]. Three predicted pathogenic missense variants were identified in individuals with a very
early onset of the disease (<= 30 years). All the variants were located in β-propeller domains, which are
involved in the binding of Wnt ligands and antagonists. Two of the three variants showed increased
Wnt signaling activity in vitro. Despite additional predicted pathogenic variants being identified by
Broderick et al. [9] and Belhadj et al. [10], no enrichment of likely pathogenic variants was observed in
familial/early onset CRC patients compared to controls [10].

A truncating mutation in SETD6, a mono-methyltransferase that modulates Wnt and NF-kB
signaling pathways, was identified in three CRC-affected siblings of an MMR-proficient Amsterdam
I CRC family [79]. No disruptive or predicted pathogenic variants were identified in the 1006 CRC
patients and 1609 controls studied by Chubb et al. [28].

Recently, likely pathogenic missense variants in FAF1 were identified in two CRC families [80]. FAF1
is a likely tumor suppressor gene that encodes a pro-apoptotic scaffolding protein that inhibits NF-κB
nuclear translocation and activation, antagonizes the canonical Wnt signaling pathway, participates in
DNA replication fork dynamics, and is involved in receptor-dependent and -independent apoptosis.
Cosegregation results and functional analyses covering almost all the functions described led the
authors to suggest that germline FAF1 mutations are implicated in inherited susceptibility to CRC [80].
In contrast, exome sequencing data from cases and controls seem to suggest otherwise (Table S2) [28].

Predicted pathogenic germline variants in several components of the Wnt or TGF-Beta/BMP
pathways, such as CTBP2, WIF1, AXIN1, TWSG1, and BMP4 [71,77,81], have been identified in CRC
patients. However, these findings are limited to the original study and thus, up to date, data is
insufficient to get conclusions about their causal role in CRC predisposition. In the exome sequencing
data evaluated by Chubb et al., except for WIF1, no over-representation of disruptive and/or predicted
pathogenic variants in any of the mentioned genes was detected (Table S2) [28].

3.4. Additional Candidates

In addition to the candidate genes mentioned so far, at least 40 more have been proposed in the
literature with different degrees of supporting evidence (Tables S1 and S2). In this section, we will
briefly discuss only those that have been evaluated at least by two different groups.

UNC5C, a member of the family UNC5 of netrin receptors, was proposed as candidate gene for
CRC predisposition [82] based on previous evidence demonstrating the role of UNC5C and other
Netrin I receptors as tumor suppressors and their association with intestinal tumor initiation and
progression [83,84]. After the identification of 5 carriers of novel or rare variants in 235 familial CRC
probands, and based on the location of the predicted pathogenic variants, Coissieux et al. studied
4 exons in 582–984 CRC patients, finding 10 additional variants. Moreover, functional evidence
supported the deleterious effect of p.Ala628Lys [82]. Küry et al. studied exon 11 in ~300 familial
CRC patients and 300 unaffected controls, and genotyped p.Ala628Lys in a total of 1023 CRC patients
and 821 controls, concluding that UNC5C germline pathogenic variants were extremely rare in CRC
patients [85]. We performed a mutational screening of the whole gene and identified 8 rare or novel
UNC5C variants in 529 unexplained CRC families and polyposis patients. Lack of association with CRC
for at least 7 of the 8 identified variants was evident after cosegregation analyses and consideration of
case-control data [86].

SEMA4A, a gene coding for the membrane-bound signaling protein Semaphorin 4A, was first
associated with CRC predisposition by Schulz et al. (2014), who estimated a 6.8-fold increased CRC
risk for the variant p.Pro682Ser [87]. Subsequently, Kinnersley et al. (2015) assessed the presence of
p.Pro682Ser and p.Gly484Ala in ~7000 CRC cases and 10,000 controls, finding no association with
CRC [88]. We performed a mutational screening of the gene in 473 familial/early onset CRC cases,
finding one rare predicted pathogenic missense variant. Moreover, CRC case-control data showed no
association for p.Pro682Ser. Finally, we performed a meta-analysis with all available data that showed
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a higher but not significant enrichment of predicted pathogenic variants in familial/early onset CRC
cases compared to controls [10].

LIMK2 encodes a Ser/Thr-protein kinase that plays an essential role in the regulation of actin
filament dynamics and acts downstream of Rho family GTPase signal transduction, among other
functions. Sequencing data from Chubb et al. (2016) identified 8 loss-of-function or canonical splice-site
variants and one missense predicted pathogenic variant in 1006 cases, and one of them in 1609 controls.
These included one recurrent frameshift variant, p.Gly574ArgfsTer12, detected in five cases and no
controls [28]. We carried out the mutational screening of the gene in 473 familial/early onset CRC
patients and identified two carriers of predicted pathogenic missense variants. Considering the two
studies and comparing the results with gnomAD population data, we observed that disruptive and/or
predicted pathogenic variants are not enriched in cases compared to controls [10].

IL12RB1, which causes immunodeficiency 30 (MIM# 614891) in an autosomal recessive, was also
identified as a candidate gene by Chubb et al. (2016), after finding over-representation of germline
loss-of-function variants in cases compared to controls [28]. Their findings were supported by a
previous report of an immunodeficiency 30-affected family, where two heterozygous carriers had
been diagnosed with gastric cancer in their 70s and a third carrier had developed three rectal tubular
adenomas and two hyperplastic polyps by age 62 [89]. We identified three carriers of either disruptive
or predicted pathogenic variants in 473 familial/early onset CRC patients [10]. When considering the
two studies, we observed that IL12RB1 disruptive variants are significantly enriched in familial/early
onset CRC cases compared to controls [10].

GALNT12, which codes for N-acetylgalactosaminyltransferase-type 12, is highly expressed in the
normal colon, is downregulated in a significant proportion of CRCs [90,91], and is located (9q21-33)
in close proximity to the linkage peak 9q22-31, recurrently found when studying familial CRC
cases [92–95], making it an especially attractive candidate gene for CRC predisposition. Guda et al.
(2009) performed a mutational screening of GALNT12 in 272 CRC patients and 192 cancer-free controls,
finding rare GALNT12 germline variants in 7 CRC cases and no controls [96]. Clarke et al. (2012)
reported the presence of two functionally relevant deleterious variants in 4 of 118 familial CRC patients,
with none among the 26 probands who met the Amsterdam I criteria [97]. We assessed the status
of the gene in 103 Amsterdam-positive CRC families. Despite the identification of 18 rare variants,
none seemed to be functionally relevant [98]. In this line, sequencing data obtained by Chubb et al.
showed an absence of loss-of-function variants among 1006 familial/earlyonset CRC patients, and
no over-representation of predicted pathogenic variants in the cases (8/1006) compared to controls
(21/1609) [28].

PTPN12, a regulator of cell motility, was identified as a candidate gene for CRC predisposition
when 3 novel or rare germline variants affecting highly conserved amino acids were identified in
3 out of 55 early onset CRC patients studied by exome sequencing. When the gene was studied in
174 additional early onset CRC patients, the authors identified one extra carrier [55]. Data from the
exomes analyzed by Chubb et al. revealed 6 predicted pathogenic variants among the 1006 (0.6%)
familial/early onset CRC patients and 5 predicted pathogenic variants, including one loss-of-function,
among the 1609 controls (0.3%) [9,28]. The evidence gathered is still insufficient to consider PTPN12 as
a hereditary CRC gene, thus requiring the analysis of additional cohorts in order to provide a definitive
answer about PTPN12’s role in CRC predisposition.

A 170-kb head-to-tail duplication upstream of PTPRJ that causes the silencing of the gene as a
result of the hypermethylation of its promoter was identified in a CRC patient included in a cohort of
40 patients diagnosed with MMR-proficient early onset CRC. While no PTPRJ copy number variants
(CNVs) were found in >2650 cancer-free controls, the screening of an additional cohort of ~1500 CRC
patients detected a 564-kb duplication in a 39-year-old CRC patient, also causing PTPRJ promoter
methylation [99]. We recently investigated the presence of constitutional PTPRJ promoter methylation
in 473 familial CRC, finding no epigenetic changes [10], and thus supporting the rarity of this type of
alteration (2 carriers identified among ~2000 CRC patients tested).
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Germline large deletions or CNVs and rare missense variants in the tumor suppressor gene
FOCAD (focadhesin) have been reported in early onset and familial CRC patients; however, whether
those cause or do not cause increased CRC (or polyposis) risk remains an unsolved issue [10,59,100,101].

4. Non-CRC Hereditary Cancer Genes

The use of next-generation sequencing-based approaches, including exome- or genome-sequencing
and multi-gene panels, either for the discovery of new candidate genes or for genetic diagnosis in CRC
patients, has allowed the identification of germline pathogenic variants in hereditary cancer genes
a priori not associated with increased CRC risk, or at least not with the colonic phenotype observed
in the carrier. Whether these are the actual cause of the increased risk observed or a representation
of the background population frequency of those gene variants remains a matter of controversy.
The contribution of non-CRC cancer-predisposing genes to undefined familial/early onset CRC may
reach 3–7% [28,102]. In this section, the involvement of BRCA1, BRCA2, and TP53 genes will be
briefly discussed.

Two of the most frequently altered non-CRC hereditary cancer genes found in CRC patients are
BRCA1 and BRCA2; however, the debate about whether those actually increase the risk of CRC is still
ongoing [61,103–108]. A recent meta-analysis, together with familial/early onset CRC case-control
data, indicate that BRCA1 and BRCA2 pathogenic variants do not increase the risk to CRC [109,110].
Contrarily, another meta-analysis suggests that pathogenic variants in BRCA1 increase CRC risk
(OR = 1.56) but not in BRCA2 [111]. Another gene that deserves attention in this section is TP53,
where pathogenic variants have been recurrently found in familial/early onset and unselected CRC
patients [3–6,28,32,102,112–115]. As occurs with other non-CRC genes, the debate about TP53’s
causal role in CRC predisposition is open for discussion. While some studies show no significant
association [110], the most recent surveillance guidelines for Li–Fraumeni patients include CRC
screening [116,117].

Moreover, germline pathogenic variants in genes associated with different colorectal phenotypes
have also been identified in MMR-proficient nonpolyposis CRC patients. Such is the case for several
polyposis-associated genes, including MUTYH, BMPR1A or POLE, and POLD1, among others [118–125].
For details on other hereditary cancer genes, you may read Valle et al. (2019) [126] and look up the
frequency of rare predicted pathogenic variants in familial/early onset CRC patients and controls in
Table S2 [28].

5. Conclusions/Final Remarks

Despite the enormous efforts made to identify the genetic cause of familial/early onset
MMR-proficient nonpolyposis CRC, the contribution of the identified candidate genes, if any,
is extremely small, almost negligible. To date, only pathogenic variants in RPS20 may be convincedly
linked to hereditary CRC. Nevertheless, other genes, such as MRE11, BARD1, POT1, BUB1B, POLE2,
BRF1, IL12RB1, PTPN12, or the epigenetic alteration of PTPRJ, show promising evidence that supports
their involvement in CRC predisposition (Figure 1). Additional studies are needed to finally confirm
(or discard) their causal role as hereditary CRC genes and if so, define the associated cancer risks and
tumor spectra. However, even if these associations are confirmed, the proportion of cases explained by
alterations in these genes is very low (Figure 2). Disruptive (loss of function) variants in all of the most
promising candidate genes mentioned above are found in 1.3% (13/1006) of familial/early onset CRC
patients, and reach 5.5% when considering disruptive, canonical splice-site, and predicted pathogenic
missense variants (Table S3; data source: [28]).
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