1	Long-term farming systems and last crop sown shape the species and			
2	functional composition of the arable weed seedbank			
3				
4	Roser Rotchés-Ribalta ^{a,b,c†*} , Francesc Xavier Sans ^{a,b†} , Jochen Mayer ^d and Paul Mäder ^e			
5				
6	^a Agroecology Research Group, Department of Evolutionary Biology, Ecology and			
7	Environmental Sciences, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028			
8	Barcelona, Spain			
9	^b Biodiversity Research Institute (IRBio), University of Barcelona, Av. Diagonal 643, 08028			
10	Barcelona, Spain			
11	^c CREAF, 08193 Cerdanyola del Vallès, Spain (current location)			
12	^d Research Institute of Organic Agriculture, Ackerstrasse, CH-5070 Frick, Switzerland			
13	^e Agroscope Reckenholz-Tänikon Research Station ART, Reckenholzstrasse 191, CH-8046			
14	Zurich, Switzerland			
15				
16	† The first two authors contributed equally to this paper			
17				
18	* Correspondence: Roser Rotchés-Ribalta, Agroecology Research Group, Department of			
19	Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, & IRBio,			
20	University of Barcelona. Av. Diagonal 643, 08028 Barcelona, Spain. roser.rotches@gmail.com			
21				
22	Running title: Long-term farming effects on weed seedbank			
23				
24	Funding: Spanish Ministry of Science, Innovation and Universities; Swiss Federal Office of			
25	Agriculture.			

- 26 Abstract 27 Questions 28 The assembly of arable weed communities is the result of local filtering by agricultural 29 management and crop competition. Therefore, soil seedbanks can reflect the effects of long-30 term cumulative field management and crop sequences on weed communities. Moreover, soil 31 seedbanks provide strong estimates of future weed problems but also of potential arable plant 32 diversity and associated ecological functions. For this, we evaluated the effects of different 33 long-term farming systems under the same crop rotation sequence on the abundance, diversity 34 and community assembly of weed seedbank, as well as on the functional diversity and 35 composition. 36 37 Location 38 DOK (biodynamic (D), bioorganic (O), conventional (K)) long-term trial, Therwil, Switzerland. 39 40 Methods 41 The effects of long-term contrasted farming systems (i.e., biodynamic, organic, conventional, 42 mineral and unfertilised systems) and last crop sown (i.e., wheat and maize) were evaluated on 43 different indicators of species and functional diversity and composition of the weed soil 44 seedbank. 45 46 Results 47 The results showed significant influences of 40-years of contrasted farming systems on the 48 diversity and composition of the seedbank, with higher diversities being found in unfertilised 49 and organic farming systems, but also higher abundances than those found under conventional 50 systems. Organic farming also allowed higher functional richness, dispersion and redundancy. 51 Different farming systems triggered shifts in species and functional assemblies.
- 52

53 <u>Conclusions</u>

54	The results highlight the importance of organic management for the maintenance of a diverse
55	arable plant community and its functions. However, such results emphasize the need for
56	appropriate yearly management to reduce the abundance of settled weediness and prevent
57	affecting crop production. The farm management filtered community composition based on
58	functional traits. Although the soil seedbank buffers the long-term farming and crop sequence,
59	the last crop sown and, thus, the yearly management were important determinants of seedbank
60	composition.
61	
62	Keywords
63	Arable farming, conventional farming system, crop type, functional diversity and redundancy,

- 64 long-term management, organic farming system, soil seedbank, species abundance and
- 65 diversity, weeds

67 **1. Introduction**

Management of agricultural land has largely focused on weed control to reduce the abundance of undesired species and prevent crop losses. However, these practices have resulted in a widespread decline of arable weed diversity (Baessler & Klotz, 2006; Preston et al., 2002) to the point of being a matter of concern because, apart from their intrinsic conservation value, weeds have an important ecological function delivering ecosystem services such as contributing to soil structuring or as key components in the food webs of agroecosystems (Hawes et al., 2003; Marshall et al., 2003).

75

76 The assembly of weed communities responds to local filtering processes, which are mainly the 77 farming practices and the competition exerted by crops. Weeds are thus suitable indicators of 78 agricultural intensity because they have high sensitivity to farming practices (Rotchés-Ribalta, 79 Blanco-Moreno, Armengot, Chamorro, & Sans, 2015) and are strongly related to other 80 organism groups (Marshall et al., 2003). Nevertheless, the weed seedbank might be a more 81 reliable indicator of the effects of long-term management and cropping sequence than the 82 aboveground weed community because the seedbank is the result of cumulative processes that 83 occurred in the past (Albrecht & Auerswald, 2009; Hawes, Squire, Hallett, Watson, & Young, 84 2010) and consequently, it could better reflect the effect of agricultural practices and cropping 85 systems over the years. Furthermore, seedbank analysis may allow overcoming differences due 86 to management in the sampling year with regards to weed control effectiveness or cropping 87 practices of a given year, according to Bohan et al. (2011).

88

Less intensive farming systems, such as organic systems, have been usually associated with higher species diversities in comparison to conventional farming systems, which are characterised by the use of synthetic chemical fertilisers, pesticides and herbicides, intensive tillage and high sowing densities, among others. Besides, organic farming have also been reported to enhance species richness in the seedbank (Albrecht, 2005; Menalled, Gross, & Hammond, 2001; Rotchés-Ribalta, Armengot, Mäder, Mayer, & Sans, 2017), as well as the

95 seedbank size relative to conventional systems (Hawes et al., 2010; Ryan, Smith, Mirsky, 96 Mortensen, & Seidel, 2010). However, a lack of effect of farming systems on seedbank size and 97 diversity has also been described (Dölle & Schmidt, 2009; Sjursen, 2001). These different 98 results could be largely attributed to heterogeneity within each farming system and to 99 methodological shortcomings, such as differences in the spatial scale at which the studies were 100 conducted (Bengtsson, Ahnström, & Weibull, 2005). Farming systems (i.e. organic or 101 conventional management) are usually associated with specific agricultural practices such as 102 crop rotation or the type of soil tillage, making it difficult to fully understand the patterns of 103 these different practices. For this, trials under controlled conditions allow discernment between 104 the effects of specific parameters and better understand the underlying processes shaping weed 105 communities. Moreover, trials run for long-term periods can provide valuable knowledge on the 106 effects of agricultural practices on the weed seedbank community assemblies (Albrecht & 107 Auerswald, 2009).

108

109 The effects of long-term contrasted farming systems on weed seedbank size and diversity have 110 been previously addressed (e.g. Albrecht & Auerswald (2009); Menalled et al. (2001); Rotchés-111 Ribalta et al. (2017)). However, species diversity indices can only reflect parts of the 112 complexity of weed communities and thus the effects of farm management on weed 113 communities cannot be captured by a single diversity index but need to be documented through 114 in-depth analysis of floristic composition and community functional attributes. The species 115 composition of weed seedbank represents a good indicator of trends in diversity because they 116 are the result of non-random filtering of the local species pool by farm management and 117 cropping history, especially at larger temporal scales (Hawes et al., 2010; Menalled et al., 2001). 118 These assemblages are determined by the functional attributes that the species possess 119 (Perronne, Le Corre, Bretagnolle, & Gaba, 2015; Solé-Senan, Juárez-Escario, Conesa, & 120 Recasens, 2018) and, thus, the consideration of functional diversity descriptors of the soil 121 seedbank may be a reliable estimate of the long-term effects of contrasted farming. Besides, the 122 soil seedbank can hold similar levels of functional diversities as the aboveground vegetation

123 (Pakeman & Eastwood, 2013), and thus, the functional approach of the seedbank can be a 124 promising and novel way to understand weed community assembly after long-term management 125 effects (Gaba, Fried, Kazakou, Chauvel, & Navas, 2014; Navas, 2012). Therefore, consideration 126 of not only the species diversity indices but also the functional descriptors of the community is 127 important to fully understand the patterns of long-term farming systems in shaping the seedbank 128 and thus, of potential established weed community. Given the importance of functional diversity 129 and redundancy to ecosystem resilience (Laliberté et al., 2010), an assessment of the impacts of 130 long-term farm management on these indices is crucial to determine the vulnerability of 131 functional groups to future perturbations (Laliberté et al., 2010).

132

133 The aim of this study was to evaluate the effects of long-term farming systems and last crop 134 sown (as a proxy of yearly cropping practices) on the abundance, diversity, and community 135 assembly of the soil seedbank, as well as on the functional diversities and composition. The 136 study was carried out in wheat and maize crops under organic and conventional farming 137 systems within a replicated, long-term experiment [DOK: biodynamic (D), bioorganic (O), 138 conventional (K) trial, Therwil, Switzerland]. Although plot-scale studies have been questioned 139 because the population dynamics of many organisms operate at larger scales (Bengtsson et al., 140 2005), the importance of this study in the DOK trial lies in the accurate monitoring of farming 141 practices of each farming system, which have been under the same crop rotation scheme, and 142 homogeneity among plots within each system, which were rare in previous studies (Menalled et 143 al., 2001; Squire, Rodger, & Wright, 2000). The effects of farming on crop yields, soil fertility 144 and biodiversity of different groups of organisms (e.g., earthworms, arthropods and 145 aboveground weeds) in the DOK trial have already been analysed by Fließbach, Oberholzer, 146 Gunst, & Mäder (2007) and Mäder et al. (2002), among others. However, little attention has 147 been paid to the effects of long-term farming practices of the DOK trial on the soil seedbank 148 (except for Rotchés-Ribalta et al. (2017)) and on its specific and functional composition, 149 although knowledge on seedbanks might be indicative of long-time scale effects.

151 For this reason, in the current study, we aimed to complement the previous study conducted on 152 one single crop type (Rotchés-Ribalta et al., 2017) and answer: 1) whether long-term contrasted 153 farming systems and the last crop sown affect weed abundance, species diversity, and its two 154 components species richness and evenness, of the soil seedbank; 2) whether farming system and 155 crop type affect the weed species assemblies of the seedbank; and 3) whether the functional 156 diversity and the functional composition of the seedbank respond to long-term farming practices 157 and the last crop sown. Overall, we assumed that the size and the diversity of the weed seedbank 158 were lower in conventional than in organic systems because of the high pressure of farming 159 practices. We also expected that the different farming systems would result in a different 160 community assembly because of the different tolerance and response of each particular species 161 to management intensity. We specifically expected higher functional diversity and redundancy 162 under less-intensified farming systems. Furthermore, we expected to find more competitive 163 species, better adapted to more intensive weed control and high nutrient availability (e.g., taller 164 plants with higher SLA and larger seeds) in conventional farming systems. Contrarily, given 165 that soil seedbanks reflect the long-term effects and that crop rotation in the DOK long-term 166 trial has been the same in all plots, we did not expect a great effect from the last sown crop on 167 the soil seedbank.

168

169 **2. Methods**

170 <u>2.1. Study site</u>

171 The study was conducted in the DOK long-term agricultural experiment of Therwil, Switzerland

172 (7°33'E, 47°30'N), which compares biodynamic (D), bioorganic (O) and conventional (K)

173 farming systems. Detailed information on the DOK trial is given by Mäder et al. (2002). The

174 climate of the site is characterised by a mean annual temperature of 9.5°C and an annual

175 precipitation sum of 785mm.

176

177 <u>2.2. Experimental design and farm management</u>

178 The sampling was carried out in 2009 in wheat and maize plots that were under five different 179 farming systems: two conventional (i.e., conventional (hereafter CONFYM) and mineral 180 (CONMIN)), two organic (i.e., organic (BIOORG) and biodynamic (BIODYN)) and an 181 unfertilised (NOFERT) farming systems since 1978. The $5m \times 20m$ plots under each farming 182 system and crop were randomly placed within four blocks (replicates) in a randomised split-183 split-plot design that covered approximately 1.5 hectares (Figure 1). Crop rotation and soil 184 tillage were identical in the five farming systems. The 7-year rotation included series of 185 potatoes, winter wheat, soybeans, maize, winter wheat, grass-clover and grass-clover 186 (Table S1.1 in Supplementary Materials). In 2009, the crops were maize, winter wheat and 187 potato.

188

189 Different fertilisation regimes and plant protection strategies characterised these systems 190 (Table S1.2 in Supplementary Materials). Farmyard manure and slurry corresponding to 1.2 (1st 191 and 2nd rotation period) and 1.4 (3rd rotation period) livestock units/ha were applied in the 192 organic systems (BIOORG and BIODYN). BIOORG plots were also fertilised with small 193 amounts of rock dust and potassium magnesia. CONFYM system was fertilised with the same 194 amount of farmyard manure and with mineral fertilisers up to recommended levels from the 195 Swiss standards. CONMIN plots were amended with mineral fertilisers exclusively (from the 196 2^{nd} crop rotation onwards). The level of fertilisation increased gradually from NOFERT, 197 BIODYN, BIOORG to CONFYM and CONMIN, corresponding to 0kg N ha⁻¹ in NOFERT; 198 95kg N_t ha⁻¹ and 26kg N_{min} ha⁻¹ (being N_t the total nitrogen content and N_{min} the mineral 199 nitrogen) in BIODYN; 98kg Nt ha-1 and 31kg Nmin ha-1 in BIOORG; 170kg Nt ha-1 and 200 111kg N_{min} ha⁻¹ in CONFYM; and 122kg N_t ha⁻¹ and 122kg N_{min} ha⁻¹ in CONMIN farming 201 systems, during the 3rd rotation period (when 1.4 livestock units/ha were applied). 202 203 Organic and conventional systems also differed in terms of plant protection strategies (Table 204 S1.2). Weed control in organic and in unfertilised systems was performed only mechanically

205 (i.e., through seedbed preparation, post-emergence control or manually), whereas chemical

206 weed control, apart from the mechanical, was carried out in conventional systems. Plant extracts

207 and preparations were used to protect plants in BIODYN and BIOORG systems, while

208 fungicides and insecticides based on threshold values were used in CONFYM and CONMIN

209 systems (see Table S1.2 for details).

210

211 <u>2.3. Sampling</u>

212 Sampling took place in five DOK systems (NOFERT, BIODYN, BIOORG, CONFYN and 213 CONMIN) after maize and wheat crops in September 2009. The soil seedbank in the potato 214 crops was sampled in June 2009, while the crop was still standing, which is why results from 215 the potato crop seedbank were presented in a separate study (Rotchés-Ribalta et al., 2017). Soil 216 samples were collected with an auger from the inner $12m \times 3m$ of each plot (to avoid edge 217 effects) to a depth of 20cm and a core of 2.8cm in diameter (Figure 1). The sampling was 218 performed on a $0.75m \times 2m$ grid pattern, resulting in 35 soil samples per plot (Figure 1). From 219 these 35 soil samples, a group of seven samples was each evenly distributed in a shallow 220 aluminium tray (28.5×18.6 cm, Figure 1), obtaining a total of five trays per plot. Trays were 221 placed in a non-heated greenhouse bench under natural photoperiod and watered regularly 222 (Faculty of Biology, University of Barcelona). The position of the trays was changed randomly 223 every 3-4 weeks. Samples were periodically allowed to dry mildly, and they were turned, 224 aerated, and watered again to stimulate germination. A detailed description of the method is 225 given by Gibson (2002). Emerged seedlings were periodically identified and removed after 226 counting. Taxonomic nomenclature followed Tutin (1993). Seedling inventories were conducted 227 thirteen times during a period of November 2009 to December 2010.

228

229 <u>2.4. Diversity indices</u>

230 The number of weed species in the seedbank within each farming system and crop type was

231 obtained from the list of species of all sampling dates in each aluminium tray. The abundance,

assessed as the number of seedlings m⁻² of field for each species, was calculated by dividing the

total number of seedlings emerged in each aluminium tray by the total area of soil cores

collected in the field and grouped in each tray ([$(0.014)^2 \times \pi$]×7).

235

236 The diversity of the weed seedbank was split into the following parameters calculated for each 237 tray (Magurran, 2004): a) species richness (s), as number of species per tray; b) Shannon's 238 diversity index (H'); and c) Pielou's evenness index (J'). Despite some indices might be 239 correlated (Dejong, 1975), they allowed us to capture different aspects of diversity and better 240 quantify the concept. 241 242 The effects of farming system and crop type on seedbank abundance, species richness, diversity 243 and evenness were analysed by linear mixed-effects models (Pinheiro & Bates, 2000), with the 244 inclusion of the nested sampling design of random factors (crop sub-sub-block nested to 245 treatment sub-block and this, nested to block; trays were considered pseudo-replicates). 246 Normality of the data and homogeneity of variances were checked visually and tested using the 247 Shapiro-Wilk and the Levene test, respectively. Abundance and species richness were log-248 transformed to comply with assumptions of normality and homoscedasticity. Orthogonal 249 contrasts were performed to compare between NOFERT and the other fertilised treatments, 250 between the organic systems (BIOORG and BIODYN) and the conventional ones (CONFYM 251 and CONMIN), between BIODYN and BIOORG, between CONFYM and CONMIN and

between Wheat and Maize. Statistical analysis were conducted under R 3.6.0 (R Core Team,

- 253 2016), using "lme4" (Bates, Mächler, Bolker, & Walker, 2015) for mixed-effects models and
- ²⁵⁴ "ImerTest" for evaluating the P-values (Kuznetsova, Brockhoff, & Christensen, 2017).

255

256 <u>2.5. Seedbank composition analysis</u>

257 A multivariate analysis using presence/absence data of species was conducted to assess the

258 species composition of the seedbank under the different farming systems and crop types.

259 Species that occurred only in one tray were eliminated because they did not add information for

the ordination. The Jaccard dissimilarity index was computed between the lists of species (47

261 species) of each farming system and crop combination. Since we used a non-Euclidean distance 262 metric, we chose non-Metric Multidimensional Scaling (NMDS) for this ordination, using a 263 stable solution by random starts with k = 2 dimensions. NMDS is a robust unconstrained 264 ordination method in community ecology (Minchin, 1987), and restricting the number of 265 dimensions to two facilitates the graphical representation while achieving fairly good stress 266 (0.146). Farming system and crop type were fitted onto the ordination, and their significance 267 was tested with random permutations of the data. Species with more than 20% of the total 268 presence were also fitted onto the ordination. We carried out this analysis under R 3.6.0 (R Core 269 Team, 2016) using the 'vegan' package (Oksanen et al., 2019).

270

271 <u>2.6. Functional analysis</u>

272 Functional diversity components (functional richness, functional evenness and functional 273 dispersion) were computed based on the multiple trait matrix (Table 1) of arable species 274 recorded in each farming system and crop type using the FD package (Laliberté, Legendre, & 275 Shipley, 2014) for R 3.6.0 (R Core Team, 2016). With this package, a Principal Components 276 Analysis (PCA) was performed based on the Gower dissimilarity matrix, as calculated for the 277 species by traits matrices. The obtained axes were then used to compute functional richness and 278 functional evenness. Functional richness expressed the multidimensional trait space occupied by 279 species in each community. Functional evenness quantified how even individuals from a 280 community are distributed over trait space. Functional dispersion was computed based on the 281 trait dispersion per community considering the relative abundances (Laliberté et al., 2014). The 282 multiple trait matrix was also used to calculate functional redundancy of seedbank species per 283 farming system and crop type using the SYNCSA package (Debastiani, 2018) for R 3.6.0 (R 284 Core Team, 2016). Functional redundancy was calculated as the difference between the species 285 diversity and Rao's quadratic entropy based on their functional dissimilarity. 286

Plant functional traits and types were selected based on literature relative to the functional
responses to management and potential interference with crop (Bàrberi et al., 2018). The traits

289 and types included in the functional diversities computation were the Raunkiær life form 290 (categorical), growth form (categorical), soil seedbank longevity (proportion reported in each 291 category: long-term, short term and transient), specific leaf area (SLA, numerical), plant canopy 292 height (numerical), seed weight (numerical), affinity to nutrient conditions (numerical) and 293 seasonality of germination (proportion of chances to germinate in each season) (Table 1). Most 294 of the trait and type information for each species was obtained from Barberi et al. (2018, 295 Appendix S1) or, for species not present in this database, from literature following the same 296 criteria. Size measures (i.e., plant height, SLA and seed weight) were log-transformed to 297 homogenise the weight across taxa before calculation. Given that seedbank longevity was 298 entered as proportion reported in each category and seasonality of germination as proportion of 299 chances to germinate in each season, each category of seedbank longevity was weighted by 300 0.33, and each season of germination was weighted by 0.25, for an overall contribution of each 301 functional trait of 1.

302

303 The effects of the farming system and crop type on the functional diversity indices of the weed 304 seedbank communities were analysed using the same linear mixed-effects model framework as 305 for the analyses of diversity indices (see section "2.4. Diversity indices").

306

307 Besides, we estimated the composition of functional traits and types using the community-308 weighted mean (CWM) from the multi-trait matrix using the FD package (Laliberté et al., 2014) 309 for R 3.6.0 (R Core Team, 2016). Given that CWM has negative values, the ordination of 310 samples according to functional composition was conducted by means of a PCA. The CWM 311 trait matrix was used to perform a PCA to produce orthogonal axes of functional trait 312 composition and reduce trait redundancy. The first two axes obtained were used to plot the 313 seedbank samples of each farming system and crop type according to their functional trait 314 composition values. The significance of these two first PCA axes on spreading the samples 315 according to farming system and crop type was analysed using the same linear mixed-effects 316 models (Pinheiro & Bates, 2000) used for the diversity indices analyses (see section: "2.4.

317 Diversity indices"). These models were also used to assess the effects of farming system and
318 crop type on the CWM values of each trait/type or trait level of the weed seedbank community.
319

320 3. Results

321 <u>3.1. Overview</u>

322 A total of 20,362 seedlings were counted, corresponding to 50 species. Thirty-seven and 33 of

323 these appeared in CONFYM and CONMIN systems respectively; 40 and 42 were found in the

324 BIOORG and BIODYN systems, respectively; and 44 species were counted in NOFERT

325 system. While 32 species were recorded in all farming systems, only three species were detected

326 only in the BIOORG and BIODYN plots, and one in the two conventional systems (CONFYM

and CONMIN). Mean seedbank density values varied between farming systems. While 6,195

328 and 8,404 seedlings m⁻² were found in the CONFYM and CONMIN systems respectively,

329 19,622 and 14,413 seedlings m⁻² were found in the BIOORG and BIODYN systems. In the

330 NOFERT system, the seedbank density was 69,468 seedlings m⁻². Species with highest relative

331 density in all farming systems were Sagina procumbens, Chenopodium polyspermum, Juncus

332 bufonius and Poa annua. Several species showed different abundance patterns between long-

term farming systems and crop types (Table S1.3 in Supplementary Materials).

334

335 <u>3.2. Seedbank density and diversity</u>

336 The NOFERT system held significantly greater seedbank density than the fertilised systems

337 (Figure 2; Table 2). The seedbank density in the organic (BIOORG and BIODYN) farming

338 systems was significantly greater than in the conventional (CONFYM and CONMIN) farming

339 systems and in BIOORG compared to BIODYN (Figure 2; Table 2). A similar pattern was

found for species richness, with higher values in the NOFERT system relative to the other

341 fertilised systems and in organic (BIOORG and BIODYN) compared with conventional systems

342 (CONFYM and CONMIN) (Figure 2; Table 2). The Shannon diversity indices varied between

343 farming systems too with a significantly higher Shannon's index in the organic farming systems

344 (BIOORG and BIODYN) compared with the conventional systems. Species evenness was

345 significantly higher in the NOFERT system than in the fertilised ones (BIOORG, BIODYN,346 CONFYM and CONMIN).

348 Seedling density and species richness did not differ among crop types, except for the NOFERT 349 plots with wheat, which had a higher number of seedlings, as indicated by the significant 350 interaction (Table 2). Significant interactions between crop types and farming systems were also 351 found for seedling evenness: while fertilised wheat crops had higher evenness indices than 352 fertilised maize crops, the opposite was observed in the NOFERT plots (Figure 2; Table 2). 353 354 3.3. Seedbank species composition 355 Farming systems were linked to shifts in the seedbank species composition (NMDS, k = 2, non-356 metric fit: $r^2 = 0.973$); with differences between the NOFERT, organic (BIOORG, BIODYN) 357 and conventional (CONFYM, CONMIN) systems. The fit of farming systems onto the plot 358 differed significantly ($r^2 = 0.273$, P < 0.001), indicating a gradient from the conventional 359 towards organic and unfertilised systems (Figure 3.a). Samples also differed according to crop type ($r^2 = 0.062$, P < 0.001, Figure 3.b), with species such as *Papaver rhoeas*, *Cardamine* 360 361 hirsuta or Chaenorhinum minus appearing more commonly in wheat crops, and Amaranthus 362 blitoides or Chenopodium polyspermum occurring more commonly in maize crops (Figure 3.c). 363 The NOFERT system was separated in the ordination by the high presence of Sagina 364 procumbens, Polygonum hydropiper and Gnaphalium uliginosum (Figure 3.c). 365 366 3.4. Seedbank functional diversity 367 Functional richness was significantly higher in the unfertilised system than in the fertilised 368 systems; and significantly higher in the organic farming systems (BIODYN and BIOORG) than

- in the conventional ones (CONFYM and CONMIN) (Figure 4; Table 2). Likewise, functional
- 370 evenness was marginally greater in the NOFERT system than in the fertilised ones. However,
- 371 the NOFERT system presented lower functional dispersion than the fertilised systems, and the

372 organic systems had higher functional redundancy than the conventional ones (Figure 4;

373 Table 2).

374

375 Wheat crops showed lower levels of functional richness but higher functional redundancy and

376 functional evenness than maize crops (Figure 4). However, the higher functional redundancy in

377 the wheat crops was specific to fertilised systems (i.e., no differences were found on the

378 functional redundancy between crop types for the unfertilised systems) (Table 2).

379

380 <u>3.5. Seedbank functional composition</u>

381 The first two axes of the PCA run for the seedbank CWM data explained 43.98% and 18.85% of 382 the total variance, respectively (see Table S1.4 in Supplementary Material for the values of the 383 first two PCA axes per trait). The CWM, when used as indicator of functional composition, 384 determined the ordination of seedbank samples according to farming systems, particularly 385 separating the NOFERT system samples from the fertilised ones (Figure 5.A, Table S1.5 in 386 Supplementary material). The crop type also determined a slight separation of the samples 387 according to their functional composition (Figure 5.B, Table S1.5). When representing the 388 levels of functional traits and types considered in the ordination, the NOFERT system was 389 characterised by a higher abundance of hemicryptophytes, rosette-growing plants and short-term 390 seedbank (Figure 5.C). The therophyte life form, higher SLA, seed weight, canopy height and 391 higher nutrient affinity characterised all fertilised plots (Figure 5.C). Wheat crops under the 392 fertilised systems were characterised by graminoid-growing plants with transient seedbanks and 393 autumn-germination, whereas maize crops under fertilised systems were characterised by 394 ascending plants, long-term seedbanks and spring-germinating species (Figure 5.C). See Table 395 S1.6 (Supplementary Materials) for further details on the results of the CWM per trait in 396 response to farming systems and crop type.

397

398 **4. Discussion**

399 The different long-term farming systems, under the same crop rotation sequence and tillage 400 practices, resulted in significant differences in the seedbank weed community. Although 401 previous studies pointed out to a strong influence of crop rotation and tillage on weed 402 communities (Mahaut, Gaba, & Fried, 2019), here we found that other farming practices 403 determined significant differences in the abundance, diversity and floristic composition of the 404 weed seedbank, as well as in the functional diversity, redundancy and composition. Besides, we 405 found that not only long-term farming but also the yearly management associated to the last 406 crop sown were important determinants of the functional and species composition of the soil 407 seedbank.

408

409 <u>4.1. Dominant species</u>

410 Only a few species showed high relative densities in all farming systems, and these were weeds 411 that produce many small seeds highly persistent in the seedbank or with high dispersal ability, 412 such as Poa annua and Sagina procumbens (Dölle & Schmidt, 2009). Some species with high 413 relative density in NOFERT system were likely selected by the lack of fertilisation, whereas 414 others with low abundances in NOFERT, such as *Cerastium glomeratum*, require high nutrient 415 availability (De Cauwer, Van Den Berge, Cougnon, Bulcke, & Reheul, 2010). Many of the 416 species that were abundant in conventional systems (e.g., Chenopodium polyspermum and Poa 417 annua), are nitrophilous species (Ellenberg, Weber, Düll, Wirth, & Werner, 2001), as reported 418 by Hawes et al. (2010) and De Cauwer et al. (2010), responding to the nutrient conditions of 419 those systems (Mäder et al., 2002). The species that are abundant in conventional systems are 420 likely to be resistant or difficult to control with herbicides (Rotchés-Ribalta et al., 2017). In 421 contrast, other arable species that predominate in organic systems, such as Arabidopsis thaliana, 422 Papaver rhoeas and Amaranthus lividus, are more sensitive to chemical weed control and 423 favoured by nutrient availability conditions from organic amendments (De Cauwer et al., 2010; 424 Hawes et al., 2010).

425

426 <u>4.2. Seedbank density and diversity</u>

427 Seedbank density values found in the DOK trial correspond to results obtained in other studies 428 (Hawes et al., 2010; Menalled et al., 2001; Rotchés-Ribalta et al., 2017), with higher densities in 429 the unfertilised system, indicating that lower nutrient availability involved a decrease in the 430 number of seeds incorporated in the soil from established weed populations (De Cauwer et al., 431 2010). In general, weed seedbank abundance responds positively to fertilisation; nevertheless, 432 when weeds grow in competition with crop, the crop usually has higher competitive ability that 433 negatively affects the reproductive output of weed species (Gaba, Caneill, Nicolardot, Perronne, 434 & Bretagnolle, 2018) and thus the number of seeds shed to the soil. Differences in fertilisation 435 also determined higher species richness in the NOFERT system but also lower species 436 evenness. Therefore, although the lack of fertilisation involved greater species richness in the 437 weed seedbank, it also promoted greater abundance of few species more adapted to the nutrient 438 conditions in this system.

439

440 Organic farming, characterised by lower weed management intensity (i.e., conducted only 441 mechanically) and with less nutrient inputs, held a larger seedbank than conventional farming 442 systems, as previously reported (De Cauwer et al., 2010; Rotchés-Ribalta et al., 2017). 443 Established weed populations were, thus, better suppressed by both chemical and mechanical 444 weed controls used in conventional farming systems (Menalled et al., 2001), together with 445 increased indirect effects of crop competition due to higher nutrient availability in conventional 446 systems (Squire et al., 2000). This effect has likely reduced the amount of seeds shed onto the 447 soil. The trend of higher seedbank density in organically managed systems indicates the 448 potential threat these seeds can represent as future weed pests if they germinate and establish in 449 densities exceeding thresholds to compete with crops. However, seedbank communities in 450 organic farming systems also showed higher species diversities than conventional systems, as 451 reported previously (Albrecht, 2005; Rotchés-Ribalta et al., 2017; Ryan et al., 2010). This trend 452 mimics patterns found for aboveground weed vegetation (Mäder et al., 2002) and highlights the 453 potential of seedbank in organic farming systems to guarantee a diverse arable species 454 community (Menalled et al., 2001).

456 Species evenness in organic and conventional systems did not differ, indicating that all 457 communities, independently of the farming system, held equally abundant species. These results 458 disagreed with previous studies that pointed out that conventional systems tend to hold higher 459 abundances of seeds in the seedbank of only a few species that are tolerant to more intensive 460 farming practices (Dölle & Schmidt, 2009). 461 462 The crops investigated, i.e., maize and wheat, held similar levels of seedbank density, species 463 richness and Shannon's diversity index, in accordance with our expectations, as the seedbank 464 represents the integrative response of weed communities to environmental and management 465 conditions over the years (Bohan et al., 2011). However, higher species evenness was found in 466 wheat crops when they were fertilised, indicating a fair difference in the community structure 467 depending on the last crop sown but with different behaviours depending on the fertilisation. 468 469 4.3. Seedbank species composition 470 The distinct floristic composition of the seedbank among farming systems reflected the long-471 term cumulative effects of 40-years farming, reinforcing trends of previous studies (Hawes et 472 al., 2010; Menalled et al., 2001; Rotchés-Ribalta et al., 2017), and indicating that accumulated 473 farming practices filtered the species with different sensitivity to management intensity. 474

475 The seedbank species composition showed differences between the crop types sown, contrary to

476 our expectations. This highlights the significant influence of the weed community established in

477 the previous season, which shed a particular composition of seeds to the soil (Menalled et al.,

478 2001). Such differences are likely to come from differences in the field preparation depending

479 on the time of sowing of each crop, which encourage or inhibit certain species to thrive

480 (Menalled et al., 2001; Perronne et al., 2015).

481

482 <u>4.4. Seedbank functional diversity and composition</u>

483 Farm management filters the community composition of arable species according to functional 484 traits rather than species (Solé-Senan et al., 2018). Therefore, functional diversity indices can be 485 more sensitive to community assembly rules than species diversities (Mouchet, Villéger, 486 Mason, & Mouillot, 2010). However, in our study, the response of functional richness was 487 similar to that of species richness, being higher in less intensified systems (i.e., in NOFERT 488 system compared with fertilised systems and in organic systems compared with conventional 489 ones). Although positive relationships between species richness and functional richness are 490 common, these indices are not surrogates per se (Díaz & Cabido, 2001), and therefore, the 491 consideration of different components of biodiversity is important to fully understand the 492 community assemblies in response to long-term farming. Higher functional richness found in 493 NOFERT system and in organic farming systems indicates that these less intensified systems 494 held greater odds that at least some species may respond differently to variable conditions and 495 perturbations (Díaz & Cabido, 2001).

496

497 Given that agricultural intensification acts as filter constraining plant species according to their 498 functional traits and ecological strategies, a reduction in farming intensity is usually associated 499 with increased functional divergence (Armengot et al., 2016; Solé-Senan et al., 2018). Our 500 results, however, point to a different pattern, with lower functional dispersion in unfertilised 501 systems in comparison with all the fertilised ones. This highlights that the NOFERT system 502 offered particular conditions and constraints, such as lower nutrient availability and soil organic 503 carbon (Fließbach et al., 2007), which may reduce the space of successful ecological strategies 504 and promote the dominance of a few specific functional traits and types.

505

506 Seedbank communities under long-term organic farming showed higher functional redundancy

507 than conventional farming, similar to other studies that attributed negative effects on community

508 stability to management intensity (Laliberté et al., 2010; Pillar et al., 2013). Functional

509 redundancy represents an insurance for the maintenance of ecosystem processes in case of

510 perturbations (Pillar et al., 2013). Therefore, arable weed communities in less-intensive systems

will be more stable and resilient whereas weed communities in conventional systems will bemore sensitive to disturbance and land-use changes.

513

514 Although arable weed species show similar functional attributes as they respond to specific 515 resource acquisition, growth strategies and tolerance to disturbances (Bourgeois et al., 2019), in 516 the current study, we found clear shifts in the mean trait values of seedbank communities 517 depending on the long-term farming systems. The seedbank community in fertilised systems 518 was characterised by traits typically related to better competitive abilities such as high nutrient 519 affinity, higher SLA, canopy height, seed weight and a greater proportion of therophytes. These 520 response attributes are related to weed communities and are indicative of fast life strategies 521 (Bourgeois et al., 2019; Navas, 2012). Fertilisation entails a resource-rich environment selecting 522 plants with high SLA and short life forms such as therophytes (Solé-Senan et al., 2018; Storkey 523 et al., 2013), whereas increases in competition with the crop for resources (i.e., light, nutrients 524 and water) favour species with tall canopies and heavy seeds (Albrecht & Auerswald, 2009; 525 Maclaren, Bennett, & Dehnen-Schmutz, 2019; Storkey et al., 2013). Although plant protection 526 strategies may involve changes on species communities according to functional traits (Maclaren 527 et al., 2019; Solé-Senan et al., 2018), no significant differences were found on mean trait values 528 between seedbank communities of conventional and organic farming systems. Therefore, 529 diverging methods of weed control and fertilisation in the long-term trial did not involve 530 differences on the functional composition of the seedbank.

531

532 The functional composition differed depending on the crop sown in the previous season,

533 contrary to our expectation. The last crop sown may have filtered the arable species community

through the timing of agricultural operations, selecting those species that germinate and emerge

simultaneously with the crop or with phenology mimicking the crop (Bourgeois et al., 2019;

536 Perronne et al., 2015). According to our results, the preceding crop determined a particular weed

537 community that shed seeds to the soil with a specific functional assembly. Hence, the seedbank

538 in wheat crops was characterised by autumn-germinating species, whereas the seedbank in

maize crops was dominated by spring-germinating species, matching the sowing and emergenceof each crop type.

541

542 **5.** Conclusions

543 Extensive farm management over the years (e.g., unfertilised and organic farming systems) was
544 associated with higher species diversities but also higher seed abundance in the seedbank than
545 conventional farming systems. From a function perspective, our results suggest that organic
546 systems are the most suitable farming system for the maintenance of arable weed seedbanks.
547 Given its positive effect, organic farming could potentially also benefit ecosystem functions and

548 services. However, management to guarantee the maintenance of established weed abundances

549 within appropriate thresholds that avoid affecting crop production is necessary.

550

551 Species assemblies and functional composition of the seedbank also depended on different

552 farming systems. Long-term fertilised farming systems (both organic and conventional) filtered

the arable seedbank community with traits indicative of fast life strategies and better

- 554 competitive abilities, which might represent potential competitive communities to the crop
- 555 when established.

556

Although the seedbank acts as a buffer of long-term management and crop sequence, the last crop sown significantly shaped the composition of the soil seedbank in the DOK trial. Thus, the specific management conducted in a given year should be carefully planned to shape the pool of seeds shed from the arable community to the soil.

561

562 Acknowledgements

563 This work was partly supported by the Spanish Ministry of Science and Education with a grant 564 to Francesc Xavier Sans for a research stay in FiBL, Switzerland. The long-term DOK trial is 565 supported by the Swiss Federal Office of Agriculture. The authors acknowledge the financial 566 support for the publication of this paper to the project RTI2018-095597-B-I00, funded by the

567	Spanish Ministry of Science, Innovation and Universities, the State Research Agency and the
568	European Fund for Regional Development.
569	
570	Author contributions
571	PM and JM designed and managed the DOK long-term trial. FXS designed the study and
572	collected the soil samples; RRR and FXS conducted the seedling sampling. RRR analysed the
573	data. RRR and FXS led the writing of the manuscript. All authors contributed critically to the
574	drafts and gave final approval for publication.
575	
576	Data accessibility
577	Data supporting the results will be archived in a public repository accessible at
578	http://hdl.handle.net/2445/154837.
579	
580	References
581	Albrecht, H. (2005). Development of arable weed seedbanks during the 6 years after the change
582	from conventional to organic farming. Weed Research, 45(5), 339-350.
583	Albrecht, H., & Auerswald, K. (2009). Seed traits in arable weed seed banks and their
584	relationship to land-use changes. Basic and Applied Ecology, 10(6), 516–524.
585	https://doi.org/:10.1016/j.baae.2009.02.002 ER
586	Armengot, L., Blanco-Moreno, J. M., Bàrberi, P., Bocci, G., Carlesi, S., Aendekerk, R.,
587	Sans, F. X. (2016). Tillage as a driver of change in weed communities: a functional
588	perspective. Agriculture, Ecosystems and Environment, 222, 276–285.
589	https://doi.org/10.1016/j.agee.2016.02.021
590	Baessler, C., & Klotz, S. (2006). Effects of changes in agricultural land-use on landscape
591	structure and arable weed vegetation over the last 50 years. Agriculture, Ecosystems &
592	Environment, 115(1-4), 43-50. https://doi.org/10.1016/j.agee.2005.12.007
593	Bàrberi, P., Bocci, G., Carlesi, S., Armengot, L., Blanco-Moreno, J. M., & Sans, F. X. (2018).
594	Linking species traits to agroecosystem services: a functional analysis of weed

- 595 communities. *Weed Research*, 58(2), 76–88. https://doi.org/10.1111/wre.12283
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models
 using lme4. *Journal of Statistical Software*, 67(1). https://doi.org/10.18637/jss.v067.i01
- 598 Bengtsson, J., Ahnström, J., & Weibull, A. C. (2005). The effects of organic agriculture on
- 599 biodiversity and abundance: a meta-analysis. *Journal of Applied Ecology*, 42(2), 261–269.
- 600 https://doi.org/10.1111/j.1365-2664.2005.01005.x ER
- 601 Bohan, D. A., Powers, S. J., Champion, G. T., Haughton, A. J., Hawes, C., Squire, G. R., ...
- 602 Mertens, S. K. (2011). Modelling rotations: can crop sequences explain arable weed
- 603 seedbank abundance? *Weed Research*, *51*(4), 422–432. https://doi.org/10.1111/j.1365-
- 604 3180.2011.00860.x
- 605 Bourgeois, B., Munoz, F., Fried, G., Mahaut, L., Armengot, L., Denelle, P., ... Violle, C.
- 606 (2019). What makes a weed a weed? A large-scale evaluation of arable weeds through a

607 functional lens. *American Journal of Botany*, *106*(1), 90–100.

- 608 https://doi.org/10.1002/ajb2.1213
- 609 De Cauwer, B., Van Den Berge, K., Cougnon, M., Bulcke, R., & Reheul, D. (2010). Weed
- 610 seedbank responses to 12 years of applications of composts, animal slurries or mineral
- 611 fertilisers. Weed Research, 50(5), 425–435. https://doi.org/10.1111/j.1365-
- 612 3180.2010.00796.x
- 613 Debastiani, V. J. (2018). Package 'SYNCSA.'
- 614 Dejong, T. M. (1975). A Comparison of Three Diversity Indices Based on Their Components of
- 615 Richness and Evenness Published by : Wiley on behalf of Nordic Society Oikos Stable
- 616 URL : http://www.jstor.org/stable/3543712 REFERENCES Linked references are availa.
- 617 *Oikos*, 26(2), 222–227.
- Díaz, S., & Cabido, M. (2001). Vive la difference: plant functional diversity matters to
 ecosystem processes. *Trends in Ecology & Evolution*, *16*(11), 646–655.
- 620 Dölle, M., & Schmidt, W. (2009). The relationship between soil seed bank, above-ground
- 621 vegetation and disturbance intensity on old-field successional permanent plots. *Applied*
- 622 Vegetation Science, 12(4), 415–428. https://doi.org/10.1111/j.1654-109X.2009.01036.x

- Ellenberg, A., Weber, H., Düll, R., Wirth, V., & Werner, W. (2001). *Zeigerwerte von Pflanzen in Mitteleuropa*. (Verlag Erich Goltze GmbK & Co, Ed.) (3rd ed.). Göttingen, Germany.
- 625 Fließbach, A., Oberholzer, H. R., Gunst, L., & Mäder, P. (2007). Soil organic matter and
- biological soil quality indicators after 21 years of organic and conventional farming.
- 627 *Agriculture, Ecosystems and Environment, 118, 273–284.*
- 628 https://doi.org/10.1016/j.agee.2006.05.022
- 629 Gaba, S., Caneill, J., Nicolardot, B., Perronne, R., & Bretagnolle, V. (2018). Crop competition
- 630 in winter wheat has a higher potential than farming practices to regulate weeds. *Ecosphere*,
 631 9(10). https://doi.org/10.1002/ecs2.2413
- 632 Gaba, S., Fried, G., Kazakou, E., Chauvel, B., & Navas, M. L. (2014). Agroecological weed
- 633 control using a functional approach: A review of cropping systems diversity. *Agronomy*

634 for Sustainable Development, 34(1), 103–119. https://doi.org/10.1007/s13593-013-0166-5

- Gibson, D. J. (2002). *Methods in comparative plant population ecology*. New York: Oxford
 University Press.
- 637 Hawes, C., Haughton, A. J., Osborne, J. L., Roy, D. B., Clark, S. J., Perry, J. N., ... Squire, G.
- 638 R. (2003). Responses of plants and invertebrate trophic groups to contrasting herbicide
- 639 regimes in the Farm Scale Evaluations of genetically modified herbicide-tolerant crops.
- 640 Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,
- 641 358(1439), 1899–1913. https://doi.org/10.1098/rstb.2003.1406
- Hawes, C., Squire, G. R., Hallett, P. D., Watson, C., & Young, M. W. (2010). Arable plant
- 643 communities as indicators of farming practice. Agriculture, Ecosystems & Environment,
- 644 *138*(1–2), 17–26. https://doi.org/10.1016/j.agee.2010.03.010
- 645 Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). ImerTest Package: Tests in
- 646 Linear Mixed Effects Models. *Journal of Statistical Software*, 82(13), 1–26.
- 647 https://doi.org/10.18637/jss.v082.i13
- Laliberté, E., Legendre, P., & Shipley, B. (2014). Measuring functional diversity (FD) from
- multiple traits, and other tools for functional ecology, 1–28. https://doi.org/http://cran.r-
- 650 project.org/web/packages/FD/FD.pdf

- 651 Laliberté, E., Wells, J. A., Declerck, F., Metcalfe, D. J., Catterall, C. P., Queiroz, C., ...
- 652 Mayfield, M. M. (2010). Land-use intensification reduces functional redundancy and
- response diversity in plant communities. *Ecology Letters*, *13*(1), 76–86.
- 654 https://doi.org/10.1111/j.1461-0248.2009.01403.x
- 655 Maclaren, C., Bennett, J., & Dehnen-Schmutz, K. (2019). Management practices influence the
- 656 competitive potential of weed communities and their value to biodiversity in South
- 657 African vineyards. Weed Research, 59, 93–106. https://doi.org/10.1111/wre.12347
- Mäder, P., Fließbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). Soil fertility and
- biodiversity in organic farming. *Science*, 296(5573), 1694–1697.
- 660 Magurran, A. E. (2004). *Measuring biological diversity*.
- 661 Mahaut, L., Gaba, S., & Fried, G. (2019). A functional diversity approach of crop sequences
- reveals that weed diversity and abundance show different responses to environmental
- variability. *Journal of Applied Ecology*, 56(6), 1400–1409. https://doi.org/10.1111/13652664.13389
- Marshall, E. J. P., Brown, V. K., Boatman, N. D., Lutman, P. J. W., Squire, G. R., & Ward, L.
- K. (2003). The role of weeds in supporting biological diversity within crop fields. *Weed Research*, 43(2), 77–89. https://doi.org/10.1046/j.1365-3180.2003.00326.x
- 668 Menalled, F. D., Gross, K. L., & Hammond, M. (2001). Weed aboveground and seedbank
- 669 community responses to agricultural management systems. *Ecological Applications*, 11(6),
 670 1586–1601.
- Minchin, P. R. (1987). An evaluation of the relative robustness of techniques for ecological
 ordination. *Vegetatio*, *69*, 89–107.
- 673 Mouchet, M. A., Villéger, S., Mason, N. W. H., & Mouillot, D. (2010). Functional diversity
- 674 measures: an overview of their redundancy and their ability to discriminate community
- 675 assembly rules. *Functional Ecology*, 24, 867–876. https://doi.org/10.1111/j.1365-
- 676 2435.2010.01695.x
- 677 Navas, M. L. (2012). Trait-based approaches to unravelling the assembly of weed communities
- and their impact on agro-ecosystem functioning. *Weed Research*, 52(6), 479–488.

- 679 https://doi.org/10.1111/j.1365-3180.2012.00941.x
- 680 Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., ... Wagner, H.
- 681 (2019). vegan: Community ecology package. Retrieved from http://cran.r-
- 682 project.org/package=vegan
- 683 Pakeman, R. J., & Eastwood, A. (2013). Shifts in functional traits and functional diversity
- 684 between vegetation and seed bank. *Journal of Vegetation Science*, 24(5), 865–876.
- 685 https://doi.org/10.1111/j.1654-1103.2012.01484.x
- 686 Perronne, R., Le Corre, V., Bretagnolle, V., & Gaba, S. (2015). Stochastic processes and crop
- 687 types shape weed community assembly in arable fields. *Journal of Vegetation Science*,
- 688 26(2), 348–359. https://doi.org/10.1111/jvs.12238
- 689 Pillar, V. D., Blanco, C. C., Müller, S. C., Sosinski, E. E., Joner, F., & Duarte, L. D. S. (2013).
- 690 Functional redundancy and stability in plant communities. *Journal of Vegetation Science*,
- 691 24(5), 963–974. https://doi.org/10.1111/jvs.12047
- 692 Pinheiro, J., & Bates, D. (2000). *Mixed effect models in S and S-Plus*. New York, USA:
 693 Springer-Verlag.
- 694 Preston, C. D., Telfer, M. G., Arnold, H. R., Carey, P. D., Cooper, J. M., Dines, T. D., ... Smart,
- 695 S. M. (2002). *The Changing Flora of the UK* (DEFRA). London.
- 696 R Core Team. (2016). R: A Language and Environment for Statistical Computing. Vienna,
- Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/
- Rotchés-Ribalta, R., Armengot, L., Mäder, P., Mayer, J., & Sans, F. X. (2017). Long-Term
- 700 Management Affects the Community Composition of Arable Soil Seedbanks. *Weed*
- 701 Science, 65(1), 73–82. https://doi.org/10.1614/WS-D-16-00072.1
- 702 Rotchés-Ribalta, Roser, Blanco-Moreno, J. M., Armengot, L., Chamorro, L., & Sans, F. X.
- 703 (2015). Both farming practices and landscape characteristics determine the diversity of
- characteristic and rare arable weeds in organically managed fields. *Applied Vegetation*
- 705 *Science*, *18*(3), 423–431. https://doi.org/10.1111/avsc.12154
- 706 Ryan, M. R., Smith, R. G., Mirsky, S. B., Mortensen, D. A., & Seidel, R. (2010). Management

707	filters and species traits: weed community assembly in long-term organic and conventional			
708	systems. Weed Science, 58(3), 265-277. https://doi.org/10.1614/WS-D-09-00054.1 ER			
709	Sjursen, H. (2001). Change of the weed seed bank during the first complete six-course crop			
710	rotation after conversion from conventional to organic farming. Biological Agriculture &			
711	Horticulture, 19(1), 71–90.			
712	Solé-Senan, X. O., Juárez-Escario, A., Conesa, J. A., & Recasens, J. (2018). Plant species,			
713	functional assemblages and partitioning of diversity in a Mediterranean agricultural			
714	mosaic landscape. Agriculture, Ecosystems and Environment, 256, 163–172.			
715	https://doi.org/10.1016/j.agee.2018.01.014			
716	Squire, G. R., Rodger, S., & Wright, G. (2000). Community-scale seedbank response to less			
717	intense rotation and reduced herbicide input at three sites. Annals of Applied Biology,			
718	136(1), 47–57.			
719	Storkey, J., Brooks, D., Haughton, A., Hawes, C., Smith, B. M., & Holland, J. M. (2013). Using			
720	functional traits to quantify the value of plant communities to invertebrate ecosystem			
721	service providers in arable landscapes. Journal of Ecology, 101(1), 38-46.			
722	https://doi.org/10.1111/1365-2745.12020			
723	Tutin, T. G. (1993). Flora Europaea (Vol. 2). Cambridge: Cambridge University Press.			
724				
725	Supporting information			
726	Supplementary data associated with this article can be found in the online version of this article:			
727	Appendix S1: Supplementary tables.			
728				

730 **Table 1**: Functional traits and levels or values considered in the functional diversity analyses with indication of the potential agro-ecosystem services (or

731 disservices). "Prop" indicates proportion.

		Potential services		
Plant trait	Trait levels	Response trait	Effect trait	
Raunkiær life form	Therophyte Hemicryptophyte Geophyte Chamaephyte	Potential to adapt to disturbance regimes	Potential to interfere with crop (potential disservice)	
Growth form	Rosette Ascending or creeping Graminoid	Potential to capture environmental resources (light, space)	Potential to interfere with crop (potential disservice)	
Soil seedbank longevity	Long-term (> 5 years) (prop reported) Short-term (1 - 5 years) (prop reported) Transcient (< 1 year) (prop reported)	Potential to endure in an ecosystem	Potential to interfere with crop in a long-term perspective (potential disservice)	
Specific leaf area (SLA) (mm ² mg ⁻¹)	Mean value	Potential to use radiation efficiently and compete for light	Potential to interfere with crop (potential disservice)	
Plant height (cm)	Mean of maximum values at maturity reported	Potential to react to environmental and management conditions	Potential to compete with crop (potential disservice)	
Seed weight (mg)	Mean value	Potential to react to environmental and management conditions	Potential to compete with crop (potential disservice)	
Affinity to soil nutrient conditions	1 to 10 being 1 oligotrophic and 10 in nutrient rich soils	Potential to adapt to nutrient soil conditions	Potential to compete with crop under a given set of conditions (potential disservice)	
Seasonality of germination	Autumn (prop) Spring (prop) Summer (prop) Winter (prop)	Breath of species adaptation	Potential to interfere with crop (potential disservice)	

Table 2: Coefficients and their standard errors of the linear mixed-effect models testing the effects of the long-term farming systems and the current crop (i.e. maize or wheat) on the seedling density, species richness, Shannon's diversity index, Pielou's evenness index, on the functional richness, functional evenness, functional dispersion and functional redundancy of the soil seedbank. Orthogonal contrasts to compare the different levels of farming systems: conventional (CONFYM), mineral (CONMIN), organic (BIOORG), biodynamic (BIODYN) and unfertilized (NOFERT). Groups of farming systems were: fertilized systems (**Fert** = CONFYM, CONMIN, BIOORG and BIODYN), organic systems (**Org** as BIOORG and BIODYN) and conventional systems (**Con** as CONFYM and CONMIN). Statistical significance is indicated as \cdot when P < 0.1; * when P < 0.05; **, P < 0.01; and ***, P < 0.001.

	Seed density	Species richness	Shannon	Evenness
Contrasts	Estimate \pm SE	Estimate ± SE	Estimate ± SE	Estimate ± SE
Intercept	$9.610 \pm 0.112 ***$	$2.467 \pm 0.031 ***$	$2.368 \pm 0.079 ***$	$0.695 \pm 0.022 ***$
NOFERT vs. Fert	$0.276 \pm 0.038 ***$	$0.057 \pm 0.011 ***$	-0.066 \pm 0.037 \cdot	$-0.034 \pm 0.010 **$
Org vs. Con	$0.444 \pm 0.086 ***$	$0.226 \pm 0.024 ***$	$0.246 \pm 0.083 **$	-0.004 ± 0.023
BIODYN vs. BIOORG	$-0.283 \pm 0.122 *$	-0.057 ± 0.034	0.051 ± 0.117	$0.033 \hspace{.1in} \pm \hspace{.1in} 0.032$
CONFYM vs. CONMIN	-0.143 ± 0.122	-0.047 ± 0.034	-0.022 ± 0.117	0.010 ± 0.032
WHEAT vs. MAIZE	-0.158 ± 0.109	0.012 ± 0.030	$0.207 ~\pm~ 0.105$ \cdot	$0.060 \pm 0.029 *$
Interactions				
NOFERT vs. Fert × WHEAT vs. MAIZE	$0.127 \pm 0.054 *$	0.013 ± 0.015	-0.102 ± 0.052 ·	$-0.032 \pm 0.014 *$
Org vs. Con \times WHEAT vs. MAIZE	-0.060 ± 0.122	-0.026 ± 0.034	0.048 ± 0.117	0.014 ± 0.032
BIODYN vs. BIOORG \times WHEAT vs. MAIZE	0.197 ± 0.172	0.060 ± 0.048	-0.087 ± 0.165	-0.045 ± 0.045
CONFYM vs. CONMIN × WHEAT vs. MAIZE	-0.006 ± 0.172	-0.009 ± 0.048	-0.023 ± 0.165	0.000 ± 0.045
Contrasts	Functional richness	Functional evenness	Functional dispersion	Functional redundancy
Intercept	0.073 ± 0.003 ***	0.678 ± 0.011 ***	$0.204 \pm 0.005 ***$	0.304 ± 0.010 ***
NOFERT vs. Fert	$0.004 \pm 0.001 ***$	0.008 ± 0.005 .	$-0.006 \pm 0.003 *$	-0.008 ± 0.005

0.011 ± 0.003	***	-0.010 ± 0.010	-0.004 ± 0.006	$0.023 \pm 0.011 *$
-0.001 ± 0.004		0.019 ± 0.015	-0.001 ± 0.008	0.014 ± 0.015
-0.005 ± 0.004		0.015 ± 0.015	-0.002 ± 0.008	-0.002 ± 0.015
-0.009 ± 0.003	**	0.018 ± 0.011 ·	-0.010 ± 0.007	$0.035 \pm 0.014 *$
0.003 ± 0.002		-0.007 ± 0.005	-0.004 ± 0.004	-0.017 \pm 0.007 *
0.000 ± 0.004		-0.007 ± 0.012	0.001 ± 0.008	0.005 ± 0.015
0.000 ± 0.005		-0.015 ± 0.017	0.002 ± 0.012	-0.025 ± 0.022
0.002 ± 0.005		-0.003 ± 0.017	0.000 ± 0.012	0.001 ± 0.022
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.011 ± 0.003 *** -0.010 ± 0.010 -0.004 ± 0.006 -0.001 ± 0.004 0.019 ± 0.015 -0.001 ± 0.008 -0.005 ± 0.004 0.015 ± 0.015 -0.002 ± 0.008 -0.009 ± 0.003 ** 0.018 ± 0.011 -0.004 ± 0.007 0.003 ± 0.002 -0.007 ± 0.005 -0.004 ± 0.004 0.000 ± 0.004 -0.007 ± 0.012 0.001 ± 0.008 0.000 ± 0.005 -0.015 ± 0.017 0.002 ± 0.012 0.002 ± 0.005 -0.003 ± 0.017 0.000 ± 0.012

Figure 1: a) DOK trial field map and crops sown in the year of sampling (2009). * indicate crop
types and farming systems sampled for the current study. b) Distribution of soil samples taken
per plot, sizes of soil cores sampled and distribution of cores gathered in each tray (obtaining a
total of 5 trays per plot).

749 Figure 2: Boxplots of a) seedling density, b) species richness, c) Shannon diversity index and d)

750 Pielou's evenness index of unfertilised (NOFERT), organic (BIOORG), biodynamic

751 (BIODYN), conventional (CONFYM) and mineral (CONMIN) farming systems of the DOK

- trial of both maize and wheat crops, based on the 20 soil seedbank samples per farming system
- and crop type.
- 754

756 **Figure 3**: Site ordination (NMDS) based on floristic similarities between conventional

- 757 (CONFYM and CONMIN, circles), organic/biodynamic (BIOORG and BIODYN, crosses) and
- violation of the second state of the second st
- 759 wheat (light grey) crops of 200 soil seedbank samples ($k = 2, r^2$ nonmetric fit = 0.973). a)
- Farming system types fitted onto the ordination ($r^2 = 0.273$, P < 0.001); b) Crop type sown in
- 761 the last season fitted onto the ordination ($r^2 = 0.062$, P < 0.001). c) Labels of most present

- 762 species fitted onto the ordination: Alo myo: *Alopecurus myosuroides*; Ama bli: *Amaranthus*
- 763 *blitoides*; Ara tha: *Arabidopsis thaliana*; Cap bur: *Capsella bursa-pastoris*; Car hir: *Cardamine*
- 764 *hirsuta*; Cer glo: *Cerastium glomeratum*; Che pol: *Chenopodium polyspermum*; Ech cru:
- 765 Echinochloa crus-galli; Gna uli: Gnaphalium uliginosum; Jun buf: Juncus bufonius; Lin min:
- 766 *Chaenorhinum minus*; Pap rho: *Papaver rhoeas*; Pla maj: *Plantago major*; Poa ann: *Poa annua*;
- 767 Pol avi: Polygonum aviculare; Pol hyd: Polygonum hydropiper; Pol per: Polygonum persicaria;
- 768 Sag pro: Sagina procumbens; Ste med: Stellaria media; Ver per: Veronica persica; Ver ser:
- 769 Veronica serpyllifolia.

Figure 4: Boxplots of a) functional richness, b) functional evenness, c) functional divergence
(FDis index) and d) functional redundancy of unfertilised (NOFERT), organic (BIOORG),
biodynamic (BIODYN), conventional (CONFYM) and mineral (CONMIN) farming systems of
the DOK trial of both maize and wheat crops, based on the 20 soil seedbank samples per
farming system and crop type. The functional traits considered for the calculation of functional
diversity indices were: the Raunkiær life form, growth form, soil seedbank longevity, SLA,
plant height, seed weight, affinity to soil nutrient conditions and season of germination.

780 Figure 5: Ordination diagrams of the first two PCA axes based on the functional composition 781 (Community Weighted Mean, CWM) of 200 seedbank samples from: conventional (CONFYM 782 and CONMIN, circles), organic/biodynamic (BIOORG and BIODYN, crosses) and unfertilised 783 (NOFERT, triangles) farming systems (DOK trial) of maize (dark grey) and wheat (light grey) 784 crops. Farming system (a) and crop type (b) labels are placed on the average values obtained on 785 the first two PCA axis. c) Direction of the most significant response factors of functional traits 786 considered for the CWM index: "LF_Thero": life form therophyte; "LF_Hemi": life form 787 hemicryptophyte; "GF_Rosette": growth form rosette; "GF_Ascend": growth form ascending or

- 788 creeping; "GF Gram": growth form graminoid; "SB Long": long-term seedbank; "SB Short":
- short-term seedbank; "SB_Trans": transcient seedbank; "SLA": specific leaf area; "Height":
- plant canopy height; "Seed_Weight": seed weight; "N_affinity": nutrient affinity; "G_autumn":
- autumn germinating species; and "G_Spring": spring germinating species.