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1 Introduction

In an information graph game, there is a finite set of agents that need to make

use of information or some technology. Some of them have this information,

we may think they obtain it from a source, and can share it with those

agents connected to them by a relationship which can be represented by an

undirected graph. Agents that are not connected with an informed agent

have to pay a fixed cost of one unit to obtain this information. The cost

of a coalition of agents is the minimum cost necessary so that all its agents

achieve the information.

These games are known to have a non-empty core since they are a partic-

ular case of minimum cost spanning tree (mcst) games, whose balancedness1

is known from Bird (1976). A mcst game is defined similarly from a finite set

of nodes together with a source node, connected through a complete graph.

The non-negative weights on the edges of the graph represent the cost of

connecting the two nodes of the edge. When the weights only take the values

0 and 1, the mcst game is said to be elementary, and it is an information

graph game.

Kuipers (1993) shows that each extreme core allocation of an information

graph game is a marginal worth vector. Moreover, a concave information

graph game can be associated with any information graph game and then

the set of extreme core allocations of the latter coincides with the set of

marginal worth vectors of the former.

When a (cost) game is balanced, we usually focus on the core when looking

for fair cost allocations. Some single-valued solutions that lie in the core, for

mcst games and hence also for information graph games, are studied in Bird

(1976) and Granot and Huberman (1981).

Core allocations are undominated by any other allocation. However, we

claim that, in information graph games, some out-of-core allocations should

not be disregarded since they may well represent an acceptable standard

1A game is balanced when its core is nonempty.
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of behavior. Take, for instance, an information graph situation with three

agents, where two of them have the information and the third one is con-

nected to both of them. The associated coalitional game has only one core

allocation in which each agent pays zero. However, the uninformed agent

needs the cooperation of at least one of the informed agents to obtain the

information at zero cost. Hence any of these two agents could require the

uninformed agent a side-payment 0 < δ ≤ 1 for the information. These allo-

cations2 do not belong to the core and are not dominated by the unique core

allocation.

This fact does not take place when the core of the game is a von Neumann-

Morgenstern stable set. When the core is a stable set, it satisfies external

stability, that requires that each allocation outside the core is dominated by

some core allocation. The above example shows that the core of an informa-

tion graph game may not be a stable set.

Some literature has studied the stability of the core of a coalitional game

and the existence of stable sets. Characterization of those coalitional games

with a stable core is still an open question although a stronger notion of the

stable core is characterized in Jain and Vohra (2010). Stable sets have been

found on several classes of games, such as assignment games (Núñez and

Rafels, 2013), linear production games (Rosenmüller and Shitovitz, 2000,

2010), pillage games (MacKenzie et al., 2015), patent licensing games (Hirai

and Watanabe, 2018), matching problems (Herings et al., 2017), tournaments

(Brandt, 2011), voting games (Talamàs, 2018), and exchange economies

(Graziano et al., 2015, 2017). Non-cooperative foundations of stable sets

can be found in Anesi (2010); Diermeier and Fong (2012). More farsighted

notions of stable sets have been related to the core in Einy (1996); Bhat-

tacharya and Brosi (2011); Ray and Vohra (2015).

In this paper, we characterize those information graph games with a sta-

ble core. First, we notice that several information graph problems may lead

2(δ, 0,−δ) or (0, δ,−δ), assuming the informed players are 1 and 2, and the uninformed

player is 3.
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to the same cost game and we define one representative graph, the saturated

graph, as the one that contains all those edges between two nodes that are

connected to the source. We show that, given an information graph situation,

there is only one saturated information graph that defines the same infor-

mation cost game. We also show a bijection between saturated information

graph games and elementary mcst games with no irrelevant links.

Then, in Theorem 3.1, we state that the core of an information graph

game is a stable set if and only if its saturated graph is cycle-complete.

It is well known (Shapley, 1971) that a concave game has a stable core,

although the reverse implication does not hold in general. Trudeau (2012)

shows an equivalence between cycle-complete elementary mcst games with

no irrelevant links and concave elementary mcst games. Hence, our result

can be restated, saying that an information graph game has a stable core if

and only if it is concave.

Roughly speaking, a graph is cycle-complete if each two nodes in a con-

nected cycle are also connected. Hence, some inequalities between the cost

of the edges of the graph determine the property of cycle-completeness. This

fact somehow resembles the characterization of core stability in assignment

games due to Solymosi and Raghavan (2001). Assignment games are another

class of combinatorial optimization games introduced by Shapley and Shubik

(1971) and defined by a weighted bipartite graph. The set of agents is par-

titioned in a finite set of buyers and a finite set of sellers, and the weight of

each buyer-seller edge is the value this pair of agents can attain if they trade.

Each agent can take part in only one trade, and the worth of a coalition of

agents is the maximum value that can be attained by matching buyers to

sellers. The assignment game has a non-empty core. Moreover, Solymosi

and Raghavan (2001) prove that this core is a stable set if and only if the

valuation matrix is dominant diagonal, that meaning that the value an agent

attains with his/her optimally matched partner is the most he/she would

attain with any other partner.

When the core of an assignment game is not a stable set, Núñez and
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Rafels (2013) show how to enlarge the core with some non-core allocations

to obtain a stable set. For information graph games, and consequentely also

for mcst games, it is an open question whether this can also be done, that is to

say, whether stable sets always exist. For the three-player information graph

game mentioned in this introduction, we show that the sets of allocations

{(−δ, 0,−δ) | 0 ≤ δ ≤ 1} and {(0, δ,−δ) | 0 ≤ δ ≤ 1} are stable sets.

This fact somehow confirms our previous remark that these payoff vectors,

although outside the core, could be expected to rise as a result of a negotiation

process.

In the second part of the paper, we show how to find stable sets for some

particular information graphs that consist of a ring that includes the source.

We obtain stable sets that coincide with the core of other information graph

games that are obtained either by deleting one node or by deleting one edge.

Because of that, these stable sets represent standards of behavior with a clear

interpretation.

We organize the paper as follows. In Section 2, we introduce notations

and definitions, and we also analyze those information graphs that define the

same cost game. In Section 3, we characterize the stability of the core of

information graph games in terms of a graph property. In Section 4, we find

some stable sets for information graph games consisting of a ring that can

share the information because the ring includes the source. These stable sets

coincide with the core of a related information game where one edge has been

deleted. When the informed ring does not include the source, by deleting

one edge we obtain a subset of imputations that is externally stable but not

internally stable and hence it is not a stable set. In Section 5, we present

some concluding remarks.

2 Information graph games

In an information graph situation there is a finite set of agents N = {1, . . . , n}
and some of them have a particular information that we may assume have
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obtained from a source 0. There is also an undirected graph G = (N∪{0}, E),

called the information graph, such that agents i and j can communicate and

share the information at cost zero if and only if {i, j} ∈ E. For simplicity,

we denote the undirected graph as the set of edges E. Moreover, we write ij

instead of {i, j} when referring to an edge in E.

Given an information graph situation E and i, j ∈ N∪{0}, a path between

nodes i and j is a sequence of different edges{
i0i1, i1i2, . . . , iK−1iK

}
⊆ E

such that i0 = i and iK = j. When i = j, this path is called a cycle.

Two nodes are connected in E if there is a path between i and j. This

relation splits N ∪ {0} into connected components. An uninformed agent in

a connected component of E that does not contain the source can obtain the

information from the source, or from any informed player, at a fixed cost,

say 1.

From an information graph situation E, we derive a coalitional cost game,

the information graph game (N,C). Given S ⊆ N , we denote as C(S) the

minimum cost of making information available to all agents in coalition S,

without the cooperation of agents outside S. Moreover, C(∅) = 0.

An information graph situation E is cycle-complete if for each cycle and a

pair of nodes i, j in this cycle, it holds ij ∈ E. That is, if two nodes are con-

nected through two different paths, then they are also (directly) connected.

Moreover, different information graph situations may induce the same

information graph game. Indeed, notice that if two agents i and j are in-

formed, that is 0i ∈ E and 0j ∈ E, then whether ij ∈ E or not is irrelevant

and does not affect the cost of the coalitions that contain these two agents.

In this case, we say that ij is an irrelevant edge.

Definition 2.1 An information graph situation E is saturated if whenever

0i ∈ E and 0j ∈ E for some i, j ∈ N , then ij ∈ E.

Among all information graph situations that define the same cost game,
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there is only one that is saturated and we can then choose this one as a

representative of the class.

Proposition 2.1 For each information graph situation, there exists a unique

saturated information graph situation that defines the same information cost

game.

Proof. Given an information graph situation E, let us define the saturated

information graph situation E ′ given by

E ′ = E ∪ {ij 6∈ E | 0i ∈ E and 0j ∈ E} .

It is obvious that E ′ defines the same cost game (N,C ′) as E. To prove

uniqueness, let us assume there is another saturated information graph sit-

uation E ′′ that defines a cost game (N,C ′′) such that C(S) = C ′′(S) for all

S ⊆ N . This implies that, for all k ∈ N , 0k ∈ E ′ if and only if 0k ∈ E ′′.
Moreover, since both graphs differ, we may assume there exists ij ∈ E ′′ \E ′.
Since ij 6∈ E ′ and E ′ is saturated, we can assume without loss of generality

that 0i 6∈ E ′, which implies 0i 6∈ E ′′. Now, if 0j ∈ E ′′, then also 0j ∈ E ′

and we get C ′({i, j}) = 1 6= 0 = C ′′({i, j}). Similarly, if 0j 6∈ E ′′, then also

0j 6∈ E ′ and C ′({i, j}) = 2 6= 1 = C ′′({i, j}). This contradicts C ′ = C ′′.

From the above remarks, it also follows that the correspondence between

information graph situations and elementary mcst problems that define the

same cost game is not one-to-one. But it becomes one-to-one if we restrict to

saturated information graph situations and elementary mcst problems with

no irrelevant arcs:3 for each saturated information graph situation, there

exists a unique elementary mcst problem with no irrelevant arcs such that

their associated cost games coincide (and vice versa).

Hence, since we study the stability of the core, which is a property that

relies on the coalitional cost function, we may assume without loss of gener-

ality that the information graph is saturated.

3In a mcst problem (N, c), ij is an irrelevant arc if cij > max{ci0, c0j}. Hence, when

the mcst problem is elementary, ij is an irrelevant arc if cij = 1 and ci0 = c0j = 0. In the

corresponding information graph, ij would be an irrelevant edge.
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Let E be an information graph situation. An imputation in E is a cost

allocation x ∈ RN satisfying x(N) =
∑

i∈N xi = C(N) and xi ≤ C({i}) for

all i ∈ N , where xi represents the cost allocated to agent i ∈ N so that all the

agents together cover the cost of making information avaliable to everybody

with a minimum cost, and no agent alone pays more than the cost of getting

the information by itself. Let I(E) denote the set of all imputations in E.

When E is clear, we write I instead of I(E).

Given two imputations x, y ∈ I, we say x dominates y via coalition

S ⊆ N , and write x domS y, if xi < yi for all i ∈ S and x(S) ≥ C(S).

The core of an information graph situation E is the set of undominated

imputations, and it is denoted as C(E). Namely,

C(E) = {x ∈ I : x(S) ≤ C(S) for all S ⊂ N} .

Notice that if x ∈ C(E), then xi ≥ C(N)− C(N \ {i}), for all i ∈ N .

A set of imputations S ⊆ I is internally stable if any two imputations

in S do not dominate one another. By its definition the core of any (cost)

game is internally stable. A subset of imputations S is a (von Neumann-

Morgenstern) stable set if in addition to being internally stable it is also

externally stable, that is to say, any imputation outside S is dominated by

some imputation in S.

The core of an information graph game may not be a stable set, as the

example in the Introduction shows.

Let E be an information graph situation and P = {P0, P1, . . . , PK} be

the partition of N ∪ {0} into connected components, so that 0 ∈ P0. Notice

that the case K = 0 is possible.

Given an information graph situation E and i ∈ Pk ∈ P, by removing

agent i, Pk \ {i} is divided into one or more maximal connected components.

Let P i = {P i
0, P

i
1, . . . } denote these components, so that 0 ∈ P i

0 if k = 0.

From this, it is straightforward to check that the marginal contribution of

agent i ∈ N to the grand coalition is

mC
i = C(N)− C(N \ {i}) = 1−

∣∣P i
∣∣ .
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It is well-known that no allocation in the core assigns agent i ∈ N less than

mC
i .

3 Characterization of core stability

Our main result (Theorem 3.1) states that a saturated information graph

game is core-stable if and only if its information graph is cycle complete. The

reader will easily check that the three-player example in the Introduction,

which has a non-stable core, is not cycle-complete. Also notice that, if we

modify this example and take E withN = {1, 2, 3} and E = {01, 02, 03, 13, 23},
the cost game is C(S) = 0 for all S ⊆ N and then C(E) = I = {(0, 0, 0)}
is a stable set, although the graph is still not cycle-complete. However, the

associated saturated graph is cycle-complete.

The example depicted in the information graph of Figure 1 shows, when

the information graph is not cycle-complete, how to find a non-core imputa-

tion that cannot be dominated by a core imputation.

0

1 2

3

4

5

6 7

8

9

Figure 1: An information graph situation.

This information graph situation is not cycle-complete because 03 6∈ E
and, however, there exist more than one path that connect node 3 to the

source.4 Node 3 and her follower node 6 can then exploit this so that they pay

zero in any core allocation. To see why, let y ∈ C(E) and assume y3 +y6 > 0.

4There are nine of them as for example {31, 14, 40}, {31, 10}, {37, 72, 20}, or {32, 20}.
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Then, since y(N) = 0, we have that either y({1, 4, 5}) < 0 or y({2, 7, 8, 9}) <
0. Assume w.l.o.g. y({2, 7, 8, 9}) < 0. Then, y({1, 3, 4, 5, 6}) > 0 which is a

contradiction because C({1, 3, 4, 5, 6}) = 0 and y ∈ C(E).

We now define x /∈ C(E) that will not be dominated by any core imputa-

tion. Let A = {1, 2, 6, 7} be the set of nodes that have zero-cost to node 3.

We define imputation x by assigning to these nodes their minimum payoffs

in the core, which are mC
1 = −1, mC

2 = −1, mC
6 = 0, and mC

7 = 0. This

assignment ensures that no core allocation can dominate x via a coalition

that contains any of these nodes. The idea is to make node 3 pay a positive

amount, since it is surrounded by nodes that cannot be tented by an alloca-

tion inside the core. First, we make the nodes that are hanging on A to pay

so that no connected group pays more than 1. In particular, node 5 pays 1

so that it compensates mC
1 = −1, and nodes 8 and 9 pay together 1 in order

to compensate mC
2 = −1. Additionally, we move out of the core by making

node 3 to pay some δ ∈ (0, 1]. Finally, we make one of the agents that are

adjacent to agent 3 in one of the zero-cost paths to the source (i.e. either

agent 1 or 2) to compensate this extra δ. For example, x1 = mC
1 − δ. The

rest of nodes pay zero.

We have then x = (−1 − δ,−1, δ, 0, 1, 0, 0, x8, x9) where x8 + x9 = 1 and

x8, x9 ≥ 0. Notice that x /∈ C(E) because coalition T = {2, 3, 8, 9} objects it.

Moreover, no core allocation can dominate x because nodes in A are paying

their minimal core payoff (or less, case of agent 1) and the others either

cannot connect to the source at cost zero without them (nodes 5, 8 and 9)

or cannot find it profitable to reach node 3 (node 4).

We can generalize this idea to all cycle-complete saturated information

graph games.

Theorem 3.1 Let E be an information graph situation and (N,C) the re-

lated information graph game. The following statements are equivalent:

1. E has a stable core,

2. The associated saturated graph is cycle-complete, and
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3. (N,C) is concave.

Proof. It follows from Theorem 2 in Trudeau (2012) that a cycle-complete

elementary mcst game is concave. This proves 2 ⇒ 3. Moreover, from

(Shapley, 1971) it is well known that any concave game has a stable core,

which proves 3⇒ 1. Hence it only remains to prove 1⇒ 2. To this end, let

E be an information graph situation, that we assume to be saturated, and

assume E is not cycle-complete. To see that the core of E is not a stable set,

we need to find an imputation y ∈ I such that no core allocation dominates

y. We assume that either P = {P0} with P0 = N ∪ {0} or P = {P0, P1}
with P0 = {0}, so that all the agents are in the same connected component;

otherwise, we can evaluate each connected component independently. Since

E is not cycle-complete, there exist α, β ∈ N ∪ {0} such that αβ 6∈ E and

a cycle f = {α0α1, . . . , αL−1αL}, containing α and β, such that αk−1αk ∈ E
for all k = 1, . . . , L. In particular, let α = α0 = αL and β = αK with

1 < K < L. We assume w.l.o.g. α ∈ N . Let Aα = {i ∈ N ∪ {0} | iα ∈ E} be

the set of nodes connected to agent α. Notice that α1, αL−1 ∈ Aα. Moreover,

since the graph is saturated, we can assume w.l.o.g. 0 /∈ Aα. To see why,

notice that in case α and β were both agents connected to the source, then

αβ would be an irrelevant arc. Now, we have three cases:

1. If β = 0, then P = {P0} and C(N) = 0. We define y ∈ RN as follows:

• yα = δ ∈ (0, 1],

• yα1 = mC
α1 − δ,

• ya = mC
a for all a ∈ Aα \ {α1},

• yi = 1
|P | for all i ∈ N such that there exists a ∈ Aα and i ∈ P ∈

Pa \ {P a
0 }, and

• yi = 0 otherwise.

It is straightforward to check that y is an imputation. Moreover, y does

not belong to the core, because y(T ) = δ > 0 = C(T ) where

T =
{
αK+1, . . . , αL

}
∪
{
i ∈ P : P ∈PαL−1 \

{
PαL−1

0

}}
.
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We proceed by a contradiction argument. Assume x ∈ C(E) dominates

y through coalition S ⊂ N . Hence, x(S) = C(S) and xi < yi for all

i ∈ S. Since no core allocation can assign an agent i strictly less than

mC
i , we deduce Aα ∩ S = ∅. Since S can be partitioned into one or

more connected components, each of them should satisfy the required

conditions, and so we assume S is a connected component. This implies

C(S) = 0. Hence, x(S) = 0. Since 0α 6∈ E, we deduce C({α}) = 1 and

hence S 6= {α}. Moreover, S cannot contain α because S is a connected

component and would then contain a zero-cost path between agent α

and the source, which is not possible since Aα ∩ S = ∅. Also from

Aα ∩ S = ∅, we deduce S cannot contain agents in P ∈ P a \ {P a
0 } for

some a ∈ Aα, because then S would not be connected. Hence, yi = 0

for all i ∈ S and xi < yi = 0 for all i ∈ S contradicts x(S) = 0.

2. If β ∈ N and P = {P0}, we can assume w.l.o.g. that either 0 ∈{
αK+1, . . . , αL−1

}
or there exists a zero-cost path between the source

and some agent in
{
αK+1, . . . , αL−1

}
. We can then define y as in the

previous case and prove, as before, that no core allocation dominates

y.

3. If β ∈ N and P = {P0, P1}, we define y as before but with yβ = 1

instead of zero. This is still an imputation and, moreover, it does not

belong to the core because y(T ∪{β}) = 1+δ > 1 = C(T ∪{β}), where

T is defined as in case 1. The rest of the proof is similar to the previous

cases. In particular, we can assume y is dominated by x ∈ C(E) via

a coalition S that is connected and hence x(S) = C(S) = 1. Again,

since in a core allocation no agent can be assigned a cost strictly below

his/her marginal contribution, Aα ∩ S = ∅. From this, it is clear that

no admissible S pays more than 1 under y, i.e. y(S) ≤ 1. Hence,

x(S) ≥ y(S) which contradicts xi < yi for all i ∈ S.

As a consequence of the above theorem, the only concave information
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graph games are those which saturated information graph is cycle-complete.

This parallels a result in Trudeau (2012) (see Theorem 2 and Lemma A.1)

that shows that the only concave elementary mcst games with no irrelevant

arcs are those with a cycle-complete graph.

Moreover, we have shown that, for information graph games, concavity

is not only sufficient for the stability of the core but it is also a necessary

condition.5

Finally, the characterization of concavity by means of cycle-completeness

cannot be extended to more general mcst games. A concave mcst problem

is not always cycle-complete, as next example shows:6 Let N = {1, 2, 3} and

c be defined as c01 = 3, c02 = 5, c03 = 5 + a, c12 = 2, c13 = 1, and c23 = 4.

This mcst problem is concave if 0 ≤ a ≤ 2 and cycle-complete if a = 0.

It is shown in Kuipers (1993) that, with any information graph situation

E, we can associate another information graph situation E that is cycle-

complete and has the same core, C(E) = C(E). To this end, we simply define

the information graph situation

E = E ∪ {ij 6∈ E | i and j are nodes in a cycle of E}.

Notice that E will have a stable core, although this set may not be stable

for E.

4 Stable sets for informed rings

When the core of an information graph game is not a stable set, we may ask

whether we can enlarge the core to grant external stability, without losing

the internal stability, and hence get a stable set. To this end, rings are the

simplest structures that may fail to be cycle-complete. We first analyze the

three-player example discussed in Section 1.

Example 4.1 Let N = {1, 2, 3} and E = {01, 13, 23, 20}.
5It is well known that there exist non-concave cost games with a stable core.
6This example was suggested by C. Trudeau in a personal communication.
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1 2

3

0

1 2

3

Figure 2: The information graph of Example 4.1 and its saturated form.

The only core allocation is y = (0, 0, 0). Following the proof of Theorem

3.1, we know that, for any δ ∈ (0, 1], both (−δ, 0, δ) and (0,−δ, δ) are not

core allocations but y does not dominate any of them via any coalition. In

fact, it is not difficult to see that two stable sets for this problem are de-

fined as follows: A = {(−δ, 0, δ) : δ ∈ [0, 1]} and B = {(0,−δ, δ) : δ ∈ [0, 1]}.
Notice these sets represent one standard of behavior in which agent 3 pays

some positive amount either to agent 1 or agent 2, in reward for sharing the

information.

Notice also that the above stable sets correspond with the core of a related

situation where one edge has been deleted from the information graph. The

stable set A is the core of the information graph situation where edge 23

has been deleted and the stable set B is the core of the information graph

situation where edge 13 has been deleted.

4.1 Source as a node inside the ring

In this subsection, we generalize the situation of Example 4.1. We assume

that the information graph is given by a ring topology that includes all the

agents and the source, that is, there is a unique cycle that contains all the

nodes. Without loss of generality, we can consider

E = {01, 12, 23, . . . , (n− 1)n, n0, 1n} .
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Notice that the imputation set of the related information graph game is

I(E) =
{
x ∈ RN | x(N) = 0, x1 ≤ 0, xn ≤ 0, xi ≤ 1 for all i ∈ N

}
.

It is straightforward to check that the core of the corresponding informa-

tion graph game (N,C) reduces to only one element, C(E) = {(0, 0, . . . , 0)}.
This is because the marginal contribution of each agent is zero and hence

xi ≥ 0 for all i ∈ N , while x(N) = C(N) = 0.

Clearly, if there are more than two agents in the cycle, the core of this

information graph situation is not a stable set, since the graph is not cycle-

complete. Notice that, as in Example 4.1, the unique core allocation does

not reward agents 1 and n for providing the information.

0

1

2

3

4

n

n− 1

Figure 3: A saturated informed ring containing the source.

Recall that the core of an information graph game that is a ring topology

is determined by the core constraints of those coalitions S that are intervals,

that is, either

S = [i, j] = {k ∈ N | i ≤ k ≤ j}

if i ≤ j, or

S = [i, j] = {k ∈ N | k ≤ j or i ≤ k}
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if i > j. Hence, given this ring topology (N,E), the core is

C(E) =
{
x ∈ RN | x(N) = 0, x([i, j]) ≤ C([i, j]) for all i, j ∈ N

}
.

The next proposition describes the core of the information graph game

when one edge containing a node that is adjacent to the source is deleted.

Proposition 4.1 In a ring topology (N,E) of informed agents given by E =

{01, 12, . . . , (n− 1)n, n0, 1n}, C(E \ {12}) =

{(0, α3, α4 − α3, . . . , αn − αn−1,−αn) | α3, . . . , αn ∈ [0, 1]}

and C(E \ {(n− 1)n}) =

{(−α1, α1 − α2, . . . , αn−3 − αn−2, αn−2, 0) | α1, . . . , αn−2 ∈ [0, 1]}.

Proof. Let us focus on C(E \ {(n− 1)n}) since the proof for C(E \ {12}) is

analogous. Notice that an element x in C(E \{n−1n}) is defined by xn = 0,

since mn = 0 ≤ xn ≤ C({n}) = 0, and x(N \ {n}) = 0 together with the

constraints

x([1, s]) ≤ 0, for all 1 ≤ s ≤ n− 1 (1)

x([r, s]) ≤ 1, for all 1 < r ≤ s ≤ n− 1. (2)

Notice that, for s = 1 in (1), we have x1 ≤ 0. Moreover, from r = 2 and

s = n − 1 in (2), we have x1 ≥ −1, so we may write x1 = −α1 for some

α1 ∈ [0, 1]. Moreover, from x1 + x2 ≤ 0, there exists α2 ≥ 0 such that

x2 + α2 = −x1 = α1. Also, since x([3, n − 1]) ≤ 1, we have x1 + x2 ≥ −1

and hence α2 = −x1 − x2 ≤ 1. Recursively, assume that for some x ∈
C(E \ {n − 1n}), there exist α1 . . . , αk ∈ [0, 1], for some 2 < k < n − 2

such that x1 = −α1 and xi = αi−1 − αi for all 2 ≤ i ≤ k. From the

core constraint x ([1, k + 1]) ≤ 0 we know there exists αk+1 ≥ 0 such that

xk+1 = −αk+1−x ([1, k]) = αk−αk+1. Moreover, since x ([k + 2, n− 1]) ≤ 1,

we have that αk+1 ≤ 1. Finally, if there exist α1, . . . , αn−2 ∈ [0, 1] such that

x1 = −α1 and xi = αi−1 − αi for all 1 < i < n − 1, the efficiency requires

xn−1 = αn−2.
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The main result in this section states that the two sets described in the

above proposition are stable sets of the ring topology of informed agents.

Hence, we find two stable sets. In one of them, all agents in the ring, except

for agent 1, get the information from agent n. Each agent pays an amount

to her successor in the ring to get the information, and receives a payment

from her predecessor in the ring in exchange for the information. Conversely,

in the second stable set, agent 1 spreads the information and hence each

agent in the ring, except for agent n, pays an amount to the predecessor and

receives a payment from the successor.

Theorem 4.1 In a ring topology (N,E) of informed agents, the sets

Si = C(E \ {ij})

where i, j ∈ N are such that 0i, ij ∈ E, are stable sets.

Proof. Assume E = {01, 12, . . . , (n− 1)n, n0}. We prove the stability of

the set Sn. The proof for S1 is analogous. To prove internal stability, no-

tice first the cost games related to the two information graphs (N,E) and

(N,E \ {(n− 1)n}) have the same imputation set. Moreover, the cost of an

interval coalition in both games coincides, except if this coalition contains

both agents n − 1 and n and does not contain agent 1, since this edge has

cost 0 in E but cost 1 in E \ {(n− 1)n}. From Theorem 3, C(E \ {(n− 1)n})
is internally stable since it is cycle-complete. Take now x, y ∈ Sn and as-

sume x domSy for some S ⊂ N . Coalition S cannot contain agent n since

xn = yn = 0. But x domSy via a coalition that does not contain {n − 1, n}
contradicts the internal stability of C(E \ {(n− 1)n}).

To prove external stability of Sn, we must show that for all y ∈ I(E)\Sn
there exists x ∈ Sn that dominates y via some coalition S ⊂ N . But recall

that Sn = C(E \ {(n − 1)n}) and I(E) = I(E \ {(n − 1)n}). Hence, since

E\{(n−1)n} is cycle-complete, Theorem 3.1 guarantees that C(E\{(n−1)n})
is externally stable in I(E \ {(n − 1)n}) = I(E). This means that any

y ∈ I(E) \ C(E \ {(n − 1)n}) is dominated by some x ∈ C(E \ {(n − 1)n})
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via some coalition S which we may assume with no loss of generality that

is connected in E \ {n − 1n}, since otherwise x would dominate y via some

connected coalition of S. Then, S is also connected in E and hence it has

the same cost in both information graphs, which implies that also x domSy

in E.

The stable sets obtained in the previous theorem can also been understood

as the core of a subgame when one of the two agents connected to the source

leaves the game paying zero and the remaining agents allocate the null total

cost according to a core allocation of the subgame. More precisely, x ∈
C (E \ {(n− 1)n}) is equivalent to assume that agent n leaves the network

at a null cost (xn = 0) and the remaining agents share the null connection

cost according to a core element of the information subgraph (N \{n}, E−n),

where E−n = {(i, j) ∈ E | i 6= n, j 6= n}.
Viewed in this way, these stable sets resemble those obtained in Núñez

and Rafels (2013) for the assignment games, which consist of the union of

the core of the game with the core of some particular subagmes.

As opposed, if we delete a different edge from the information graph, that

is, an edge that does not involve any agent adjacent to the source, then we

do not obtain a stable set. That is to say, the set C(E \ {ij}) where i 6= 1

and j 6= n, is not stable, since it is not internally stable. Notice first that

both information graph games, E and E \ {ij}, have the same imputation

set. Moreover, two elements in C(E \ {ij}) cannot dominate one another

through a coalition S not containing agents i and j, since core elements are

undominated. But one such element can dominate another via a coalition S

with {i, j} ⊆ S. This is the same difficulty we will find later on when we

analyze informed rings that do not contain the source.

Before moving to the situation where the source does not belong to the

ring, one may ask what happens when the information graph consists of

something more than a ring. We cannot say anything for the general case

of several connected rings, but the next example illustrates that if there is

a single ring with some edges getting out of some nodes of the ring, similar
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stable sets can be obtained.

Example 4.2 Consider the following two information graph situations with

four players.

0

1 2

3

4

0

1 2

3

4

For the first information graph game of Example 4.2, the core is

C(E) = {(0, 0,−α, α) | 0 ≤ α ≤ 1}

and two stable sets are

S1 = {(0,−δ, δ − α, α) | α, δ ∈ [0, 1]}

and

S2 = {(−δ, 0, δ − α, α) | α, δ ∈ [0, 1]}.

Each of these stable sets represents a standard of behavior in which agent

3 transfers some payoff either to agent 1 or 2 in order to have access to the

information. At the same time, agent 3 receives a transfer from agent 4 in

exchange for the information.

In the second game of this example, the core is

C(E) = {(0,−α, 0, α) | α ∈ [0, 1]}
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and a stable set is

S3 = {(0,−δ − α, δ, α) | α, δ ∈ [0, 1]}.

This stable set represents the standard of behavior in which both agents 3

and 4 transfer some payoff to agent 2 to have access to the information.

Instead, the set S4 = {(−δ,−α, δ, α) | α, δ ∈ [0, 1]}, that represents the

standard of behavior in which agent 3 makes a transfer to agent 1 to have

access to the information, does not lead to a stable set because it violates

internal stability. For example, (−γ,−γ, γ, γ) dominates any (−δ,−α, δ, α)

with δ > γ > α via coalition {2, 3}.
The stable sets we obtain in Example 4.2 above also correspond to the

cores of the information graph games that arise when removing an edge in

the cycle. The stable set S1 for the left information graph corresponds with

the core of the game that arises when removing edge 13 and the stable set

S2 corresponds with the core of the game that arises when removing edge 23.

The stable set S3 for the information graph on the right corresponds with

the core of the game that arises when removing edge 13. However, set S4

that corresponds with the core of the game that arises when removing edge

23 is not a stable set, since it is not internally stable.

An important difference of the information graph E on the left with

respect to the one E ′ on the right (and also with the informed rings studied

in this section) is that agent 2 does not have a fixed core payoff. Notice that

−1 = mC′
2 < C ′({2}) = 0, while mC

2 = C({2}) = 0 and also mC
1 = C({1}) =

0 and mC′
1 = C({1}) = 0.

4.2 Source as a node connected to the ring

We now focus on those ring networks E where the source does not belong to

the ring but one of the agents, say agent 1, is connected to the source. That

is, E = {01, 12, 23, 34 . . . , (n− 1)n, n1}.
In this case, the core of the corresponding information graph game con-

tains more than one point. Next proposition precisely describes this core.
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Figure 4: An informed ring not containing the source.

Proposition 4.2 In a ring topology (N,E) of informed agents given by

E = {01, 12, 23, . . . , (n− 1)n, n1}, the core of the corresponding cost game is

C(E) ={
(−α1, α1 − α2, α2 − α3, . . . , αn−1) ∈ RN | 1 ≥ α1 ≥ α2 ≥ · · · ≥ αn−1 ≥ 0

}
.

Proof. If x ∈ C(E), then −1 ≤ x1 ≤ 0 and 0 ≤ xi ≤ 1 for all 2 ≤ i ≤ n.

This is because C({1}) = 0, m1 = −1 and C({i}) = 1 and mi = 0 for all

2 ≤ i ≤ n. The remaining core constraints are x([i, j]) ≤ 0 if 1 ∈ [i, j] and

x([i, j]) ≤ 1 otherwise. Then, from x1 ≤ 0 we know there exists α1 ≥ 0 such

that x1 + α1 = 0 and hence x1 = −α1. From x1 + x2 ≥ 0 we deduce there

exists α2 ≥ 0 such that x1+x2+α2 = 0 and hence x2 = α1−α2. By repetedly

applying this argument we get that xi = αi−1 − αi for all 2 ≤ i ≤ n− 1 and

by efficiency xn = αn−1, with αi ≥ 0 for all 1 ≤ i ≤ n− 1. From −1 ≤ x1 we

obtain α1 ≤ 1 and from 0 ≤ xi we get αi−1 ≥ αi for all 2 ≤ i ≤ n − 1. It is

now straightforward to check that for x = (−α1, α1 − α2, α2 − α3, . . . , αn−1)

with 1 ≥ α1 ≥ α2 ≥ · · · ≥ αn−1 all core constraints are satisfied.

Notice that in a core allocation of an informed ring topology with the

source outside the ring, all agents but the one connected to the source pay
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a non-negative amount to obtain the information. Agent i > 1 pays αi−1 to

her predecessor in the path to the source, and receives αi from the agent that

follows. No payment can exceed the unitary cost of the information and the

net payment for each agent is non-negative. Agent 1, that is connected to

the source, receives a non-negative payment.

When n > 3, the core described in the above proposition is not a stable

set, since the graph is not cycle-complete.

Given a ring topology as defined above, we may consider the informa-

tion graph situation obtained by deleting one edge, take for instance E \
{n1}. It is straightforward to see that the core of this subgraph situation is

C (E \ {n1}) ={
(−α1, α1 − α2, α2 − α3, . . . , αn−1) ∈ RN | αi ∈ [0, 1] for all i ∈ N

}
(3)

which means that, inside this set, agent 1 always receives a non-negative pay-

ment while agent n always pays a non-negative amount. Each intermediate

agent (agents from 2 to n − 1) receives some amount from the agent that

follows in the graph and pays something to the one that precedes her in the

path to the source. The balance for each intermediate agent may be positive

or negative. Clearly the imputation set of both information graph situations,

E and E \ {n1} is the same, and C(E) ⊆ C(E \ {n1}).
Since E \ {n1} is cycle-complete, C(E \ {n1}) is a stable set for E \ {n1}

but not necessarily for E because the cost functions differ, the coalition

S = {1, n} has cost zero in (N,E) but cost one in (N,E \ {n1}). This

situation is illustrated in the next example.

Example 4.3 Let E = {01, 12, 23, 34, 45, 51} be an informed ring not con-

taining the source. Take the imputations y = (−0.3, 0.1,−0.1,−0.2, 0.5)

and x = (−0.4, 0.2,−0.1,−0.1, 0.4). Notice that both imputations belong to

C (E \ {51}), since the first one is defined by taking α1 = 0.3, α2 = 0.2, α3 =

0.3 and α4 = 0.5 in (3), while the second corresponds to α1 = 0.4, α2 =

0.2, α3 = 0.3 and α4 = 0.4. Moreover, x domy via coalition S = {1, 5},
which implies C(E \ {51}) is not internally stable.
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One may think of restricting the set C(E \ {51}) by imposing α1 ≥ α4 to

avoid internal domination via coalition {1, 5}, but the subset that results is

still not internally stable. To see that, take the imputations

y′ = (−0.7,−0.3, 0.7,−0.1, 0.4) and x′ = (−0.75,−0.1, 0.65,−0.15, 0.35).

Notice that y′, x′ ∈ C(E \ {51}), since y′ is defined by α1 = 0.7, α2 = 1, α3 =

0.3, α4 = 0.4 and x′ corresponds to α1 = 0.75, α2 = 0.85, α3 = 0.2, α4 = 0.35.

Moreover x domy via coalition S ′ = {1, 3, 4, 5}.

Nevertheless, the set C(E \ {n1}) satisfies a weaker stability property. It

is externally stable. The same result is obtained if we delete any other edge

in the ring.

Proposition 4.3 In a ring topology (N,E) of informed agents, the sets

Sij = C(E \ {ij})

where i, j ∈ N and ij ∈ E, are externally stable.

Proof. Assume E = {01, 12, . . . , (n− 1)n, n1} and fix i, j ∈ N with ij ∈ E.
Notice that I(E) = I (E \ {ij}) . Hence, since E \ {ij} is cycle-complete,

Theorem 3.1 guarantees that C(E \{ij}) is externally stable in I(E \{ij}) =

I(E). This means that any y ∈ I(E) \ C(E \ {ij}) is dominated by some

x ∈ C(E \ {ij}) via some coalition S which we may assume with no loss of

generality that is connected in E \ {ij}. Then, S is also connected in E and

hence it has the same cost in both information graphs, which implies that

also x domSy in E.

External stability of Sij = C(E \ {ij}) means that whenever the negoti-

ation on how to allocate the cost of sharing the information in an informed

ring not containing the source leads to some proposal outside this set, there

will be a coalition of agents that will object and propose an allocation in

Sij. However, this allocation may not be final, since it can be dominated by

another allocation, even by an allocation in Sij, as internal stability is not

satisfied.

24



5 Concluding remarks

This paper shows a characterization of the stability of the core of information

graph games and also, when the graph is has a ring structure that contains

the source of information, provides a stable set for this game that coincides

with the core of a related information graph where one edge has been deleted.

This fact resembles the situation of assignment games where some stable

sets are obtained as the union of the cores of some subgames (Núñez and

Rafels, 2013) and also of patent licensing games in which some stable sets

coincide with the core of some suitable defined reduced game (Hirai and

Watanabe, 2018).

Of course, many examples can be provided of stable sets (for instance

of some three-player games) which are not a convex set and hence will not

coincide with the core of any coalitional game. When a stable set corresponds

with the core of another coalitional game, being it a subgame or a reduced

game, it is more clear the rationale that is behind its standard of behavior.

It remains open whether stable sets always exist for information graph

games and, if this is the case, whether there is always a stable set consisting of

the core of some related information graph game after removing some nodes

or edges in incomplete cycles.
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