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ABSTRACT
Shortened salt-withdrawal minibasins and associated salt welds 

are exposed in the Mesozoic strata of the Northern Calcareous Alps 
fold-and-thrust belt (Austria). Geological mapping and sequential 
restoration of a balanced cross section have indicated that these salt 
and salt-related structures developed during the postrift stage of the 
Neo-Tethys continental margin by evacuation and inflation/deflation 
of uppermost Permian to lowermost Triassic salt. Middle to Late 
Triassic minibasins were formed by down-building and downslope 
translation, flanked by megaflaps and salt walls. Salt and salt struc-
tures were rejuvenated by salt-wall fall and formation of bowl mini-
basins as a response to Penninic rifting since Rhaetian times. Com-
plex structural styles, including younger-on-older contacts, tight 
folds, and kilometer-scale fully overturned panels resulted from 
the shortening of early salt structures upon the onset of Jurassic 
regional convergence. Salt tectonics can reconcile the stratigraphic 
development and internal structure of the long-debated Northern 
Calcareous Alps. Our work also provides a new line of research 
for understanding other fold-and-thrust belts developed from the 
Neo-Tethys continental margin (i.e., the Carpathian Mountains, the 
Southern Alps in Europe, the Dinaric Alps) and sets guidelines for 
other salt-influenced fold belts.

INTRODUCTION
The understanding of fold-and-thrust belts is based on the critical taper 

theory (i.e., Davis et al., 1983), along with thrust tectonics (e.g., Boyer 
and Elliot, 1982) and basin inversion concepts (i.e., Hayward and Graham, 
1989). These pioneering works emphasized the importance of balanced 
cross sections (e.g., Dahlstrom, 1969), which gained significance by the 
commonplace use of thrust-related folding templates (e.g., Jamison, 1987). 
In this sense, salt-detached fold-and-thrust belts have been described as 
having an extremely narrow cross-sectional taper, a regular structural 
spacing, and the lack of a clearly defined structural vergence (e.g., Davis 
and Engelder, 1985); some of these structural templates remain true and 
applicable. However, there are many salt-detached fold-and-thrust belts 
that show pre-orogenic basins and structures inherited from the conti-
nental margin stage, which, overall, lead to significant structural com-
plexities (i.e., multiple structural orientations, strong plunges, large panels 
of overturned stratigraphy, mechanical contacts omitting or repeating 
stratigraphy). Some of these examples have been explained by invoking 

several deformation phases, strike-slip tectonics, or even the gravitational 
emplacement of thrust sheets. Only recently have early salt tectonics been 
brought into the equation (e.g., Jackson and Harrison, 2006; Rowan and 
Vendeville, 2006; Callot et al., 2012; Graham et al., 2012).

An example from the Northern Calcareous Alps of Austria (Fig. 1), 
traditionally interpreted as a gravity-driven belt (i.e., Tollmann, 1987) 
overprinted by strike-slip faulting (i.e., Linzer et al., 1997), is here coher-
ently explained by salt tectonics processes. Here, we show how minibasins 
(i.e., small basins largely surrounded by and subsiding into salt) and welds 
(i.e., surfaces joining strata in direct contact, but originally separated by 
salt) developed on the Neo-Tethys margin, and how those became reju-
venated. Our findings open a new line of research for the studied area, 
and they provide important constraints applicable to other salt-influenced 
fold-and-thrust belts.

NORTHERN CALCAREOUS ALPS
The Northern Calcareous Alps are a north- to northwest-directed, salt-

detached, fold-and-thrust belt belonging to the European Alpine orogenic 
system (Fig. 1A). Its broad structure consists of ENE-WSW–striking thrust 
sheets involving a Mesozoic sedimentary cover with significant changes 
in sedimentary thickness and facies (see the GSA Data Repository1 for 
details). The Northern Calcareous Alps have been divided into three large 
nappe systems (i.e., Bajuvarikum, Tirolikum, and Juvavikum Nappes; 
Fig. 1B), the stratigraphy of which defines an approximate north-to-south 
deepening trend for the Neo-Tethys margin (see Mandl, 2000; Frisch and 
Gawlick, 2003). Structurally speaking, parts of this fold-and-thrust belt 
are characterized by large panels of overturned stratigraphy and frequent 
steep mechanical contacts that can repeat but also omit significant parts 
of the stratigraphic sequence (Fig. 1C). Importantly, all these features 
are systematically associated with an uppermost Permian to lowermost 
Triassic layered evaporitic sequence (i.e., the Haselgebirge-Reichenhall 
Formations; Spötl, 1989). In the studied area, the belt is unconformably 
overlain by synorogenic strata of Early Cretaceous age, followed by the 
Late Cretaceous–Eocene Gosau Group (e.g., Faupl and Wagreich, 1994); 
the latter commonly overlies Permian–Triassic evaporites as well.

The formation of the Neo-Tethys margin started with the Permian rift-
ing of Pangea. During the latest rifting stage, the widespread Haselgebirge-
Reichenhall salt basin was developed (i.e., Leitner et al., 2017), soon after 
followed by continental breakup around late Anisian times (e.g., Kozur, 
1991; Channell et al., 1992; Haas et al., 1995). The Northern Calcareous 
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Alps developed as the south-facing platform of the Neo-Tethys margin. 
From the latest Triassic to Middle Jurassic, this margin was rifted apart 
from Europe as the Penninic Ocean developed to the northwest (e.g., 
Channell et al., 1992; Fig. 2A). The Neo-Tethys Ocean was closed by 
southeast-directed subduction starting in Late Jurassic times (Fig. 2B), 
generating a contractional deformation that propagated northwestward 
(e.g., Faupl and Wagreich, 1994; Von Eynatten and Gaupp, 1999; Neu-
bauer et al., 2000; Frisch and Gawlick, 2003). The Mesozoic cover was 
completely detached from its pre-salt, rifted basement and became the 
leading upper plate over the southeast-dipping Penninic subduction zone 
until continental collision between Adria and Europe in Eocene times. As 
a result, these nappes experienced very large overthrusting, from their 
original autochthonous Adriatic basement to their present location on 
top of the European continental margin (e.g., Schmid et al., 2008; Stüwe 
and Schuster, 2010).

EVIDENCE FOR SALT TECTONICS IN THE NORTHERN 
CALCAREOUS ALPS

The Permian to Triassic Haselgebirge-Reichenhall evaporites have 
been known for thousands of years (Spötl, 1989). Today, these evaporites 
outcrop as highly strained clay-mantled gypsum/anhydrite bodies (e.g., 
Leitner et al., 2017) and constitute the basal detachment of the North-
ern Calcareous Alps. These evaporites form tectonic mélanges in front 

of and beneath the main nappes, involving younger units and, locally, 
exotic basement blocks (e.g., Schnabel et al., 2002). In addition to these 
features, unequivocal stratigraphic and structural features supporting an 
earlier salt tectonics scenario have been recorded during our work to the 
south of Hollenstein an der Ybbs (Fig. 3), across the states of Styria, and 
Lower and Upper Austria. These are (1) strong thickness variations in 
the Triassic postrift sequences shifting through space and time (Figs. 3 
and 4), indicating an anomalously large but strongly localized subsidence 
compared to the expected thermal subsidence rates and wavelengths for 
a passive margin; (2) truncation of stratigraphic units against steep and 
deformed salt bodies, or against meter-thick strips of severely deformed 
clays, carbonate, and sandstone breccias (i.e., welded evaporites; Fig. 3); 
(3) geological contacts frequently characterized by steep to overturned 
stratigraphy (Figs. 3 and 4); and (4) tight folds developed in the thinner 
sedimentary sequences indicating an efficient shallow detachment (Fig. 
4A). All these features indicate subsidence, sedimentation, and deforma-
tion largely controlled by the inflation and deflation of Permian–Triassic 
salt.

FORMATION AND DEFORMATION OF MINIBASINS
In the studied area, salt walls and adjoining minibasins were shortened 

by north- to northwest-directed convergence probably since Early Cre-
taceous times. These structures became completely detached from their 
pre-salt, rifted basement. Restoration of our balanced cross section (Fig. 
4) indicates a minimum shortening of ~40%. Salt walls were squeezed to 
secondary welds (i.e., vertical welds formed by contraction and squeezing 
of salt), preserved today as deep-seated pedestals (Fig. 4A); thin salt wall 
shoulders (Fig. 4B) and bowl minibasins (i.e., a minibasin that sinks into 
a previously formed diapir or salt wall; Fig. 4C) were isoclinally folded, 
whereas megaflaps were rotated to increase their degree of overturning; 
for example, the Gamsstein minibasin underwent ~50° of rotation around 
a horizontal axis. Two postrift minibasins (i.e., Gamsstein and Oisberg) 
were separated by a salt wall (i.e., Königsberg salt wall; Figs. 4D–4G) in 
Carnian–Norian times. The absence of thickening growth wedges and the 
separation of the pre-halokinetic unit revealed in our restoration (Fig. 4) 
indicate that these minibasins most likely formed by downbuilding and 
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Figure 2. Late Jurassic paleogeography of European Alpine system. A: 
Plate-tectonic framework (modified from Schmid et al., 2008). B: Crustal 
sketch illustrating position of Northern Calcareous Alps in between 
spreading Penninic Ocean to northwest and closing Neo-Tethys Ocean 
to southeast at onset of shortening in Kimmeridgian times (ca. 155 
Ma). IB—Iberia; NCA—Northern Calcareous Alps; Nw—Newfoundland; 
SA—Southern Alps; V—Vienna.

Figure 1. A: Location of Northern Calcareous Alps within Central Euro-
pean Alpine orogenic system. B: Structural map of eastern Northern 
Calcareous Alps and surrounding areas. C: Simplified cross section of 
Northern Calcareous Alps at studied area. Geological map is modified 
from Wessely (2006); cross section is adapted from Wessely (2006) 
and Bryda et al. (2013). H:V—horizontal:vertical; Os—Oisberg; Ks—
Königsberg; G—Gamsstein. Compare to Figure 2 to note amount of 
tectonic transport experienced by Northern Calcareous Alps.
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downslope translation, with a depocenter shift and a related megaflap (i.e., 
Rowan et al., 2016), bound laterally by salt walls (Fig. 4C). Once these 
minibasins were grounded by primary welding (Fig. 4C), formation of a 
Rhaetian to Early Cretaceous bowl minibasin (i.e., Pilcher et al., 2011) 
by salt deflation and salt-wall fall (Fig. 4B) took place as a response to 
regional extension, presumably related to the onset of Penninic rifting 
(e.g., Channell et al., 1992).

CONCLUSIONS
The large-scale stratigraphic geometries and structural styles described 

here are consistent with contractional rejuvenation of structures involving 
inflated salt. Our study shows that salt tectonics concepts can to a large 
extent reconcile the stratigraphic record and the internal structure of the 
Northern Calcareous Alps, without invoking the gravity-driven emplace-
ment of thrust sheets to explain geological contacts omitting stratigraphy 
(e.g., Tollmann, 1987) or tens of kilometers of lateral displacement by 
strike-slip faulting (e.g., Linzer et al., 1997). In fact, the pre-orogenic archi-
tecture of this part of the Neo-Tethys margin is remarkably similar to that 
of the European Zechstein salt basins (e.g., Stewart, 2007). Squeezing of 
salt walls was accommodated by shortening up to secondary welding, along 
with strike-slip or oblique reactivation, such as in other salt-influenced fold 
belts (e.g., Rowan and Vendeville, 2006). Many of the large strike-slip 
faults previously described in the studied area display pierced remnants 
of the Permian–Triassic evaporites and synorogenic strata, with nearby 
overturned panels, and separate thick Middle to Late Triassic platforms. 
This structural suite suggests that some of these large strike-slip faults most 
likely were salt ridges bounding minibasins that became squeezed, second-
arily welded, and reactivated as thrust welds during regional shortening.

Complex structural styles departing from the classical Rocky Moun-
tain–Appalachian structural suites (e.g., Boyer and Elliot, 1982; Davis 
and Engelder, 1985) can develop in fold-and-thrust belts when early salt 
structures are involved; as deformation is focused on the weakest parts of 
the wedge (i.e., salt diapirs and walls), the inherited structural relation-
ships and geological contacts can remain preserved (i.e., younger-on-older 

contacts). Estimates of the amount of orogenic shortening, structural spac-
ing, and the degree, styles, and sequences of thrust stacking need to be 
carefully addressed for thrust belts that involve early salt structures. Our 
approach brings a new understanding for the Northern Calcareous Alps 
and suggests that other orogenic systems that involved the Neo-Tethys 
margin, such as the Carpathians, the Dinaric Alps, or the Southern Alps 
in Europe (Fig. 2A), may have undergone a similar history.

Some points should be carefully addressed when studying salt-
influenced belts: (1) the original distribution of salt and its stratigraphic 
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Figure 3. Geological map of Gamsstein and surrounding units at Hol-
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Figure 4. A: Geological section produced in this work across study 
area. B–G:  Sequential restoration by flexural slip unfolding showing 
formation and deformation of the Königsberg salt wall, flanking Ois-
berg and Gamsstein minibasins, and Königsberg bowl minibasin. No 
vertical exaggeration; H:V—horizontal:vertical. Base of salt is unspeci-
fied. See legend in Figure 3.
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position in relation to major geodynamic events; (2) the nature of salt-
sediment contacts (i.e., either depositional, tectonic, or both); and (3) 
depocenter distribution and timing around salt bodies (or their welded 
remnants). Application of modern salt tectonics concepts will be fun-
damental to unraveling the geometry and kinematics of salt-influenced 
fold-and-thrust belts, evaluating basin histories, and reducing geological 
uncertainty.
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