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SUMMARY
Expansion of a CAG repeat inATXN3 causes the dominant polyglutamine disease spinocerebellar ataxia type
3 (SCA3), yet the physiological role of ATXN3 remains unclear. Here, we focus on unveiling the function of
Ataxin-3 (ATXN3) in the retina, a neurological organ amenable to morphological and physiological studies.
Depletion of Atxn3 in zebrafish and mice causes morphological and functional retinal alterations and,
more precisely, photoreceptor cilium and outer segment elongation, cone opsin mislocalization, and cone
hyperexcitation. ATXN3 localizes at the basal body and axoneme of the cilium, supporting its role in regu-
lating ciliary length. Abrogation of Atxn3 expression causes decreased levels of the regulatory protein
KEAP1 in the retina and delayed phagosome maturation in the retinal pigment epithelium. We propose
that ATXN3 regulates two relevant biological processes in the retina, namely, ciliogenesis and phagocytosis,
by modulating microtubule polymerization and microtubule-dependent retrograde transport, thus positing
ATXN3 as a causative or modifier gene in retinal/macular dystrophies.
INTRODUCTION

Ataxin-3 (ATXN3) is a deubiquitinating enzyme (DUB) of the Ma-

chado-Joseph disease (MJD) protease family (Nijman et al.,

2005). An expanded CAG repeat within the ATXN3 gene en-

codes a polyglutamine (polyQ) stretch located in the carboxyl

terminus of the ATXN3 protein (UniProtKB: 54252) and causes

MJD, also known as spinocerebellar ataxia type 3 (SCA3)

(OMIM: 109150). MJD/SCA3 is a late-onset autosomal dominant

neurodegenerative disorder whose main phenotypic trait is

ataxia (Paulson et al., 2017).

ATXN3, a 42-kDa protein, harbors the protease Josephin

domain (JD), which requires a cysteine in the catalytic site (C14

residue) to deconjugate ubiquitin (Burnett et al., 2003). ATXN3

participates in ubiquitin-dependent pathways by interacting

with ubiquitin E3 ligases, such as parkin (Durcan et al., 2011)

and CHIP (C terminus of Hsc70 interacting protein) (Scaglione

et al., 2011), and proteasome-associated proteins (Blount

et al., 2014; Ristic et al., 2018). Besides, ATXN3 is involved in
Ce
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several other cellular processes, including endoplasmic-reticu-

lum-associated degradation (ERAD) (Zhong and Pittman,

2006), aggresome formation (Wang et al., 2012), cytoskeletal or-

ganization (do Carmo Costa et al., 2010; Rodrigues et al., 2010),

transcriptional regulation and histone acetylation (Evert et al.,

2006), response to different types of cellular and organismal

stress (Tsou et al., 2015), DNA repair (Pfeiffer et al., 2017), and

autophagy (Ashkenazi et al., 2017).

The vertebrate retina, a structurally complex neuronal tissue

covering the inner surface of the eye, consists of six different

highly specialized cell types with a layered organization (Hoon

et al., 2014; Figure 1A). The light-sensitive photoreceptor cells

are responsible for absorption of the light stimuli and the photo-

transduction cascade (den Hollander et al., 2010). All the pro-

teins involved in photoreception and phototransduction are

localized in the outer segment (OS) of photoreceptors, a special-

ized compartment containing stacked ordered membranous

disks. Because the OS is devoid of protein translation machin-

ery, OS components are synthesized in the inner segment (IS)
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Figure 1. Knockdown of ataxin-3 in Zebra-

fish Embryos Alters Eye Size and Retinal

Layer Organization

(A) Schematic diagram of the mature vertebrate

retina organization, which is similar in humans,

mice, and zebrafish. RPE, retinal pigment epithe-

lium; PhRs, photoreceptors; ONL, outer nuclear

layer; OPL, outer plexiform layer; INL, inner nuclear

layer; IPL, inner plexiform layer; GCL, ganglion cell

layer; R, rod; C, cone.

(B) atxn3 is highly expressed in different retinal

layers in zebrafish larvae (mRNA in situ hybridiza-

tion on retinal cryosections at 7 days post-fertil-

ization [dpf]). Sense atxn3 (negative) and antisense

crx (positive) riboprobes were used as controls.

Magnification, 203; zoom, 403.

(C) In vivo imaging of embryos (72 hpf) shows that

microinjection of MO-ATXN3 (morpholino against

atxn3) compared to MO-SCR (scrambled, nega-

tive control) causes alterations in the eye (white

double-head arrows indicate the diameter) and

head size depending on the level of atxn3

knockdown (low or high). The decrease in eye size

was rescued when MO-ATXN3 was co-injected

with human ATXN3 WT Q22 mRNA, but not as

much with ATXN3 C14A (catalytically inactive

mutant) or ATXN3 Q80 (MJD mutant). Scale bar,

50 mm.

(D) Quantification and comparison of eye size in the

different embryo groups. A black line indicates the

mean eye size in each group (n = 100 independent

embryos per group). Mann-Whitney test (**p <

0.01, ***p < 0.001; n.s., non-significant).

(E) Extensive microtubule disorganization and

defective formation of the retinal structures are

observed in the retinas of high knockdown MO-

ATXN3 morphants compared to MO-SCR (control)

embryos, as shown by acetylated a-tubulin

(green). Phenotypic rescue in retinal structures

was observed after co-injecting morpholinos with

human ATXN3-derived mRNAs, as indicated.

Scale bar, 20 mm.

(F) Knockdown MO-ATXN3 zebrafish embryo ret-

inas show elongation of the PhR outer segment

(OS) and mislocalization of opsins compared to

MO-SCR retinas (see zoom for detail, black bars

on the right side indicate the OS length). This

altered rod phenotype in MO-ATXN3 morphants is

successfully rescued with co-injection of ATXN3

WT andC14AmRNAs. Rods are detectedwith rhodopsin (green) and cones with peanut agglutinin (PNA; red). White arrows indicate ectopic expression of opsins

in cones and rods. Scale bar, 10 mm. Nuclei were counterstained with 40,6-diamidino-2-phenylindole (DAPI) (blue).

(G) Rod OS (ROS) length measurements in morphants and rescued embryos (Mann-Whitney test; *p < 0.05; **p < 0.01; n.s., non-significant) (n = 3–4 images per

embryo, 5 embryos per group).
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of photoreceptors and transported to the OS through the ciliary

gate, a microtubule-based extension known as the connecting

cilium (CC) (Khanna, 2015). The tips of photoreceptor OS are

physically in contact with the retinal pigment epithelium (RPE),

a single layer of pigmented cells, forming the blood-retina barrier

(Figure 1A). The RPE participates in many important retinal func-

tions, such as the restoration of visual cycle molecules and in the

daily shedding of OS disks through phagocytosis of photore-

ceptor tips (Sparrow et al., 2010).

Being a complex tissue, the retina requires a rigorous regu-

lation at the transcriptional and protein levels, including
2 Cell Reports 33, 108360, November 10, 2020
post-translational modifications, such as ubiquitination and

SUMOylation (Swaroop et al., 2010). Mutations in several ubiqui-

tin-pathway-related genes cause hereditary retinal neurodegen-

eration, e.g., the genes encoding the E3 ligases TOPORS (Cha-

karova et al., 2007), KLHL7 (Friedman et al., 2009), TRIM32/

BBS11 (Chiang et al., 2006), and the DUB USP45 (Yi et al.,

2019). Given the clear implication of ubiquitin pathway genes in

retinal development and pathology and the genetic link between

cerebellar dysfunction and retinal anomalies in other SCAs

(McLaughlin and Dryja, 2002), we aimed to explore the function

of ATXN3, whose mutation causes MJD/SCA3, in the retina.
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Because humans, mice, and zebrafish show similar mature

retinal structures (Figure 1A), here, we combine in vivo zebrafish

and mouse models and in vitro cells. We show that ATXN3 abro-

gation causes retinal dysfunction due to alterations in both the

photoreceptor sensory cilium and RPE-mediated phagocytosis,

highlighting ATXN3 as a good candidate for genetic retinal

diseases.

RESULTS

Knockdown of ataxin-3 Causes Layer Disorganization
and Cell-Specific Alterations in Zebrafish Retinas
First, we investigated the role of ATXN3 in retina by using zebra-

fish (Danio rerio). In early zebrafish embryos, atxn3 transcripts

are already detectable from 10 h post-fertilization (hpf) onward

(Figure S1A). At 48 hpf, the atxn3 is expressed throughout the

whole retinal tissue (Figure S1B), but in the differentiated retina

at 7 days post-fertilization (dpf), atxn3 expression is mostly de-

tected in the photoreceptor (PhR), inner plexiform layer (IPL),

and ganglion cell layer (GCL) (Figure 1B). This expression pattern

of atxn3 in zebrafish is in agreement with that reported for Atxn3

in adult mouse retinas (Esquerdo et al., 2016).

We next performed a knockdown of this gene by morpholino

injection in zebrafish embryos. A specific morpholino antisense

targeting atxn3 (MO-ATXN3) was designed to interfere with cor-

rect splicing—and to ensure degradation of the aberrant mRNAs

by non-sense-mediated decay—and the efficiency of atxn3

knockdownwas assessed (Figure S1C). Remarkably, in compar-

ison to MO-SCR (scrambled) controls MO-ATXN3 embryos

showed smaller brain and eye size, without signs of malforma-

tion in the anterior-posterior axis, and with similar survival rates

(Figure 1C). The eye size phenotype strongly correlated with

the remaining levels of atxn3 expression (Figure S1C). Low levels

of knockdown resulted in embryos with moderately reduced eye

size (85.9% of total), whereas high atxn3 knockdown values re-

sulted in embryos with very small eyes and heads (14.1%) (Fig-

ure 1C). Overall, MO-ATXN3 morphants showed statistically

significantly reduced eye size (diameter) compared with that of

MO-SCR animals (mean of 239.85 mm and 274.03 mm, respec-

tively) (Figures 1C and D). To validate the observed atxn3-mor-

phant phenotype in embryos, phenotypic rescue experiments

were performed by co-injection of MO-ATXN3 with an in-vitro-

transcribed mRNA of either human ATXN3 wild type (WT) (polyQ

within the normal range, ATXN3Q22), a catalytically inactive form

of human ATXN3 (ATXN3 C14A), or human expanded ATXN3

(polyQ within the MJD/SCA3 range, ATXN3 Q80). Co-injection

of the humanATXN3WTmRNA fully rescued the eye size pheno-

type, whereas co-injection of either the C14A or Q80 ATXN3

mutants slightly increased the eye size but without reaching sta-

tistical significance (Figures 1C and 1D).

To assess whether the small eye phenotype in MO-ATXN3-in-

jected embryos was due to retinal disorganization, we immuno-

detected acetylated a-tubulin (a retinal cytoskeleton marker)

in retinal sections of 72 hpf embryos. Compared to controls,

MO-ATXN3 morphants, particularly those with high levels of

knockdown, showed extensive microtubule disorganization

and defective retinal structure formation (Figure 1E). Additionally,

immunodetection of cones (peanut agglutinin [PNA]) and rods
(rhodopsin) revealed longer rod OS (about 3-fold) in retinas of

MO-ATXN3-injected embryos than that of controls (Figures 1F

and 1G). Besides, cone L/M opsins were mislocalized in MO-

ATXN3 retinas: instead of being solely localized at the OS,

ectopic localization at the perinuclear region and axons of cones

was clearly detected (Figure S1D). Co-injection of MO-ATXN3

morphants with any of the three human ATXN3-derived mRNAs

significantly rescued both the retinal lamination and microtubule

organization phenotypes (Figure 1E) and rod OS elongation (Fig-

ures 1F and 1G). However, only the human WT ATXN3 mRNA

reversed cone opsin mislocalization, indicating that this pheno-

typic trait is dependent on the preserved DUB activity of a

non-expanded polyQ form of ATXN3 (Figure S1D).

Overall, these results suggest that a strong depletion of atxn3

causes a considerable reduction in eye size, accompanied by

retinal disorganization in the morphants. A milder phenotype

(low knockdown) shows rod OS elongation and cone opsin mis-

localization. Both severe and milder phenotypes are specifically

due to the knockdown of atxn3 because co-injection of MO-

ATXN3 morphants with human WT ATXN3 mRNA is able to

rescue the eye phenotype. These results in zebrafish prompted

us to study the function of ATXN3 in the mammalian mouse

retina.

Knockout of Atxn3 in Mice Causes Morphological and
Electrophysiological Alterations in PhRs
In agreement with the atxn3 expression pattern in zebrafish (this

work) and in mouse retinas (Esquerdo et al., 2016), we detected

the ATXN3 protein throughout all mouse retinal layers, but with a

stronger signal in the PhR layers, OPLs, IPLs, and GCLs (Fig-

ure S2). To understand the outcome of Atxn3 deletion in the

retina, we used an existing knockout mouse model (Atxn3 KO)

generated by gene trap technology (Reina et al., 2012). Although

Atxn3 KO mice do not show any gross alteration, to the best of

our knowledge, no comprehensive behavioral and pathological

studies have been conducted in these mice. Because expansion

of the CAG repeat in the humanATXN3 gene causesMJD/SCA3,

mainly characterized by progressive ataxia, we evaluated

whether knockout of Atxn3would lead to motor dysfunction. As-

sessments of grip strength, gait, balance, and locomotor and

exploratory activities in Atxn3 KO and WT littermates were con-

ducted. No differences were observed between WT and KO

mouse groups, indicating that ablation of Atxn3 does not impact

motor function in�1-year-old mice (Figure S2). We then focused

on characterizing the eye and the visual phenotype.

After confirming that Atxn3 KO mouse retinas showed an

absence of Atxn3 transcripts and proteins (Figure S2), we as-

sessed the retinal morphology of 2-year-old Atxn3 KO and WT

mice by morphometric measurements of ocular sections at the

optic nerve level (Figure S3). We detected a significant enlarge-

ment of the retina throughout all layers in the Atxn3 KO

compared to WT controls, particularly in the PhR layer (spanning

ISs and OSs) and the IPL (Figure S3). Collectively, these findings

demonstrate a morphological and functional role for Atxn3 in the

mouse retina.

Therefore, we focused in more detail on the role of ATXN3 in

PhRs of 2-month-old (fully mature young retinas) and 2-year-

old mice (when progressive retinal neurodegeneration, if any,
Cell Reports 33, 108360, November 10, 2020 3



Figure 2. Mouse Atxn3 KO Retinas Show

Elongation of PhR OSs, Cone Opsin Misloc-

alization, and Hyperactivation of Cone

Response

(A) Rod OSs (black bars at the right side) in Atxn3

KO (Atxn3�/�) retinas are much longer than those

of WT (Atxn3+/+). RHO, rhodopsin (green).

(B) Cone OSs (labeled with PNA, red) in Atxn3 KO

retinas are longer and show mislocalization of

opsins (L/M opsins, green), which also extend into

the inner segment (IS) of cones (black bars at the

right side).

(C) GCAP1 (green) is alsomislocalized in the IS and

ONL of Atxn3 KO cones (PNA, red) compared to

WT retinas. Antigen retrieval protocols used to

detect GCAP1 partially interfered with PNA stain-

ing. Scale bar, 10 mm.

(D) After subretinal microinjection of GFP-ATXN3

WT expression construct in the right eye (R) of

Atxn3 KO pups, the mislocalization of L/M cone

opsins (red) is partially rescued in transfected

cones (green), as L/M opsins localize along the

whole length of the cone OS (PNA, magenta). In

zoom images, the white arrow indicates a trans-

fected cone where opsins correctly distribute

along the OS. The left eye of each animal was not

transfected and used as a control eye (L). Nuclei

were counterstained with DAPI (blue); scale bar,

10 mm (n = 3 per group). Accompanying 3D re-

constructions are in Videos S1 and S2. (A–D)

Names of all retinal layers are abbreviated as in

Figure 1A.

(E) ERG recordings of WT (black) and Atxn3 KO

animals (gray): rod B-wave (scotopic light), phot-

opic (PHOT) B-wave (cones and cone bipolar

cells), and combined response to light in dark adapted retinas (DA) A-wave (combined rods and cones) and DA B-wave (bipolar cell response) show that the cone

(photopic response) is hyperactivated in the absence of ATXN3 (Mann-Whitney test, *p < 0.05, two eyes of 3–4 animals per group).

(F) Representative ERG recordings of the photopic B-wave in WT and KO retinas and their overlap (bottom) for direct visualization of cone hyperactivation in KO

retinas.
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would be observed). No differences in rhodopsin localization in

rods were detected between genotypes, whereas the PhR layer

was markedly enlarged in 2-month-old Atxn3 KO retinas. The

enlargement of this layer was not due to an increase in cell num-

ber but instead to a significant elongation of the rod OSs (but not

ISs) compared to controls (Figure 2A). This phenotype was

consistently observed in retinas from 2-year-old Atxn3 KO

mice (Figure S3), with no signs of increased PhR death (at all

ages, KO andWT retinas showed an equivalent number of nuclei

rows in the ONL; Figures S3B and S4). Similar to rods, Atxn3 KO

cones showed longer OSs than those of the WT, independently

of age (Figures 2B and S3B). In addition, cone L/M opsins were

markedly mislocalized in Atxn3 KO retinas, being detected not

only in the OS but also in the IS (Figures 2B and S3B).

We then assessed whether other proteins of the phototrans-

duction cascade were mislocalized in Atxn3 KO retinas. For

instance, GCAP1 (involved in the synthesis of cyclic guanosine

monophosphate [cGMP] in PhRs) is normally localized in the

OS but appeared mislocalized throughout the IS and OS of

Atxn3 KO cones (Figure 2C), as well as in the ONL and OPL of

rods (Figure S3B). These results were equivalent in young

(2-month-old) and aged (2-year-old) mouse retinas (Figures 2

and S3). In contrast, dynamin-2, GRK1, cone-arrestin, and
4 Cell Reports 33, 108360, November 10, 2020
PDE6C were similarly localized in Atxn3 KO retinas compared

to controls at all ages (Figure S4).

To confirm that opsin mislocalization was specifically due to

Atxn3 ablation, we performed phenotypic rescue assays by tran-

sient transgenesis in the retina of Atxn3 KOmice. A GFP-ATXN3

WT expression construct was microinjected into the subretinal

space of the right eye of Atxn3 KO P0-P1 newborn pups and

electroporated. The left eye of each microinjected animal was

used as a control. Control Atxn3 KO animals were transfected

with the empty GFP vector. The structure and morphology of

GFP-positive PhR cells were analyzed one month post-injection.

Because transient transgenesis is detected only in a patch zone

close to the injection, the number of animals that we used in

these experiments did not provide enough power to evaluate

the rescue of the PhR length phenotype. Besides, as rods are

present in a markedly higher number than cones in mouse ret-

inas and are difficult to individualize, we centered our rescue

analysis on the mislocalization of opsins in individual Atxn3 KO

cones (Figure 2D). As anticipated, GFP-positive cones express-

ing the human GFP-ATXN3 WT showed phenotypic rescue, as

cone opsins solely localized along all the OS (Figure 2D). In

contrast, the cones of the untreated control eye or those of

Atxn3 KO animals microinjected with GFP alone exhibited



Figure 3. ATXN3 Regulates the Length of

the Cilium in PhR Cells

(A–C) Elongation of the OS (contains the axoneme)

and CC (connecting cilium) in Atxn3 KO PhRs, as

shown in (A), by rhodopsin (red) and acetylated-

a-tubulin (green) detection in isolated rods from

2-year-oldWT (Atxn3+/+) and KO (Atxn3�/�) mouse

retinas; nuclei were labeled with DAPI (blue) (scale

bar, 10 mm); and in (B), by transmission electron

microscopy (TEM), where the connecting cilium is

indicated by a black line. No other apparent

morphological differences were detected (repre-

sentative images). (C) Mean CC length was

1.897 mm for WT and 2.066 mm for KO (19 TEM

pictures, 3 animals per genotype). Two-way

ANOVA test (*p < 0.05).

(D–G) The length of primary cilia in ARPE-19 cells is

modulated by ATXN3 levels. (D and E) Depletion of

endogenous ATXN3 by siATXN3 transfection in

human ARPE-19 cells results in longer primary

cilium (mean 4.222 mm in siATXN3 cells, n = 41)

than that in controls (mean 3.523 mm in siSCR cells,

n = 26). Mann-Whitney test (**p < 0.01). (F and G)

Starved ARPE-19 cells overexpressing GFP-

ATXN3 WT Q22 produce shorter cilia (mean,

3.211 mm) than cells with GFP-ATXN3 C14A

mutant (4.208 mm) or the pEGFP empty vector

(mean 4.318 mm). Only GFP-positive cells (n > 20–

30 per condition) were analyzed (see Figure S5B).

Mann-Whitney test (*p < 0.05, **p < 0.01). In (D) and

(F), Ciliary microtubules were detected with

acetylated a-tubulin (red) and basal bodies with

g-tubulin (green). Scale bar, 5 mm.

Article
ll

OPEN ACCESS
abnormal opsin localization in the IS and other regions (Videos

S1 and S2 for control and Atxn3 KO GFP-ATXN3-WT-microin-

jected retinas, respectively).

We then explored whether these structural PhR alterations

correlated with functional visual alterations in Atxn3 KO mice.

We performed electroretinogram recordings (ERGs) in Atxn3

KO and WT littermates under light and dark adaptation condi-

tions to evaluate the affectation of rods (responsible for scotopic

vision) and cones (stimulated under photopic conditions). The

photopic b-wave response was increased, corresponding to

the hyperactivation of cones in Atxn3 KO retinas (Figures 2E

and 2F). This photopic hyperexcitation in the Atxn3 KO mice is

in accordance with the observed alterations in cones (e.g., pro-

tein mislocalization) in Figures 2B and 2C. Although there were

no other statistically significant differences between genotypes,

a trend for increased response in KO rods to scotopic light (and

other ERG measurements) was also observed (Figure 2E).

Collectively, these findings indicate that the ablation of Atxn3 in

mice causes an elongation of OSs of PhRs and mislocalization of

cone opsins and other specific phototransduction proteins, which

are reflected by altered ERG recordings. Our results in the Atxn3

KO mouse retinas are in accordance with those observed in

zebrafish embryos and could potentially be explained by an

involvement of ATXN3 in the regulation of ciliary formation and/

or in protein trafficking from the IS to theOS through theCC. Alter-

natively, and in a non-mutually exclusive mechanism, ATXN3

could regulate the phagocytosis of the PhR OS tips by the RPE.

Hence, we next explored both hypotheses.
ATXN3Regulates theLengthofSensoryandPrimaryCilia
The PhR OS is a highly modified sensory cilium that exhibits

unique functional properties and requires finely tuned trafficking

and localization of phototransduction proteins. As the observed

increase in OS length in Atxn3 KO retinas could be due to alter-

ations in the anterograde and/or retrograde ciliary trafficking, we

first examined in more detail the structure of PhRs of Atxn3 KO

and WT mice. By isolating rods and performing immunofluores-

cent detection of rhodopsin and acetylated a-tubulin (marking

the axoneme), we confirmed the increased length of the OS

and also detected elongated cilium axonemes in Atxn3 KO

compared to those of the WT (Figure 3A). Measurements from

transmission electron microscopy (TEM) ultra-thin sections of

retinas from 2-year-old Atxn3 KO and control animals confirmed

the significantly increased length of the CC in Atxn3 KO PhRs

(mean of 2.066 mm) compared to that of the WT (mean of

1.897 mm) (Figures 3B and 3C). OS membranous stacks of

both cones and rods of Atxn3 KO retinas appeared preserved

and structurally similar to those of WT PhRs (Figure 3B).

To further investigate if ATXN3 is involved in ciliary formation,

we used ARPE-19 cells (a retinal cell line derived from human

RPE), which produce a primary cilium under serum starvation

conditions (Izawa et al., 2015), and induced the knockdown of

ATXN3. After testing the efficacy of several ATXN3 small inter-

fering RNAs (siRNAs) and scrambled siRNAs (Figure S5A), we

selected siSCR-1 and siATXN3-2 (nearly 90% of ATXN3 knock-

down) for subsequent assays (hereafter, siSCR and siATXN3,

respectively). We immunodetected the ciliary microtubules or
Cell Reports 33, 108360, November 10, 2020 5



Article
ll

OPEN ACCESS
axoneme (acetylated a-tubulin) and the basal body (g-tubulin) in

primary cilia of starved ARPE-19 cells to measure cilium length.

In agreement with our observations in mouse retinas, knock-

down of endogenous ATXN3 in ARPE19 cells consistently

caused primary cilia elongation (Figure 3D). On average,

ATXN3-depleted cells showed statistically significantly longer

cilia (with a 20% mean increase) than control-transfected cells

(4.222 mm and 3.523 mm, respectively) (Figure 3E). On the con-

trary, cells overexpressing GFP-ATXN3 WT Q22 displayed

significantly shortened primary cilia (25% shorter) than controls,

whereas the cilium length in cells expressing the ATXN3 C14A

mutant were unaffected (Figure 3F). On average, cilium length

was 4.318 mm for control, 3.211 mm for ATXN3 WT, and

4.208 mm in cells overexpressing ATXN3 C14A (Figure 3G).

To confirm whether ATXN3 localized in some ciliary compo-

nents,weperformed immunodetectionson starvedARPE19cells.

Although non-preferentially, endogenous ATXN3 colocalizes with

acetylated a-tubulin at the axoneme of the cilium and g-tubulin at

the basal body (single confocal planes, Figure S5C). We propose

that this localization of ATXN3 in ciliary compartmentsmay enable

its regulatory activity on ciliary length. Overall, our results support

that in PhRs andRPE cells, ATXN3 is a negative regulator of ciliary

length in a DUB activity-dependent manner.

KEAP1, a Substrate Adaptor of CUL3, Is Depleted in
Atxn3 KO Retinas
To elucidate the role of ATXN3 in ciliogenesis and identify proteins

whoseabundance inmouse retina is regulateddirectlyor indirectly

by this DUB, we compared the proteomes of Atxn3 KO and WT

mouse retinas. Protein extracts of neural retinas of 1-year-old

Atxn3 KO and WT littermates were pooled for liquid chromatog-

raphy-mass spectrometry (LC/MS) proteomic assessment.

Although not all relevant proteins could be identified in this prote-

omic approach, over 5,000 proteins were unambiguously identi-

fied, quantified, and comparedbetweenWTandAtxn3KOmouse

retinas (Table S2, full protein list with fold-change values). As ex-

pected, the quantity of Atxn3 was highly over-represented in WT

retinas, confirming the sample genotypes (Table S2). The volcano

plot in Figure 4A highlights significantly over-represented (88 hits,

in green) and under-represented proteins (106 hits, in orange) in

the KO versusWT retinas. GeneOntology (GO) annotation reveals

that over-represented proteins in Atxn3 KO retinas are mainly

involved in phototransduction (20%) and in endocytosis and ve-

sicular transport pathways (30%) (TableS3),which is in agreement

with a corresponding increase of proteins localized at the elon-

gated OS in Atxn3 KO retinas. On the other hand, almost 40% of

the under-representedproteins are involved inmicrotubule forma-

tionandorganization, inangiogenesisand inflammation,and in the

response to stimulus and stress (Table S3), which are of particular

interest because many retinal pathologies are associated with al-

terations of these pathways. Among the under-represented pro-

teins in Atxn3 KO mouse retinas, we selected KEAP1, a Kelch-

like ECH-associated protein also related to the ubiquitin signaling

pathway, as a goodcandidate to use to pursue its connectionwith

ATXN3.

KEAP1, a substrate adaptor protein of the CUL3 E3 ubiquitin

ligase complex, promotes the ubiquitination and proteasome

degradation of NRF2 (also known as NFE2L2) (Cullinan et al.,
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2004) and p62 (also known as SQSTM1) (Johansen and Lamark,

2011), key regulators of cell stress, transcriptional response and

autophagy, by the KEAP1-NRF2 signaling pathway. Therefore, a

decrease in levels of KEAP1 results in increased levels of NRF2

and p62. To probe for a potential interaction network linking

ATXN3 to ciliary formation by KEAP1, we queried an open access

webapp, RPGenet v2.0, which allows the visualization of curated

network interactions of relevant retinal genes by integrating data

from reported literature and high-throughput screenings

(Arenas-Galnares et al., 2019). Through this network (Figure 4B),

we observed that high levels of p62 not only promote autophagy

(Johansen and Lamark, 2011) but also, and of relevance to the

Atxn3KO retinal phenotype, strongly inhibit the deacetylase activ-

ity of HDAC6 (Yan et al., 2013). This nuclear and cytosolic deace-

tylase regulates the length of the cilium by deacetylating a-tubulin

TUBA1A, a main component of ciliary microtubules (Ran et al.,

2015). The retrieved ATXN3 interactome network allowed us to

generate a working model to illustrate how the depletion of

ATXN3 might result in the elongation of retinal sensory cilia by

ATXN3-KEAP1-SQSTM1-HDAC6-acetylated TUBA1A interac-

tions (Figure 4C).

To confirm this model and to evaluate whether ATXN3 regu-

lates the KEAP1-SQSTM1 signaling pathway, we assessed

levels of key proteins in siATXN3-treated ARPE-19 cells. Similar

to theAtxn3KO retina proteome, knockdown ofATXN3 in human

cells significantly decreased KEAP1 protein levels (Figure 4D),

leading to potentially reduced activity of the KEAP1-CUL3 com-

plex. Our results also confirm that the levels of NRF2 and p62

were increased inATXN3-knockdown cells comparedwith those

of controls (Figure 4D).

Because KEAP1 seems to be a key player in this potential

cascade of events regulating cilium length, we focused on better

understanding whether ATXN3 participates in regulating the sta-

bility and proteasomal clearance of KEAP1. Indeed, depletion of

ATXN3 lead to destabilization of the KEAP1 protein (decreased

half-life), further supporting ATXN3 as a regulator of KEAP1 turn-

over (Figure 4E). Future studies are needed to assess whether

ATXN3 directly deubiquitinates KEAP1. Thus, our results sug-

gest that ATXN3 promotes the stability of KEAP1 by slowing

down its degradation, although the precise mechanism remains

to be elucidated.

ATXN3 Regulates Levels of Extracellular Matrix and
Microtubule-MediatedTransportComponents in theRPE
In parallel with regulating ciliary length, ATXN3 could regulate the

length of thePhROSbymodulation of phagocytosis of theOS tips

by the RPE. To assess whether Atxn3 KO mouse RPEs show

altered levels of relevant phagocytosis proteins, we defined the

proteome in the RPE of the same animals used in the previously

described proteomics. The volcano plot in Figure 5A highlights

significantly over-represented (7 hits, in green) and under-repre-

sented proteins (48 hits, in orange) in the Atxn3 KO versus WT

RPEs (full list in Table S2). Although some of the altered proteins

in Atxn3 KO versus WT coincide in the neural retina and the RPE

proteomes, therewere relevant differences due to the intrinsic dif-

ferential geneexpression andprotein content in these two tissues.

Therefore, Atxn3 ablation seem to differentially affect target pro-

teins or interacting partners in the retina and RPE. GO data



Figure 4. Neural Retina Proteomics in Atxn3

KO Mice and Knockdown Assays in

Cultured Cells Show That KEAP1 Levels

Are Decreased when ATXN3 Expression Is

Depleted

(A) Proteomics volcano plot of neural retinas from

2-year-old Atxn3 KO versus WT mice, plotting the

�log10 (p value) against the log2 ratio (fold change).

Thresholds were set at a significance of p < 0.01

and a ratio of 50% change (0.5 and 1.5). Over-

represented and under-represented proteins in

Atxn3 KO retinas are highlighted in green and

orange. Some relevant retinal proteins are also

indicated. Gene Ontology (GO) classification is in

Table S3.

(B) Network generated by RPGenet v2.0 links

ATXN3 by KEAP1-SQSTM1 to the HDAC6-

acetylated a-tubulin signaling pathway, which

controls ciliary length. The direction and

strength of the interaction between the con-

nected nodes is respectively indicated by the

arrows and width of the connecting edges (red

lines, physical interaction; gray lines, genetic

interaction). Node size differences are not rele-

vant for this work.

(C) Proposed pathways whereby ATXN3 depletion

cause a decrease of KEAP1, which leads to an

increase of SQSTM1 (p62), a negative regulator of

the HDAC6 deacetylase activity. Inhibition of

HDAC6 increases the pool of acetylated a-tubulin,

which can then polymerize and increase ciliary

length. An asterisk (*) indicates the proteins whose

peptides were not identified in the proteomics

analyses.

(D) Knockdown of endogenous ATXN3 causes a

sharp decrease of KEAP1 levels in ARPE-19 cells,

with a concomitant increase of SQSTM1 and

acetylated a-tubulin (as well as other proteins of the KEAP1/NR2F2 pathway). Statistical significance was determined by one-sample t test or Wilcoxon rank-sum

test (*p < 0.05, **p < 0.01).

(E) The half-life of KEAP1 is clearly decreased after ATXN3 knockdown in HEK293T cells under cycloheximide protein-synthesis inhibition (CHX). Mann-Whitney

test, n = 4–6 (*p < 0.05, **p < 0.01).
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analyses showed that several components of the specific extra-

cellular matrix of the retina, namely, the interphotoreceptor matrix

(e.g., collagens, fibulin, and laminins; Ishikawa et al., 2015), are

over-represented in Atxn3 KO RPE. Increased levels of proteins

in the subretinal space also correlate with longer microvilli and

other structural proteins that connect the RPE to the PhR OS

tips (Bonilha et al., 2006). On the other hand, almost 20% of the

specific PhR proteins involved in the visual cycle and phototrans-

duction (e.g.,opsins, transducin, recoverin, andperipherin) areun-

der-represented in Atxn3 KORPE compared to controls, pointing

to an alteration of the degradation of PhR proteins by phagocy-

tosis. Proteins involved in the response to stimulus and stress

arealsodiminished, aswell as relevantproteins implicated inchro-

matin structure and transcription regulation that are known to

interact with ATXN3 (Table S3). Therefore, our proteomic results

support a structural alteration of the subretinal space connecting

RPE and PhRs as well as a dysfunction of the phagocytosis of

OS tips in Atxn3 KOmice.

InRPEcells, early phagosomes (early endosomes) are formed in

the apical zone and are transported to the basal zone (late endo-

somes) by the microtubule motors kinesin-1 and dynein-2 for
anterograde and retrograde transport, respectively. Although our

proteomic analyses did not identify peptides for all the transport-

relatedproteins (e.g., F-actin orMYO7Awerenot identified), the in-

teractomeanalysisofATXN3 retrievedbyRPGenet v2.0confirmed

a close network of interactions with these relevant microtubule

transport proteins (Figure 5B). According to a plausible working

model, depletion of the ATXN3 protein leads to an increase in

F-actin levels, which interacts with the phagosome marker ezrin

and the phagosome closure enzyme dynamin-2 (all of them

increased), mostly pointing to an increase in phagosome/early en-

dosome formation (Figure 5C). In contrast, the levels of a-tubulin,

kinesin-1 subunits (such asKLC1), and the dynein cofactor dynac-

tin-2 were slightly decreased, whereas the levels of dynein-2 were

highly increased (Table S2), overall resulting in a delay of the endo-

somematurationand,consequently, inadecreasednumberof late

endosomes in Atxn3 KO RPE (Figure 5C).

Depletion of ATXN3 Causes a Delay in Phagosome
Maturation In Vivo and In Vitro

As predicted by this model, immunodetection in mouse retinal

sections confirmed increased ezrin in the apical microvilli of
Cell Reports 33, 108360, November 10, 2020 7



Figure 5. ATXN3 Regulates PhR Phagocy-

tosis by Modulating Endosome Maturation

and Transport in the RPE

(A) Proteomics volcano plot of RPEs from Atxn3

KO versus WT mice, the plotting �log10 (p value)

against the log2 ratio (fold change). Thresholds and

protein highlights are as in Figure 4A.

(B) Network generated by RPGenet v2.0 that links

ATXN3 to cytoskeleton and microtubule motor

proteins that control phagosome maturation and

vesicle transport in RPE cells. Node size is not

relevant for this work.

(C) Proposed pathways whereby the depletion of

ATXN3 alters phagosome formation and matura-

tion within the RPE cells. An asterisk (*) indicates

the proteins whose peptides were not identified in

the proteomics analyses.

(D) Ezrin expression (green) is increased in 2-

month- and 2-year-old Atxn3 KO RPE compared

with controls. The increase of ezrin is visible in the

apical zone of the RPE (A), where the microvilli are

located, but not in the basal zone (B), see zoom

panel at the right. Cones are detected by L/M op-

sins (magenta) and PNA (red); nuclei are labeled

with DAPI (blue). See 3D visualization in Videos S3

and S4. Scale bar, 10 mm. MV, apical microvilli.

(E) Increased ezrin expression is confirmed by an

increase in microvilli surface and length (black bar)

in the interphotoreceptor matrix of Atxn3 KO ret-

inas in TEM images. The black arrow points to

longer MV in Atxn3�/� retinas.

(F–H) The RPE of Atxn3 KO mice displayed de-

layed phagosome maturation as visualized in (F), a

representative TEM image showing more phag-

osomes in the apical than in the basal zone (white

arrows). (G) No apparent difference in the total

number of phagosomes per counting area was

detected between WT and Atxn3 KO RPEs, but as

shown in (H), more phagosomes accumulated in

the apical versus the basal zone in Atxn3 KO RPE

(51.7% versus 48.3%) compared to WT RPE

(33.9% versus 72.1%) (n > 10 images, 3 animals

per genotype). Two-way ANOVA test (**p < 0.01).
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the RPE cells in young (2-month-old) and aged (2-year-old)

Atxn3 KO compared to WT mice (Figure 5D; Videos S3 and

S4). A more precise visualization by TEM showed an elongation

of the apical microvilli in Atxn3 KO RPE compared to that of WT

(Figure 5E) and reinforced the implication of RPE dysfunction in

the Atxn3 KO retinal phenotype. TEM analysis also revealed a

differential distribution of phagosomes in the apical and basal

zone of the RPE cells (Figure 5F). Although the WT and Atxn3

KO RPE cells showed a similar number of phagosomes per

counting area (Figure 5G), an asymmetrical phagosome distribu-

tion between the basal and apical zones was clearly observed in

the Atxn3 KO RPE (Figure 5H). The RPE cells of Atxn3 KO retinas

showed an increased number of phagosomes in the apical zone

and a lower number in the basal zone compared with the WT

counterparts (Figures 5F and 5H), thereby indicating a delay in

phagosome trafficking from the apical zone (where they are
8 Cell Reports 33, 108360, November 10, 2020
formed) to the basal zone (where fusion to lysosomes occurs)

and corroborating our working model. Delayed phagosome

maturation in Atxn3 KO RPE could, therefore, result in dimin-

ished phagocytosis of the PhR disks, offering an additional

explanation for the observed elongation of PhR OS in the retina

of these mice.

To confirm the effect of ATXN3 depletion in phagosomematu-

ration, in vitro phagocytosis assays were performed in ARPE19

cells. We induced phagocytosis by adding fluorescent latex

beads to the ARPE-19 cell medium (Peng et al., 2017). The for-

mation and maturation of phagosomes containing latex beads

in siATXN3 and siSCR-treated ARPE-19 cells were monitored

using confocal microscopy. To detect internalization of latex

beads within vesicles, cells were immunodetected with early

(EEA1) or late (Rab7) endosome markers. In agreement with a

delayed maturation of phagosomes in Atxn3 KO RPE cells,



Figure 6. Depletion of ATXN3 in ARPE-19

Cells Causes an Increase of Early Endo-

somes, Decrease of Late Endosomes, and

Alterations in theCytoskeletonOrganization

(A and B) Immunofluorescent detection of early

endosomes (EEA1, red) (A) and late endosomes

(RAB7, red) (B) in ATXN3-depleted ARPE-19 cells

after incubation with fluorescent latex beads

(green) to induce phagocytosis. Quantification of

the percentage of the beads within these vesicles

shows a significant increase of early endosomes

and a decrease of late endosomes. Mann-Whitney

test (*p < 0.05, ***p < 0.001, n > 15 cells per group).

(C) Knockdown of ATXN3 in ARPE-19 phagocytic

cells alters cytoskeleton organization, as shown by

microtubule disorganization (a-tubulin, green),

dynein-2 disarray (red), and F-actin increase

(phalloidin, gray).

(D) Zoom-in at the central region of images in (C).

White arrows point to dynein-2 dots trailing

microtubule filaments in control cells (3D visuali-

zation in Videos S5 and S6). Nuclei were labeled

with DAPI (blue). Scale bar in (A)–(C),10 mm.
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ATXN3 knockdown in these human RPE-derived cells caused a

consistent and statistically significant increase of early phago-

cytic endosomes (latex beads within vesicles labeled with

EEA1), as well as a significant decrease of late phagocytic endo-

somes (latex beads in Rab7-positive vesicles) compared to con-

trols (Figures 6A and 6B). Besides, the microtubule network was

highly disorganized in cells depleted of ATXN3 (Figures 6C and

6D). In siSCR control cells, dynein-2 localized alongside ordered

a-tubulin microtubules, whereas in ATXN3-depleted cells, we

observed amarked increase of both F-actin, required tomaintain

cell shape, and cytoplasmic dynein-2, which did not localize on

the disorganized a-tubulin microtubules (Figures 6C and 6D;

Videos S5 and S6).

Taking together the in vivo and in vitro results, ATXN3 deple-

tion does not affect phagosome formation but rather alters the

anterograde/retrograde transport of phagosomes/endosomes,

most likely as a result of cytoskeletal network disorganization

due to perturbed levels of transport proteins. Thus, ATXN3

seems to function as an arbiter of protein levels of multiple ciliary

transport components, plausibly by microtubules, in the verte-

brate retina.

DISCUSSION

The vertebrate retinal cup is formed from an evagination of the

central nervous system (CNS) during development. Many genes

and signaling pathways are, therefore, shared between brain and

retina, and pathogenic mutations can both alter specific zones in
Cell
the brain and cause a retinal or ocular

phenotype (e.g., PAX6; Duparc et al.,

2006). The retina also shares genetic net-

works with the cerebellum (Pula et al.,

2011), and genes responsible for ataxia

are also involved in retinal phenotypes or

ciliogenesis. For instance, ATXN7, the
protein causing SCA7, interacts with a network of retinal proteins

(Kahle et al., 2011), and SCA7 patients show macular degenera-

tion (Hugosson et al., 2009); and ATXN10 (SCA10) or TTBK2

(SCA11) are involved in syndromic ciliopathies that show retinal

alterations (van Reeuwijk et al., 2011; Goetz et al., 2012).

Although a few studies showed thinning of the nerve fiber layer,

GCL, and macular region of MJD/SCA3 patient retinas (Alvarez

et al., 2013; Pula et al., 2011; Spina Tensini et.al., 2017), to the

best of our knowledge, no investigation has been conducted to

comprehensibly assess visual function in MJD/SCA3 patients

or to study the function of ATXN3 in retina. Therefore, we sought

to characterize the role of ATXN3 in the retina by using geneti-

cally amenable animal and cell models.

Focusing on the eye, we found that high knockdown of atxn3

expression in zebrafish embryos caused severe alterations in

retinal structure, with no distinguishable layers and disorganiza-

tion of the microtubule cytoskeleton structure. Mild reduction of

Atxn3 protein levels caused a more moderate retinal phenotype

in zebrafish, largely characterized by elongation of PhR OSs and

mislocalization of cone opsins. Both phenotypes could be

rescued by the introduction of WT human ATXN3 mRNA and

partially by introduction of the catalytically inactive or the

expanded-CAG ATXN3 mutant mRNAs. These results indicate

that ATXN3 exerts relevant functional roles both dependently

and independently of its DUB activity in the retina. Definingwhich

roles of ATXN3 are DUB dependent or independent deserves

further consideration in future studies. The partial rescue by

the expanded polyQ protein could be possibly explained by a
Reports 33, 108360, November 10, 2020 9
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combination of functional restoration of ATXN3with concomitant

increased cell toxicity due to the longer polyQ tract in the mutant

protein. These results are in complete agreement with previous

reports showing that both depletion of ATXN3 and overexpres-

sion of pathogenic polyQ ATXN3 alleles caused disorganization

of cytoskeleton and increased cell death in cultured cells (Neves-

Carvalho et al., 2015; Rodrigues et al., 2010).

Particularly, the phenotypic traits observed in the less severe

atxn3 knockdown zebrafish embryo/larvae, which affected the

OS length and opsin localization in the OS, were highly indicative

of alterations in ciliary formation and/or ciliary protein trafficking,

respectively (Khanna, 2015; Wheway et al., 2014). The phenotype

of lowerAtxn3 knockdown in zebrafish ishighly consistentwith the

retinal phenotype of young and agedAtxn3KOmice. Rigorous as-

sessmentsofAtxn3KOandWTretinasbymorphometrymeasure-

ment, confocal microscopy of retinal sections and isolated rods,

and TEM showed a consistent elongation of PhR OSs (both in

rods and cones), increased length of the CC, and mislocalization

of cone (but not rod) opsins inAtxn3KO retinas compared to con-

trols. The observedmorphological phenotype inAtxn3 KOmouse

cones reinforced the notion that ATXN3 regulates ciliary microtu-

bulenetworksandsubsequent ciliaryprotein trafficking.Alteration

in ciliary formation and function results in ciliopathies, a generic

name that groups syndromic and non-syndromic rare disorders,

and the retina is one of themost commonly affected tissues (Buja-

kowska et al., 2017; Wheway et al., 2014). Syndromic ciliopathies

have a very visible multiorgan developmental phenotype,

including polydactyly, obesity, heart malformations, and kidney

dysfunction, besides neurosensory alterations (Reiter and Leroux,

2017). We have not found any evidence indicating that ATXN3 is

involved in syndromic ciliopathies because we have detected

only alterations in the cilium of retinal cells (both PhRs and RPE).

However, further studies are needed to clarify the precise role of

ATXN3 in ciliary formation in other cells/organs.

Additionally, we observed that the increased length of PhR

OSs in Atxn3 KO retinas could also indicate phagocytosis

dysfunction of the RPE. RPE has an essential physiological

role in nursing PhRs by providing nutrients, actively participating

in the visual cycle, and daily phagocyting the tips of PhR OSs

(Sparrow et al., 2010). Alteration of RPE cells can cause retinal

or macular degeneration (Ferrington et al., 2016). Both alter-

ations in RPE phagocytosis and protein trafficking into the PhR

OSs may occur in parallel in the retina if microtubule-mediated

transport is dysregulated.

Independent proteomic data from neural retina and RPE from

Atxn3 KO and control mice highlighted a role for ATXN3 (direct or

indirect) in modulating the abundance of proteins involved in the

regulation of microtubule formation and microtubule-dependent

vesicle-trafficking. The profiles of altered proteins in Atxn3 KO

retina and RPE overlapped partially, reflecting a tissue-specific

activity of ATXN3. Because DUBs require cofactors and other

partners with their own tissue-specific expression pattern in or-

der to recognize their substrates in vivo, the function of ubiqui-

tously expressed ATXN3 appears to be tissue specific. In the

neural retina, depletion of this DUB led to decreased levels of

KEAP1, which, in turn, resulted in an increase of p62 and poten-

tially subsequent inhibition of HDAC6 activity, leading to an in-

crease of acetylated a-tubulin, themain component of stable mi-
10 Cell Reports 33, 108360, November 10, 2020
crotubules in the cilia. Previous reports showed that ATXN3

interacts with tubulin and microtubules (Rodrigues et al., 2010)

and also with HDAC6 and dynein to promote aggresome trans-

port to the microtubule organization center (MTOC) (Burnett

and Pittman, 2005). Our in silico analyses of all publicly available

data on retinal gene interactomes also support ATXN3 as a regu-

lator of key proteins involved in microtubule polymerization and

microtubule-mediated cargo transport. The in vitro assays in hu-

man RPE cells and our in vivo observations in mouse and zebra-

fish models further complement these reports. ATXN3 localizes

at ciliary compartments, where it may regulate microtubule poly-

merization and cilium length. ATXN3 depletion causes an in-

crease in cilium length because there is a decrease in KEAP1

concentration and a subsequent increase in p62, which inacti-

vates HDAC6 deacetylase activity and, in turn, results in

increased levels of acetylated a-tubulin and polymerization of

ciliary microtubules, thereby altering microtubule-mediated

transport. In this context, and likely serving as the main cause

of hyperexcitation in the photopic response in the Atxn3 KO

mice, altered retrograde ciliary transport in retinal cones could

be accounted for the mislocalization of highly expressed photo-

reception and phototransduction proteins.

In addition,we observed alteredOSphagocytosiswhenATXN3

was ablated or silenced, with RPE cells showing altered microtu-

bule formation and impaired phagocytic vesicle transport. The

number of phagocytic (early) endosomes was normally produced

and even enhanced, whereas both the number of late endosomes

and levels of themicrotubulemotor protein KLC1were decreased

in Atxn3 KO retinas, indicating a delay in the microtubule-medi-

ated transport from early to late endosomes. In fact, both Atxn3

KO and Klc1 KO mice display a similar phagosome flux pheno-

type in the RPE (Jiang et al., 2015). It is intriguing to note that

ATXN3 has been recently proposed to transiently regulate auto-

phagosome formation and that ATXN3 depletion also impairs

autophagy (Herzog et al., 2019), thereby pointing to a wider role

of ATXN3 in regulating vesicle-associated degradation.

On the other hand, a combined mutant phenotype in RPE (dif-

ferential localization of phagosomes and slow endosomematura-

tion) and PhRs (opsin mislocalization with an accumulation in the

lower part of the OS and the IS) is also observed in theMyo7a KO

mouse, amodel of Usher’s syndrome 1B (a human ciliopathy with

severe visual and hearing impairment) (Williams and Lopes, 2011).

Myosin7a is the motor protein that transports phagosomes from

the F-actin filaments at the apical region to the microtubules in

the RPE and is located at theCC in the PhRs. The phenotypic sim-

ilarities of theMyo7a KO and the Atxn3 KOmouse further support

a role of ATXN3 associated with vesicular transport.

Notably, Atxn3 KO retinas show increased levels of interpho-

toreceptor matrix proteins. Indeed, ATXN3 regulates levels of

several integrin subunits inmuscle, neuronal, and other mamma-

lian cells (do Carmo Costa et al., 2010; Rodrigues et al., 2010;

Neves-Carvalho et al., 2015), further supporting a role of

ATXN3 in modulating the protein context in the extracellular

space. Considering that a correct composition of the interpho-

toreceptor matrix is key to the proper function of themacula (Ish-

ikawa et al., 2015), alteration of ATXN3 levels may contribute to

the eventual dysfunction of the macula, the retinal region with

highest concentration of cones in humans. Because the rodent



Figure 7. Model for the Molecular Role of

ATXN3 in the PhRs and RPE Cells Based

on the Phenotype Observed in Atxn3 KO

Mouse Retinas

(A) Rods and cones are PhR cells with a highly

specialized sensory cilium, the OS, which contains

ordered membranous stacks packed with proteins

involved in phototransduction (e.g., rod and cone

opsins), which are produced at the IS and must

traffic through the ciliary gate. Sensory cilia have

two centrioles at the base, from which the corre-

sponding ciliary microtubules grow into the con-

necting cilium and the axoneme (well within the

OS). The intraciliary transport (IFT) of cargo pro-

teins is bidirectional and relies on microtubule-

associated motors, kinesins, and dyneins, which

are responsible for anterograde and retrograde

transport. RPE cells produce microvilli that

phagocyte the tips of the OS for renewal of

photoreception and phototransduction machinery.

Actin filaments, ezrin, and dynamin-2 are involved

in RPE phagocytosis. Phagosomes/early endo-

somes are formed in the apical zone of the RPE,

and their maturation process into late endosomes

and fusion to the lysosomes at the basal RPE zone involve non-ciliary microtubule-dependent transport (retrograde direction).

(B) Our model proposes that in the retina, ATXN3 modulates the retrograde transport mediated by both ciliary and non-ciliary microtubules by regulation of

HDAC6 activity. In the absence or low levels of ATXN3, the following events may occur: (1) the levels of KEAP1 are decreased, which, in turn, increase the levels of

p62 and thus inhibits HDAC6; (2) as a result, the pool of acetylated tubulin increases and the polymerization of microtubules is enhanced; (3) the cilium and OS of

PhRs increase in length and the retrograde transport is altered, thus resulting in cone opsin mislocalization, phagosome maturation delay, and microtubule

disorganization. When overexpressed, ATXN3 localization into the basal body and axoneme increases, where it may enhance microtubule depolymerization and

resorption, resulting in shorter cilia (images with biorender.com).
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retina does not have amacula, it is difficult to test this hypothesis

in mice. Overall, our results highlight ATXN3 as a good candidate

for retinal degeneration, particularly for cone/macular affectation

and/or ciliary trafficking regulation. Our proposed model for the

phenotype observed in the Atxn3 KO retina at the PhR and

RPE cell level is summarized in Figure 7.

Many studies have been conducted to understand the aggre-

gation properties, stability, and neuronal toxicity of the expanded

(CAG)n/polyQ gain-of-function pathogenic alleles of ATXN3. Un-

fortunately, little is known about the molecular response of cells

toATXN3 loss-of-functionmutations. Our data support a diversity

of regulatory roles for ATXN3 and indicate a pleiotropic effect of

perturbing ATXN3 expression in the retina by altering both PhR

ciliary formation and trafficking and PhR OS phagocytosis. In

view of the first clinical trials for Huntington disease, based on

lowering the expression of the gene in a non-allelic-specific strat-

egy by antisense oligonucleotides (Tabrizi et al., 2019), and the

preclinical studies carried out for SCA3 using the same strategy

(McLoughlin et al., 2018), it would be prudent to perform addi-

tional research to evaluate the impact of reducing the abundance

of ATXN3 in several neuronal tissues of animal models before at-

tempting a similar approach in MJD/SCA3 patients.
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30-31-32) to G.M. This research was also supported by Becky Babcox

Research Fund/pilot research (award G015617), the Protein Folding Disease

Initiative (University of Michigan) - Fund for Proteomics Studies, and University

of Michigan discretionary funds to M.d.C.C. The authors thank Henry L. Paul-

son for providing the Atxn3 KO mice and the anti-MJD antibody; Naila S. Ash-

raf for technical support; Pennelope Blakely Kunkle and Sasha Meshinchi for

TEM assistance; Cagri Besirli, Jungyu Yao, and David Zack for providing ac-

cess to subretinal injection equipment; Venkatesha Basrur at the Proteomics

Resource Facility (Dept. of Pathology, University of Michigan) for the prote-

omics analysis; and Sergio Castillo-Lara for helpful discussions on network

analysis and webapp implementation.
AUTHOR CONTRIBUTIONS

A.G., M.d.C.C., and G.M. designed and supervised the experimental work;

M.d.C.C. and G.M. provided the funding; V.T., S.G.-M., C.d.l.P.-R., and

M.d.C.C. performed the experiments; R.A.-G. and J.F.A. designed RPGenet

v2.0 and helped with the network visualization; S.V.T. provided constructs

and advice; N.K. performed the ERGs; V.T., M.d.C.C., and G.M. wrote the

manuscript; all the authors analyzed the results, participated in the discussion,

and revised the manuscript.
DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: January 13, 2020

Revised: September 4, 2020

Accepted: October 17, 2020

Published: November 10, 2020
REFERENCES

Alvarez, G., Rey, A., Sanchez-Dalmau, F.B., Muñoz, E., Rı́os, J., and Adán, A.
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A.H., Pfeiffer, A., Gierisch, M.E., Salomons, F.A., Simonsen, A., et al. (2019).

The Machado–Joseph disease deubiquitylase ataxin-3 interacts with LC3C/

GABARAP and promotes autophagy. Aging Cell 19, e13051. https://doi.org/

10.1111/acel.13051.

Hoon, M., Okawa, H., Della Santina, L., and Wong, R.O.L. (2014). Functional

architecture of the retina: development and disease. Prog. Retin. Eye Res.

42, 44–84.

http://refhub.elsevier.com/S2211-1247(20)31349-8/sref1
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref1
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref1
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref2
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref2
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref2
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref3
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref3
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref3
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref3
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref4
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref4
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref4
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref4
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref5
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref5
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref5
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref5
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref6
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref6
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref7
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref7
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref7
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref8
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref8
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref8
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref9
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref9
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref9
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref9
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref9
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref10
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref10
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref10
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref10
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref10
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref11
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref11
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref11
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref11
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref12
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref12
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref12
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref12
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref13
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref13
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref13
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref14
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref14
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref14
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref14
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref15
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref15
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref15
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref16
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref16
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref16
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref16
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref17
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref17
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref17
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref17
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref17
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref18
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref18
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref18
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref18
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref18
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref19
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref19
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref19
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref20
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref20
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref20
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref20
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref21
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref21
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref21
https://doi.org/10.1111/acel.13051
https://doi.org/10.1111/acel.13051
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref22
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref22
http://refhub.elsevier.com/S2211-1247(20)31349-8/sref22


Article
ll

OPEN ACCESS
Hugosson, T., Gränse, L., Ponjavic, V., and Andréasson, S. (2009). Macular
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Antibodies

Rabbit anti-Active Caspase-3 BD PharMingen (San Jose, CA) Cat# 559565; RRID:AB_397274

Mouse anti-Acetylated a-tubulin Sigma Aldrich (San Luis, MO) Cat# T6793; RRID:AB_477585

Rabbit anti-Acetylated a-tubulin Abcam (Cambridge, UK) Cat# ab179484

Lectin PNA Life Technologies (Carlsbad, CA) Cat# L32460

Mouse anti-Rhodopsin (1D4) Abcam (Cambridge, UK) Cat# ab5417; RRID:AB_304874

Rabbit anti-Red/Green (L/M) Opsin Merck Millipore (Burlington, MA) Cat# AB5405; RRID:AB_177456

Rabbit anti-Ataxin-3 (MJD) Kind gift from Dr. Paulson N/A

Rabbit anti-GCAP1 Kind gift from Dr. Mendez N/A

Mouse anti-Ezrin Abcam (Cambridge, UK) Cat# ab4069; RRID:AB_304261

Rabbit anti-Dynamin-2 ThermoFisher Scientific (Waltham, MA) Cat# PA1-661; RRID:AB_2293040

Mouse anti-GRK1 (D11) Abcam (Cambridge, UK) Cat# ab2776; RRID:AB_303289

Rabbit anti-Cone Arrestin Merck Millipore (Burlington, MA) Cat# AB15282; RRID:AB_1163387

Rabbit anti-PDE6C Abgent (San Diego, CA) Cat# AP9728c; RRID:AB_10616160

Mouse anti-HA BioLegend (San Diego, CA) Cat# 901502; RRID:AB_2565007

Mouse anti-GAPDH Abcam (Cambridge, UK) Cat# ab9484; RRID:AB_307274

Rabbit anti-KEAP1 Proteintech (Rosemont, IL) Cat# 10503-2-AP; RRID:AB_2132625

Rabbit anti-CUL3 Proteintech (Rosemont, IL) Cat# 11107-1-AP; RRID:AB_2086429

Mouse anti-SQSTM1/p62 Abcam (Cambridge, UK) Cat# ab56416; RRID:AB_945626

Mouse anti-a-tubulin Sigma Aldrich (San Luis, MO) Cat# T5168; RRID:AB_477579

Rat anti-NRF2 Merck Millipore (Burlington, MA) Cat# MABE1799

Rabbit anti-GFP Abcam (Cambridge, UK) Cat# ab290; RRID:AB_303395

Rabbit anti-EEA1 Abcam (Cambridge, UK) Cat# ab2900; RRID:AB_2262056

Mouse anti-RAB7 Abcam (Cambridge, UK) Cat# ab50533; RRID:AB_882241

Rabbit anti-Dynein-2 Abcam (Cambridge, UK) Cat# ab122525; RRID:AB_11133051

Alexa Fluor 633 Phalloidin Life Technologies (Carlsbad, CA) Cat# A22284

Mouse anti-g-tubulin Sigma Aldrich (San Luis, MO) Cat# T6557; RRID:AB_477584

Experimental Models: Cell Lines

Human HEK293T ATCC Cat# CRL_3216; RRID:CVCL_0063

Human ARPE-19 ATCC Cat# CRL_2302; RRID:CVCL_0145

Experimental Models: Organisms/Strains

Mouse (Mus musculus): Atxn3 KO Reina et al., 2012 N/A

Zebrafish (Danio rerio): atxn3 WT This study N/A

Zebrafish (Danio rerio): atxn3 KD This study N/A

Mouse (Mus musculus): Atxn3 WT Reina et al., 2012 N/A

Oligonucleotides

Morpholino antisense oligonucleotide (MO-ATXN3) GeneTools (Philomath, OR) N/A

Morpholino antisense oligonucleotide (MO-SCR) GeneTools (Philomath, OR) N/A

siATXN3 Dharmacon (Lafayette, CO) J-012013-05-0002

siATXN3 Dharmacon (Lafayette, CO) J-012013-06-0002

siATXN3 Dharmacon (Lafayette, CO) J-012013-07-0002

siATXN3 Dharmacon (Lafayette, CO) J-012013-08-0002

SiSCR Dharmacon (Lafayette, CO) D-001810-01-05

SiSCR Dharmacon (Lafayette, CO) D-001810-02-05

(Continued on next page)

e1 Cell Reports 33, 108360, November 10, 2020



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Primer DNA oligos Merck KGaA (Germany) (for sequences,

see Table S1)

N/A

Software and Algorithms

GraphPad Prism (7.03) GraphPad Software (San Diego, CA) N/A

Statgraphics Centurion XVII Statistics Statgraphics Technologies, Inc.

(The Plains, VA)

N/A

Fiji software Schindelin et al., 2012 N/A

Imaris software Oxford Instruments plc (UK) N/A

Proteome Discoverer (v2.1) Thermo Fisher (Waltham, MA) N/A
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Gemma

Marfany (gmarfany@ub.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
Proteomics data generated in this work is provided in Table S2. The use of RPGenet v2.0 for visualization of interaction networks is of

free access (https://compgen.bio.ub.edu/RPGeNet/)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement and animal handling
All procedures were performed according to the ARVO statement for the Use of Animals in Ophthalmic and Vision Research, as well

as to the regulations of the Animal Care facilities at the University of Barcelona and the University of Michigan. All animal procedures

were evaluated and approved by the Animal Research Ethics Committee (CEEA) of the University of Barcelona and the University of

Michigan Committee on the Use and Care of Animals (protocols DAAM 6262 and 7185, and PRO00006371, respectively).

Murine retina samples were obtained from 2 month- and 2 year-old Atxn3+/+ and Atxn3�/� mice (mixed sexes, C57BL/6

background) (Reina et al., 2012). Eight to eleven-month-old Atxn3+/+ (n = 4) and Atxn3�/� (n = 4) (mixed sexes) were used for elec-

troretinogram recording. Mice were housed in cages with a maximum number of five animals and maintained at the University of

Michigan Unit for Laboratory Animal Medicine in a standard 12-hour light/dark cycle with food and water ad libitum. Animals were

anaesthetized with isoflurane and euthanized by decapitation (following the Ethics Committee approved procedures). Zebrafish

(Danio rerio) were maintained at 28.5�C on a 14-hour light/10-hour dark cycle at the zebrafish facility of the University of Barcelona.

Fertilized eggs were obtained as previously reported (Toulis et al., 2016), and collected at different developmental stages as

described in Kimmel et al. (1995). For in vivo imaging, embryos were anaesthetized with MS222, following the approved protocols.

Cell culture
Human ARPE-19 cells (ATCC CRL_2302) were cultured in 1:1 Dulbecco’s Modified Eagle’s Medium (DMEM) (ATCC, Manassas,

Virginia) and Ham’s F-12 Nutrient Mix supplemented with 10% Fetal Bovine Serum (FBS) and 1% Penicillin-Streptomycin (all

from Life Technologies, Carlsbad, CA) in a 5% CO2 humidified chamber at 37�C. To induce cilia differentiation, ARPE-19 cells

were deprived of FBS for 48 h.

METHOD DETAILS

Mouse genotyping by PCR
MouseAtxn3+/+ andAtxn3�/� genotypingwas performed using genomic DNA isolated from tail biopsies at the time of weaning, and

genotypes were reconfirmed using DNA extracted from tails collected post-mortem. Total DNAwas isolated using the DNeasy Blood

and Tissue kit (QIAGEN, Hilden, Germany), following the manufacturer’s instructions with minor modifications. Three primers (Table

S1A) were used to genotype WT and knockout alleles in a single PCR reaction.
Cell Reports 33, 108360, November 10, 2020 e2
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Tissue dissection and sample preparation
For RNA extraction, zebrafish embryos were collected and preserved in RNAlater� (Ambion/Life Technologies, Carlsbad, CA) at 4�C
until processed (maximum 48 hours). For in situ hybridization or immunofluorescence detection, zebrafish embryos were fixed and

cryoprotected as reported previously (Toulis et al., 2016). Mouse retinas were dissected and either directly frozen in liquid nitrogen for

RNA and protein extraction or fixed and cryoprotected for in situ hybridization and immunofluorescence detection as previously

described (Toulis et al., 2016). All the retinas were extracted at the same time point of the day for comparison, as phototransduction

proteins shift their localization according to the circadian light-dark cycle.

RNA extraction and RT-PCR
Mouse retinas were homogenized using a Polytron PT1200E homogenizer (Kinematica AG, Lucerne, Switzerland). Total RNA was

extracted using the RNeasy�mini kit (QIAGEN, Hilden, Germany) following themanufacturer’s instructions withminor modifications.

Reverse transcription of total RNA per sample was performed using the iScript cDNA synthesis kit (Bio-Rad, Hercules, CA) following

the manufacturer’s protocol. A pool of 12-20 zebrafish embryos was homogenized using a Polytron PT1200E homogenizer (Kinema-

tica AG, Lucerne, Switzerland). Total RNA was extracted using the High Pure RNA Tissue Kit (Roche Diagnostics, Indianapolis, IN)

following themanufacturer’s instructions withminormodifications. Reverse transcription reactions were carried out using the qScript

cDNA Synthesis Kit (Quanta BioSciences, Inc., Gaithersburg, MD) following the manufacturer’s protocol. For semiquantitative

analysis and riboprobe amplification, the cDNA was amplified according to standard protocols using GoTaq polymerase (Promega,

Madison, WI). The expression level quantification and characterization of different mouse isoforms was performed using primers

located at the 50UTR and 30UTR. Actb (zebrafish) and Gapdh (mouse) genes were used for normalization of gene expression. Primer

sequences are listed in Table S1A.

In situ hybridization
In situ hybridizations of zebrafish retinal cryosections and of whole-mount zebrafish embryos were performed as previously

described (Thisse and Thisse, 2008; Toulis et al., 2016). In brief, 16-18 mm sections were recovered on commercial Superfrost

Plus glass slides (ElectronMicroscopy Sciences, Hatfield, PA), thawed and rinsed. The name and sequence of all primers are in Table

S1A. After overnight hybridization at 55�C with digoxigenin-labeled riboprobes (2 mg/ml) in 50% formamide and 1 mg/ml yeast tRNA

in hybridization blocking solution. Sense and antisense riboprobes were generated from cDNA fragments generated by RT-PCR of

400-700 bp cloned into the pGEM-T� Easy Vector (Promega). After hybridization, slides were washed in 50% formamide, 1x SSC,

0.1% Tween-20 at 68�C, equilibrated in MABT (100 mM C4H4O4 pH 7.5, 150 mM NaCl, 0.1% Tween-20) at 37�C, and blocked in

Blocking Buffer (100mMTris-HCl pH 7.5, 150mMNaCl, 1%BSA and 0.1%Triton X-100). An anti-digoxigenin-AP conjugate antibody

(Roche Diagnostics, Indianapolis, IN) in Blocking Buffer was incubated overnight at 4�C. Sectionswere washed inMABT prior to add-

ing the BMPurple AP Substrate (Roche Diagnostics, Indianapolis, IN). Antisense and sense ISH staining reactions were processed in

parallel. Sections were coverslipped with Fluoprep (Biomérieux, France) and photographed using a Leica DFCCamera connected to

MZFLIII (Leica Microsystems, Wetzlar, Germany).

Morpholino injection in zebrafish embryos
To knockdown atxn3 in zebrafish embryos, a morpholino antisense oligonucleotide (MO) that targeted the donor site at the exon 3/

intron 3 boundary (MO-ATXN3, 50-AACGGGTAACTATGACTGACCTGGA-30) (GeneTools, Philomath, OR) was used to generate aber-

rant mRNAs by either intron 3 retention or exon 3 skipping. A scrambled (SCR) morpholino was used as a negative control (MO-SCR,

50-CCTCTTACCTCAGTTACAATTTATA-30). After optimization of the protocol, we finally injected 65 pL of each MO into 1 to 4-cell

embryos as previously described (Toulis et al., 2016), being 72 nmol of MO the final amount per embryo. For phenotypic rescue,

the human wild-type ATXN3 plus several mutant cDNAs (the catalytically inactive C14A ATXN3, the MJD mutation Q80 ATXN3)

were cloned into the pCS2 expression vector and in vitro transcription was performed using a capped RNA transcription kit

(SP6 mMESSAGE mMACHINE�; Ambion/Life Technologies, Carlsbad, CA) following the manufacturer’s instructions. A mixture of

mixed MO/mRNA (72 nmol of MO and 30 pg mRNA) was injected as described above. For in vivo eye measurements, anaesthetized

embryos at 72 hpf were examined and photographed under the microscope. Eye size measurements from the anterior to the pos-

terior ocular edges were performed using the Fiji software. Significant statistical differences between groups were analyzed by the

Mann-Whitney U-test after Bartlett and Shapiro-Wilk tests for equal standard deviation (SD) and normal distribution rendered nega-

tive results.

Immunofluorescent detection in retina & cells
For immunofluorescence, 12 mm retinal sections were recovered on commercial Superfrost Plus glass slides (Electron Microscopy

Sciences, Hatfield, PA), treated and immunodetected as previously described (Esquerdo et al., 2016). After incubation with the pri-

mary and secondary antibodies conjugated to either Alexa Fluor 488, 568 or 647 (Table S1B), sections were mounted in Fluoprep

(Biomérieux, Marcy-l’Étoile, France) or ProLong� Gold (Invitrogen, Carlsbad, CA) and analyzed by confocal microscopy (SP2 or

SP5, Leica Microsystems, Wetzlar, Germany, or Nikon A1, Tokyo, Japan).
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Protein lysates and immunoblotting
Retina lysates from Atxn3+/+ and Atxn3�/�mice were obtained by homogenization and sonication in RIPA lysis buffer (50 mM Tris

pH 7.5, 1 mM EDTA, 150 mM NaCl, 0.5% NP40, with protease inhibitors (Complete, Roche Diagnostics, Indianapolis, IN)). Proteins

fromAtxn3+/+ andAtxn3�/�mouse RPEwere extracted following a previously described protocol (Wei et al., 2016). Proteins (30 mg)

were resolved in 10%–12.5% SDS-PAGE gels, transferred onto PVDFmembranes and blocked with 5%–10% non-fat milk in PBS-T

for 1 h, followed by an overnight incubation at 4�C with primary antibodies and a peroxidase-conjugated anti-mouse or anti-rabbit

secondary antibody (1:2000) for 1 h. Bands were visualized by treatment either with the ECL-plus reagent (Western Lightning�, Per-

kinElmer, Waltham, MA) and exposure to autoradiography films or with Lumi-Light Western Blotting Substrate (Roche Diagnostics,

Indianapolis, IN) and chemiluminescence detection in a LAS-4000 mini Luminescence Image Analyzer (Fujifilm, Tokyo, Japan). Fiji

software (Schindelin et al., 2012) was used to quantify protein band density and a-tubulin or GAPDH were used for normalization.

Figure 4 shows representative western blots (n = 4). Uncropped blots are shown in Figure S5D.

Transmission Electron Microscopy (TEM)
Eyes from Atxn3WT and Atxn3 KOmice were enucleated. The cornea was perforated using a needle to create a small hole, and eyes

were immersed in fixative solution (2.5% glutaraldehyde, 2% PFA in 0.1 M cacodylate buffer) for 1 hour at RT, followed by an over-

night incubation at 4�C. After several rinses with buffer, eyes were post-fixed in 1% osmium tetroxide, rinsed in double distilled water

to remove phosphate salt and then stained en bloc with aqueous 3% uranyl acetate for 1 hour. Eyes were dehydrated in ascending

concentrations of ethanol, rinsed two times in propylene oxide, and embedded in epoxy resin. Eye blocks were sectioned into 70 nm

ultra-thin sections and stained with uranyl acetate and lead citrate. Negative-stained sections were examined using a JEOL 1400

electron microscope at 80 kV. Images were recorded digitally using a Hamamatsu ORCA-HR digital camera system operated using

AMT software (Advanced Microscopy Techniques Corp., Danvers, MA). Fiji software was used for measuring the connecting cilium

length of photoreceptors as well as counting phagosomes in the RPE.

Retinal morphometry
Semi-thin sections (0.5 mm) of epoxy-embedded eyes fromAtxn3WTandAtxn3KOmice (see above) were stainedwith toluidine blue.

Sections of the central retina (containing theoptic nerve)wereexamined andphotographedunder a stereomicroscope (MZFLIII, Leica

Microsystems, Wetzlar, Germany). Fiji software was used for measuring the thickness of the retinal layers at 200 mm intervals.

Motor performance evaluation
Groups of Atxn3 KO (n = 5) and Atxn3WT (n = 8) mice (mixed population, 39-58 weeks of age) were weighed and evaluated for their

motor performance in several paradigms blindly to mouse genotype. All groups were generated using littermate male and female

mice. Motor function was assessed using tests as previously reported (Costa et al., 2013), including performances on accelerating

rotarod, balance beam, and locomotor activity in an open field chamber for 30 min.

Electroretinograms
Electroretinograms (ERGs) were performed in 8-11 month-old WT and ATXN3 KO mouse littermates. Prior to ERG recording, mice

were adapted to the dark overnight, anesthetized by intraperitoneal injection of ketamine 100 mg/kg and xylazine 10 mg/kg, and

maintained on a heated pad at 37�C. For pupil dilation, 0.5% tropicamide (0.5%) was applied for 10 minutes. Flash-induced ERG

responses were recorded from both eyes in response to light stimuli produced with a Ganzfeld stimulator. The recording protocol

consisted of dark-adaptation for 20 min, after which scotopic ERG, maximum ERG, and dark-adapted a-wave and b-waves were

recorded. The dark-adapted ERG protocol consisted of steps with increasing stimulus strengths. All flashes were presented without

background illumination tomaintain dark adaptation. Light-adapted ERGs were recorded after light adaptation for 8-10minutes. The

outcome measures were the response amplitudes and implicit time of each ERG component. The ERG recordings complied with

International Society for Clinical Electrophysiology of Vision (ISCEV) standards.

Photoreceptor isolation
Retinas fromAtxn3WTandAtxn3KOmicewere dissected as previously described (Toulis et al., 2016). Photoreceptors were isolated

using the Neural Tissue Dissociation Kit (MACS, Miltenyi Biotec, Bergisch Gladbach, Germany) following the manufacturer’s instruc-

tions with somemodifications. Briefly, dissected retinas were washed in PBS, incubated in 1960 mL of enzymemix 1 at 37�C (20 min)

in a water bath, and, after a careful tapping of the tube, the supernatant containing the isolated photoreceptors was placed on com-

mercial Superfrost Plus glass slides (Electron Microscopy Sciences, Hatfield, PA). Photoreceptors were fixed at�20�C (10 min) with

cold methanol and assessed for specific protein expression by immunofluorescence as described above.

In vivo mouse subretinal DNA electroporation
pEGFP vector or pEGFP-ATXN3 WT was diluted in PBS (6 mg/ml) and mixed with fast green dye (Fisher Scientific, Waltham, MA)

(0.1%). Atxn3 KO neonatal mouse pups (P1) were subjected to subretinal electroporation of the plasmid solutions as described pre-

viously (López-Begines et al., 2018). Transient transgenic retinas were collected and processed at postnatal day 25-30 for immuno-

histochemistry as mentioned above.
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Liquid chromatography-mass spectrometry
Retinas and RPE of Atxn3 WT and Atxn3 KO mice (1-year-old, 5 animals per group, 3 females/ 2 males) were separately dissected.

Proteins were extracted and quantified as described above. Briefly, protein digestion and isobaric labeling of 2 technical replicate

pools of 100 mg of either retinal or RPE protein lysates per mouse group (20 mg/ mouse) was performed using a TMT (tandem

mass tag) 10-plex kit (Thermo Fisher Scientific, Waltham, MA) following the manufacturer’s instructions, in preparation for LC-

MS/MS analysis as described elsewhere (Tank et al., 2018). In order to obtain superior quantitation accuracy, we employed multi-

notch-MS3 (McAlister et al., 2014), which minimizes the reporter ion ratio distortion. Orbitrap Fusion (Thermo Fisher Scientific, Wal-

tham, MA) and RSLC Ultimate 3000 nano-UPLC (Dionex, Sunnyvale, CA) was used to acquire the data, and Proteome Discoverer

(v2.1; Thermo Fisher, Waltham, MA), for data analysis, as described (Tank et al., 2018). MS2 spectra were searched against Swis-

sProt mouse protein database (release 2017-10-03; 25570 sequences), and only identified proteins and peptides that passed% 1%

FDR threshold were retained. Quantitation was performed using high-quality MS3 spectra using the Reporter Ion Quantifier Node of

Proteome Discoverer (Average signal-to-noise ratio of 10 and < 30% isolation interference) (Tank et al., 2018). The volcano plot of the

proteomic analysis was designed using GraphPad Prism 7.03 (San Diego, CA, USA) by plotting the �log10 (P value) against the log2
ratio (fold change). Gene Ontology (GO) analysis was performed using the web-tools DAVID (https://david.ncifcrf.gov/), AmiGO

(http://amigo.geneontology.org/amigo) and PANTHER classification system (http://www.pantherdb.org/).

Transfection and assays in cultured cells
For overexpression experiments, the following constructs were used: pEGFP vector, pEGFP-ATXN3 WT and pEGFP-ATXN3 C14A.

For silencing experiments, we used four different siRNAs targeting human ATXN3 (siATXN3: J-012013-05-0002, J-012013-06-0002,

J-012013-07-0002, J-012013-08-0002) and two control siRNAs scramble (siSCR) sequences (D-001810-01-05, D-001810-02-05)

(all from Dharmacon, Lafayette, CO). For immunohistochemistry and cilia formation imaging, human ARPE-19 cells (1x105/well)

were seeded onto poly-L-lysine-coated coverslips and co-transfected with either 1 mg/well of each GFP-ATXN3 constructs for over-

expression assays, using Lipotransfectine (Niborlab, Guillena, Spain). Growth medium was replaced 5 hours post-transfection with

serum-freemedium to induce cilia differentiation. After 48 h of transfection, cells were fixed and used for immunofluorescence assays

as described above. For ATXN3 silencing, human ARPE-19 cells (1x105/well) were transfected with 10 nM of each siRNA using Lip-

ofectamine RNAiMAX Transfection Reagent (Invitrogen, Carlsbad, CA) following the manufacturer’s instructions. After 48 h of trans-

fection, cells were either used for immunodetection assays (if grown on L-poly-lysine coverslips) or collected for protein extraction

and subsequent immunoblotting analysis. For phagocytosis assays, we used a protocol described elsewhere (Peng et al., 2017).

Briefly, ARPE-19 cells were seeded and transfected with either siSCR or siATXN3. After 48 h, 5 3 106 latex beads (Latex beads,

amine-modified polystyrene, fluorescent Orange, L9904, Sigma-Aldrich, San Luis, MO) were added per well. After incubation, the

coverslips were washed with PBS to remove unbound latex beads. Immunocytochemistry with appropriate antibodies to label early

and late endosomeswas performed 24 h after addition of latex beads. HumanHEK293T cells, acquired fromATCC (CRL_3216), were

cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) (ATCC, Manassas, Virginia) supplemented with 10% Fetal Bovine Serum

(FBS) and 1%Penicillin-Streptomycin (all from Life Technologies, Carlsbad, CA) in a 5%CO2 humidified chamber at 37�C. For protein
half-life analysis, cells were treated with 150 mM cycloheximide (CHX, Sigma-Aldrich, San Luis, MO) 36 h after transfection for 0, 1, 2,

3 and 4 h.

Imaging analysis and 3D visualization
Fiji software (Schindelin et al., 2012) was used for cilia length measurements, and Imaris software for 3D visualization and video

recording (Oxford Instruments, Zurich, Switzerland). To plot the fluorescence intensity colocalization profiles, single confocal planes

centered in either the region of the basal body or the cilium axoneme were used.

Network visualization
To identify new interaction partners of ATXN3 and locate the identified potential substrates of ATXN3 (revealed by proteomics) in a

genetic network of interactions, we used the recently updated and versatile webapp of retinal relevant genes, RPGenet v2.0 (https://

compgen.bio.ub.edu/RPGeNet/; Arenas-Galnares et al., 2019).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significance of data, equal standard deviation (SD) and normal distribution were first assessed using Bartlett and Shapiro-

Wilk tests. If data followed a normal distribution and showed homogeneity of variance, two-way ANOVA or One-sample t test was

used for statistical significance analysis. When data did not follow a normal distribution, non-parametrical Mann-Whitney U-test

or Wilcoxon signed-rank test were applied. Analysis was performed using GraphPad Prism 7.03 (San Diego, CA, USA) or Stat-

graphics Centurion XVII Statistics software (The Plains, VA, USA).
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