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Abstract 

Asymmetric cell division (ACD) is a strategy for achieving cell diversity. Research carried 

out over the last two decades has shown that in some cell types that divide asymmetrically, 

mother and daughter centrosomes are noticeably different from one another in structure, 

behaviour, and fate, and that robust ACD depends upon centrosome function. Here, I review the 

latest advances in this field with special emphasis on the complex structure-function relationship 

of centrosomes with regards to ACD and on mechanistic insight derived from cell types that divide 

symmetrically but is likely to be relevant in ACD. I also include a comment arguing for the need 

to investigate the centrosome cycle in other cell types that divide asymmetrically. 

 

Introduction 

This short piece is intended to offer a concise view of the most recent articles published 

on “centrosomes in asymmetric cell division”. It is therefore not suitable as an introduction to this 

subject, which can be obtained from previous, comprehensive reviews on asymmetric cell division 

or centrosomes in general [1-5] and others on the specific subject of centrosomes in asymmetric 

cell division [6-9]. 

Pioneer work on diving grasshopper neuroblats showing that unequal asters bring about 

unequally sized daughter cells was probably the first hint that centrosome activity may be tailored 

to the specific needs of cells that divide asymmetrically [10]. This was solidly substantiated two 

decades later by the discovery that mother and daughter centrosomes segregate according to 

cell fate and have different roles in ACD in Drosophila germline stem cells (GSCs) and neuroblasts 

as well as neural progenitors in vertebrates (NBs) [11-15]. 
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Although belonging to different lineages from different species these cells share four traits 

that altogether make them distinct: (i) they undergo a particular type of ACD in which one of the 

daughters is a renewed version of the mother and can go through repeated rounds of such a 

“self-renewing” ACD; (ii) during interphase the centrosome is close to the cell membrane, away 

from the nucleus; (iii) the interaction between centrosome and plasma membrane takes place at 

the apical side, which is fated to remain in the daughter cell that becomes the renewed 

stem/progenitor; and (iv) the fate of each centrosome correlates tightly with centrosome age. 

 

Relevant news from “symmetric” divisions. 

The last few years have seen a great deal of new insight on centriole duplication, basal 

body function, PCM assembly, etc that derive from cell types that divide symmetrically but may 

eventually help to understand centrosome asymmetry in the context of ACD [16-23]. A 

remarkable example is the new concept of PCM as a molecular assembly formed via liquid–liquid 

phase separation [24]. This exciting conceptual revolution is a paradigm change that is already 

exerting a strong influence on centrosome biology [25] and ACD (reviewed in [26]) and may be 

specially relevant in asymmetric centrosome cycles where mother and daughter centrosomes 

become conspicuously unequal as far as PCM recruitment is concerned. The reader is also referred 

to an interesting article adding a pertinent note of caution [27].  

Another one is targeted co-translation. In different zebrafish and human cell types 

Pericentrin (PCNT), Abnormal Spindle Microcephaly-related (ASPM), Hyaluronan Mediated Motility 

Receptor (HMMR), and Nuclear Mitotic Apparatus Protein 1 (NUMA1) mRNAs have been found to 

localize to the centrosome where they are translated during mitosis [28, 29]. In situ translation 

of key scaffold proteins may optimise centrosome maturation not only by speeding up their arrival 

at the destination but also by facilitating specific protein interactions that may help folding and 

protein-complex assembly. Moreover, targeted translation minimises the chances of assembly of 

ectopic PCM aggregates. It is tempting to speculate that such supramolecular ribonucleoprotein 

aggregates made of mRNAs, ribosomes and nascent peptides may also have a significant role in 

PCM phase separation. Co-translational targeting may add a further layer of regulation of 

centrosome asymmetry in ACD. Indeed, mutations in PCNT and ASPM cause primary 

microcephaly phenotypes that are thought to arise from proliferation defects in neural progenitors 

[8]. 

 

Form follows function. 

Advance in the last few years on the fundamental question of how centrosome asymmetry 

contributes to ACD has been significant in the case of neural stem cells in chickens and mice 
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where functions specifically attributable to either the mother or the daughter centrosomes have 

been identified.  

In chickens, daughter centrosome-specific satellites serve as a platform for the asymmetric 

delivery of the regulator of Notch ligands Mindbomb1 (Mib1) to the differentiating cell that is 

thereby capable of signalling its sibling to retain neural stem identity through Notch trans-

activation [30].  

In mice and chickens, the mother centrosome organises a distinct ring-like microtubule 

structure juxtaposed to the cell junctions that sets the mechanical properties of the cell membrane 

around the centrosome-to-membrane anchoring site [31, 32]. In mice, upon inactivation of the 

distal appendage-specific protein CEP83 the mother centrosome remains close the apical endfoot, 

but is no longer anchored to the membrane [31]. This small displacement of centrosome position 

disrupts the microtubule ring-structure, resulting in expansion and increased stiffness of the apical 

surface and activation of mechanically sensitive YAP signaling [33], which in turn promotes 

overproliferation of neural progenitors and cortex overgrowth [31]. The role of the mechanical 

properties of the cortex in the balance between proliferative and neurogenic activity had 

previously been suggested by the decrease in stiffness of the ventricular zone that occurs along 

the decline in neurogenic potential during development as well as by the stiffer ventricular surface 

of gyrated animals compared to that of rodents [34, 35]. 

Another key mother centriole protein, the microtubule organization protein AKNA, which 

has been found to be enriched at the mother centriole’s subdistal appendages, orchestrates 

destabilisation of microtubules at the adherens junctions and constriction of the apical endfoot 

that are required for timely delamination from the ventral zone [36]. Also related to centrosome 

maturation-linked functions, the role of Rbfox proteins in promoting neuronal differentiation by 

switching from a centrosomal splice form of Ninein in neural progenitor cells to a non-centrosomal 

isoform in neurons [37] further substantiates earlier results showing the key role of Ninein in 

neural stemness in rodents [15, 38]. 

The functional relevance of the unequal behaviour of mother and daughter centrosomes 

in ACD of neural stem cells is also underpinned by the discovery of centrosome asymmetries that 

must be overridden for symmetric proliferative divisions to occur. In chickens, a Golgi resident 

pool of Mib1 is released at mitosis onset to overcome centrosome-dependent Mib1 asymmetry 

[30]. In motor neuron progenitors in the developing chick spinal cord, SHH signalling upregulates 

PCNT, thus bringing PCNT and PCNT-bound A-kinase anchoring protein PKA levels in mother and 

daughter centrosomes even. The regulatory activity that PKA has on SHH signalling closes a 

positive feedback loop that confers robustness to this process [39]. 

A remarkable conclusion from these data and others published before is that loss of 

function of proteins that localise at PCM, appendages, satellites, and centriole proximal sites 

brings about very different phenotypes, including unscheduled differentiation, delamination 
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defects, cell death, and overproliferation or depletion of neural progenitors. This conclusion 

underscores the complex structure-function relationship of centrosomes and suggests that 

different centrosome domains may play dedicated roles in ACD. 

Also in vertebrates and as a counterpoint, a recent article reports that neuron progenitors 

in the developing cerebellum that divide asymmetrically present conspicuously different mother 

and daughter centrosomes, but daughter cell fate and centrosome age do not correlate [40]. 

Drosophila germline and neural stem cells were instrumental in the discovery of asymmetric 

centrosome cycles [11-14, 41-43]. The ease of experimental manipulation and genetic tractability 

of Drosophila facilitated the relatively fast identification of main regulators of centrosome 

asymmetry, and functional assays to establish the contribution of centrosome asymmetry to ACD 

in these cells followed suit. In short, loss of centrosome asymmetry, centrosome dysfunction, or 

lack of centrosomes altogether can alter cell fate and, in some instances, result in tumour growth. 

However, the actual fraction of cases of faulty daughter cell fate determination is surprisingly 

small. The two-sided conclusion is that robust, faultless ACD is totally dependent upon the 

corresponding asymmetric centrosome cycle, but still GSCs and NBs can fulfil their developmental 

programmes rather effectively without centrosomes. Similarly, neurogenesis in mice can be 

sustained by ectopic acentriolar p53-/- progenitors [44]. However, unlike neural progenitors in 

vertebrates, the quest for centrosome maturation-dependent cell fate determinants in Drosophila 

is still open. 

Perhaps as a trade-off of such early discoveries, the main lines of thought on centrosome 

asymmetry and the role of centrosomes in ACD in flies remain largely as described in early reviews 

on the subject [45-48] and results published in the last few years, informative as they are, are 

incremental. In NBs, recent additions to the centrosome asymmetry network are the newly 

discovered role of Plk4 in shedding off the PCM from the mother centriole by phosphorylating 

mother centriole-bound Spd2/Cep192 [49], as well as ALIX, ADP-ribosylation factor-like 2 (arl2), 

and tubulin-binding cofactor D (TBCD) that function together to regulate microtubule nucleation 

and growth [50, 51]. Very recent 3D-structured illumination microscopy and live-cell imaging data 

[52] add further detail to the established role of Polo-dependent Centrobin function in centrosome 

asymmetry in NBs. In mGSCs, last advances include the identification of new components of the 

centrosome orientation checkpoint and regulators of Apc2 enrichment at the cell cortex [53-56]; 

the finding that Klp10A restrains mother centrosomes from overgrowth that would result in 

unequally sized daughters [57]; and the discovery that contrary to most Drosophila cells, 

daughter and mother centrioles present some interesting maturation-specific structural traits in 

mGSCs [58]. Very recent work on mGSCs has led to the identification of the Drosophila homologue 

of human ciliopathy gene Alstrom syndrome alms1a as the first stem cell-specific regulator of 

centriole duplication [59]. 
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The resilience of ACD in GSCs and NBs to centrosome loss unveils the activity of parallel, 

centrosome-independent mechanism. In mGSCs one such a mechanism may be migration of the 

spectrosome to the hub-GSC interface where it seems to help maintain proper spindle orientation 

[60]. In NBs, the position of the last-born daughter works in parallel with centrosomes to set 

polarity orientation [61]. 

 

The need for more experimental models. 

We have learned that centrosome age and fate correlate tightly in all but one case [40], 

and that the mother centrosome is fated to the renewed stem in some lineages and to the 

differentiating daughter in others. However, given the small number of cell types that have been 

investigated in detail, generalisations are out of order. Thus, for instance, we do not know if the 

case of granule neuron progenitors in the developing cerebellum in which daughter cell fate and 

centrosome age do not correlate [40] is exceptional, nor do we know if daughter centrosome 

retention by the renewed stem cell is an oddity only to be found in flies. The same goes for the 

so far unique case of NBs where, adding further evidence towards defeating the concept of 

general principles in biology, for most of the interphase each centrosome contains a single 

centriole rather than a diplosome, and PCM and MTOC activity are organised by the daughter 

centriole only [41, 42]. Moreover, because the few cases analysed in detail so far correspond to 

ACD in stem cells, we have no clue as to the possible relevance of centrosome asymmetry in ACD 

in other cell types. 

Answers to these questions can only come from a systematic evaluation of the centrosome 

cycle in as many ACD types from as many species as possible. Obvious choices are model systems 

where such experiments are easier to perform like Drosophila intestinal stem cells (ISCs) and 

sensory organ precursors (SOPs), as well as C. elegans’ ACDs. In ISCs, recent results confirm a 

tight correlation between supernumerary centrosomes and overproliferation, but cause-effect 

relation has not been established [62, 63]. In SOPs, the predictable asynchronous movement 

towards the midbody of the centrosomes that are fated to each daughter hints at some extent of 

centrosome asymmetry [64]. In C. elegans’ first zygotic division, very recent results show that 

anterior-posterior axis specification is guided by both a centrosome-dependent mechanism that 

requires Aurora A kinase and a centrosome-independent back up mechanism [65, 66] (reviewed 

in [67]). There are no mother/daughter specific markers for centrioles in C. elegans, but a recent 

technical note reporting the use of centriolar proteins fused to photo-switchable Dendra2 

suggests that mother and daughter centrioles segregate randomly in a particular cell that divides 

through ACD at a late stage of development [68]. Technologies like Dendra2, or others like EosFP 

and SNAP-tagging that circumvent the need for maturation-specific markers [42, 69] should also 

be applicable at least to those cell types in vertebrates that are more amenable to experimental 

manipulation like for instance basal epidermal, hematopoietic, and skeletal muscle stem cells. 
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